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Simulating frustrated antiferromagnets with quadratically driven QED cavities
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We propose a class of quantum simulators for antiferromagnetic spin systems based on coupled photonic
cavities in the presence of two-photon driving and dissipation. By modeling the coupling between the different
cavities through a hopping term with negative amplitude, we solve numerically the quantum master equation
governing the dynamics of the open system and determine its nonequilibrium steady state. Under suitable
conditions, the steady state can be described in terms of the degenerate ground states of an antiferromagnetic
Ising model. When the geometry of the cavity array is incommensurate with the antiferromagnetic coupling, the
steady state presents properties which bear full analogy with those typical of the spin-liquid phases arising in
frustrated magnets.
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I. INTRODUCTION

For many years, quantum simulation has proven very
useful to address fundamental problems in different fields
of research, from quantum chemistry to condensed-matter
physics or cosmology [1–7]. Following the pioneering idea
of Feynman [8], several experimental platforms have been
proposed to implement quantum simulators, neutral atoms in
optical lattices [9], trapped ions [10], superconducting circuits
[11], and photonic systems [12], among others.

In particular, extended lattices of coupled nonlinear pho-
tonic cavities, both at optical and microwave frequencies,
have been applied to the simulation of quantum collective
phenomena [13–15]. The effective photon-photon interaction
arising from the nonlinearity of the medium where the elec-
tromagnetic field propagates, combined with losses of the
cavities, makes these systems the ideal platform to investi-
gate the nonequilibrium dynamics of strongly correlated open
quantum systems. This has motivated intense research activity
in recent years, which has led to the observation of interesting
phenomena, such as fractional quantum Hall effects [16–21]
and dissipative phase transitions [22–44].

A fundamental issue in many-body physics, which is still
the object of intense investigation, concerns the behavior
of frustrated systems. Frustration refers to the presence of
competing constraints in the Hamiltonian, which cannot be
satisfied simultaneously. This phenomenon is particularly rel-
evant in magnetic systems, where frustration usually has a
geometric origin and leads to a macroscopic degeneracy of
the ground state [45,46]. Frustrated magnets can therefore
be characterized by strong fluctuations even in the limit
of zero temperature and display configurations called spin
liquids, i.e., highly correlated phases with extensive entropy
and without static order [47]. Depending on the nature of the
fluctuations, spin liquids can be either classical or quantum. In
particular, the latter are prototypical examples of systems with
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long-range entanglement, and although they are more elusive
than their classical counterpart, they can show remarkable
collective phenomena, such as emergent gauge fields and
fractional particle excitations.

Quantum simulators, such as trapped ions [48] and Ryd-
berg atoms [49,50], have been applied to the study of frus-
trated magnets. However, although photonic lattices in the
presence of frustration have been investigated in the past [19,
51–59], the possibility of simulating spin liquids by means
of photonic systems has yet to be explored. An interesting
experimental platform able to mimic the behavior of spin
systems is represented by QED cavities subjected to two-
photon (i.e., quadratic in the field) driving and losses [60].
In particular, the two-photon driving scheme enforces a Z2

symmetry, as it sets the complex phase of the square of
the cavity field. This results in the emergence of universal
properties characteristic of quantum spin-1/2 systems, mak-
ing thus quadratically driven photonic resonators a suitable
simulator of quantum magnets. Indeed, the nonequilibrium
steady state of these systems is approximately restricted to
the quantum manifold spanned by two coherent states with
opposite phases, which can be associated with the opposite
magnetic states of a quantum s = 1/2 spin [61,62]. This
peculiar feature has motivated deep research activity around
these photonic systems, showing not only the feasibility of
quantum computers and quantum annealers [63–67] but also
the emergence of a second-order phase transition, analogous
to that separating the paramagnetic and the ferromagnetic
phases in quantum magnets [29,36,44,68]. In a rather different
context, optical parametric amplifiers have been proposed as
a coherent simulator of an Ising model [69].

In this work, we show how an array of coupled quadrat-
ically driven QED cavities can simulate the triangular an-
tiferromagnetic Ising model [70], a well-known theoretical
model supporting the emergence of a spin-liquid phase. A
necessary condition to recover this result is to engineer the
coupling between the cavities such that the photon hopping
strength is negative: this regime is experimentally feasible
with photonic crystals [71], and a possible realization with
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FIG. 1. A sketch of the array of cavities in the presence of a two-
photon driving with amplitude G, one-photon losses with rate γ , two-
photon losses with rate η, and hopping amplitude J < 0. In the limit
of a strong driving field, the photons in each cavity form a coherent
state with phase α or −α. The coupling with J < 0 tends to favor
the emergence of states with opposite phases between neighboring
cavities, but this condition cannot be satisfied in the frustrated system
made up of three mutually coupled cavities. This system bears strong
analogies to three antiferromagnetically interacting Ising spins.

QED cavities was discussed recently [65,72]. By studying the
first-order coherence correlation function, the entropy, and the
response to a single-photon driving field, we show that three
coupled quadratically driven cavities, in the limit of a strong
two-photon pump, behave as three interacting spins with an
Ising antiferromagnetic coupling (see Fig. 1).

This paper is organized as follows: in Sec. II we
describe the theoretical framework used in this work, includ-
ing the definition of the relevant equations and the details
of the numerical computations; in Sec. III we present and
discuss the results obtained. Finally, in Sec. IV we draw our
conclusions.

II. THEORETICAL MODEL

We consider systems with N = 2 and N = 3 coupled pho-
tonic resonators in the presence of a Kerr nonlinearity with
energy U and two-photon driving with frequency ωp and
amplitude G. These can be modeled, in the reference frame
rotating at half of the pump frequency, by the Hamiltonian
(we set h̄ = 1)

Ĥ =
N∑

j=1

−�â†
j â j + U

2
â†2

j â2
j + G

2
â†2

j + G∗

2
â2

j

−
∑

j �= j′

J

2
(â†

j â j′ + â†
j′ â j ), (1)

where â j is the photon destruction operator acting on the jth
site. The quantity � = ωp/2 − ωc is the detuning between
half of the two-photon driving-field frequency ωp and the
resonant-cavity frequency ωc. The photon hopping between
different cavities, with strength J , is described by the last term
in the equation.

Assuming Markovian dissipative processes for each cavity,
the dynamics of the system is described by the density matrix
ρ̂(t ), which obeys the quantum master equation in the Lind-
blad form:

∂ρ̂

∂t
= Lρ̂ = −i[Ĥ, ρ̂] +

∑

j,k

	̂ j,k ρ̂	̂
†
j,k − 1

2
{	̂†

j,k	̂ j,k, ρ̂},

(2)

where L is the Liouvillian superoperator and the jump opera-
tors 	̂ j,k describe the transition induced by the environment
on the system. In the case of quadratically driven cavities,
it is necessary to consider two different kinds of dissipa-
tive processes. First, one-photon losses are modeled by the
jump operators 	̂ j,1 = √

γ â j . Furthermore, since we assume
an input channel injecting photons in pairs, then dissipative
processes will likely arise through the same channel, and
therefore, it is necessary to consider two-photon losses, which
are described by the jump operators 	̂ j,2 = √

ηâ2
j .

The dynamics of the system evolves at large times towards
a steady state ρ̂ss, which satisfies the condition ∂ρ̂ss/∂t =
0. We determine the steady-state density matrix by numeri-
cally solving the linear system Lρ̂ss = 0, with the constraint
Tr(ρ̂ss) = 1. The Hilbert space is truncated by setting a max-
imum value Nm for the photon occupancy per cavity and a
maximum value Nm,T for the total photon occupancy in the
system: the accuracy of the numerical results is checked by
studying their convergence with Nm and Nm,T . The optimal
values of Nm and Nm,T depend on the particular physical
parameters of each simulation. For the regimes where photon
occupation is the largest (i.e., large G/γ and small U/γ ), for
the case of N = 3 cavities, the convergence is reached for
Nm = 22 and Nm,t = 42: this corresponds to a Hilbert space of
∼104 and hence a master equation for the steady-state density
matrix [Eq. (2)] equivalent to a linear system of 108 equations.

In Ref. [44], it was shown that a system of coupled quadrat-
ically driven cavities can be approximated by a spin-1/2
lattice governed by a XY Hamiltonian in a transverse field:

ĤXY = hz

∑

j

σ̂
(z)
j − JXY

∑

〈 j, j′〉

[
ηxσ̂

(x)
j σ̂

(x)
j′ + ηyσ̂

(y)
j σ̂

(y)
j′

]
. (3)

The coupling strength JXY in the effective model is pro-
portional to the photon hopping strength J of the bosonic
system. The case of J > 0, studied in Ref. [36] within a
mean-field approximation and in Ref. [44] using a fully
many body approach, shows that the quadratically driven
Bose-Hubbard model presents a steady state that is a statis-
tical mixture of two equiprobable separable coherent states
|�±〉 = ∏

j |±α〉 j in the limit of large G. These states can
be associated with a ferromagnetic phase if one associates
the local coherent states with opposite α with the spin states
with opposite magnetizations. The case of J < 0 should then
simulate an antiferromagnetic coupling in the approximate
spin model, which corresponds in extended one-dimensional
arrays of photonic cavities to the emergence of states |�±〉 =
|±α,∓α,±α,∓α, . . .〉 with k = π modulation.

In order to investigate this simulated antiferromagnetic
spin model, we study the steady-state properties of the pho-
tonic system while varying the value of the two-photon
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driving amplitude G (which we always consider to be real val-
ued) and assuming � = J < 0 in Eq. (1). This latter condition
corresponds to setting the two-photon driving field resonant
with the k = π mode of the single-particle spectrum of the
Bose-Hubbard Hamiltonian. This choice should thus favor
the emergence of states |�±〉 in the steady state of the open
system. We point out that, for arrays of finite length with
periodic boundary conditions, the k = π mode is present in
the energy spectrum of the closed system only if the number
of sites is even. For an odd number of sites, the geometrical
frustration makes the two-photon pump off resonant with any
of the eigenstates of the Bose-Hubbard Hamiltonian. Hence,
it is expected that signatures of an antiferromagnetic behavior
emerge at larger values of the driving-field amplitude in a
frustrated array than in a commensurate one.

III. RESULTS

To show the analogies between our quadratically driven
photonic system and a frustrated antiferromagnet, we focus
at first on the first-order coherence correlation function

g(1)
1,2 = Tr(ρ̂ssâ

†
1â2)

Tr(ρ̂ssâ
†
1â1)

(4)

and the von Neumann entropy

S = −Tr(ρ̂ss ln ρ̂ss). (5)

In particular, g(1)
1,2 is related to a spin-spin correlation

function. Indeed, if we adopt the approximate mapping of
the photon annihilation operator onto spin operators of the
effective model [44] to Eq. (4), we obtain

g(1)
1,2 
 B2

+
〈
σ̂

(x)
1 σ̂

(x)
2

〉 + B2
−
〈
σ̂

(y)
1 σ̂

(y)
2

〉

(B2+ + B2−) + 2B+B−
〈
σ̂

(z)
1

〉 . (6)

Here, B± =
√

tanh(|α|2) ± [
√

tanh(|α|2)]−1, and α is a pa-
rameter determined uniquely by the values of the system
parameters, which can be interpreted as the field amplitude
of an optimal local coherent state. For G/γ → ∞, one has
|α| → ∞ and B− → 0, leading to g(1)

1,2 
 〈σ̂ (x)
1 σ̂

(x)
2 〉.

The behaviors of g(1)
1,2 and of S as a function of the driving-

field amplitude G are shown, respectively, in Figs. 2 and 3
for the systems with both N = 2 and N = 3 cavities. The
results for the system made up of N = 2 cavities bear a clear
signature of an antiferromagnetic interaction. The correlation
function g(1)

1,2 is negative and, for increasing G, approaches

the asymptotic value g(1)
1,2 = −1. Moreover, the entropy as a

function of G increases from the value S = 0 in the limit
of a vanishing driving amplitude (notice that for G = 0, the
steady state is pure and corresponds to the bosonic vacuum)
to the asymptotic value S = ln(2) in the limit G/γ → ∞,
indicating that the steady-state density matrix is dominated
by two equiprobable eigenstates.

The results for g(1)
1,2 and for S indicate that, in the limit of

G  γ , the steady state is described by a statistical mixture
of two separable states, obtained as the product of two local
coherent states with opposite phases. Its density matrix can
therefore be written as

ρ̂2 = 1
2 |α0,−α0〉〈α0,−α0| + 1

2 | − α0, α0〉〈−α0, α0|. (7)

FIG. 2. The first-order correlation function g(1)
1,2 as a function of

the amplitude of the two-photon driving for the systems with N = 2
and N = 3 cavities. Inset: behavior of g(1)

1,2 vs G in the regime of
large G/γ for the case of N = 3 cavities, plotted on a log-log scale:
the results show a power-law dependence |1/3 + g(1)

1,2| ∼ Gν , with
ν = −1.02 ± 0.02. The other Hamiltonian parameters are U/γ =
10, �/γ = J/γ = −10.

To test this assumption, we compute the fidelity
F (ρ̂2, ρ̂ss) = [Tr(

√√
ρ̂2ρ̂ss

√
ρ̂2)]2, with the steady-state den-

sity matrix ρ̂ss obtained from the numerical solution of the
master equation (2) and the density matrix ρ̂2 in Eq. (7),
with the phase α0 of the local coherent states obtained as
α0 =

√
Tr(ρ̂ssâ2

1). It turns out that 1 − F (ρ̂2, ρ̂ss) < 10−4 for
all values G/γ � 30, thus indicating that Eq. (7) is a very
good description of the steady-state density matrix in the limit
of strong driving.

The possibility to investigate the effects of frustration
is highlighted in the results of the system made up of
N = 3 cavities. In this case, the coupling between different

FIG. 3. The von Neumann entropy S as a function of the am-
plitude of the two-photon driving for the systems with N = 2 and
N = 3 cavities. Inset: behavior of S vs G in the regime of large G/γ

for the case of N = 3 cavities, plotted on a log-log scale: the results
show a power-law dependence S − ln(6) ∼ Gμ, with μ = −2.28 ±
0.08. The other Hamiltonian parameters are U/γ = 10, �/γ =
J/γ = −10.
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cavities is at odds with the geometric constraints of the
system, thus leading to a behavior similar to frustrated anti-
ferromagnets. The correlation function g(1)

1,2 (Fig. 2) presents
a nonmonotonous behavior as a function of G, and for large
values of G/γ , it converges with a power-law behavior to
the asymptotic value −1/3. This value is typical of the
spin-spin correlation function between nearest neighbors in a
triangular antiferromagnetic Ising model [73]. The behavior
of the entropy S (Fig. 3) also confirms the analogy with
an antiferromagnetic system. In this case, the frustration in
the spin alignment results in the appearance of six possible
configurations minimizing the energy (i.e., all those with two
antiparallel pairs and one parallel pair of spins). The asymp-
totic value reached in the limit of large G/γ is S = ln(6),
consistent with the sixfold degeneracy of the ground state of
the equivalent spin model.

In analogy to the case with N = 2, we can construct
an approximation for the steady-state density matrix for the
system with N = 3 cavities in the limit where G  γ as a
statistical mixture of states obtained as tensor products of local
coherent states with opposite phases. From the analogy with
the ground state of the three antiferromagnetically coupled
spins, the approximate steady state is

ρ̂3 = 1
6 (|α0, α0,−α0〉〈α0, α0,−α0|
+ |α0,−α0, α0〉〈α0,−α0, α0|
+ |−α0, α0, α0〉〈−α0, α0, α0|
+ |−α0,−α0, α0〉〈−α0,−α0, α0|
+ |−α0, α0,−α0〉〈−α0, α0,−α0|
+ |α0,−α0,−α0〉〈α0,−α0,−α0|). (8)

At G/γ = 60, we have α0 = 0.112 − 2.299i, and the fi-
delity between the steady-state density matrix ρ̂ss and the
approximation given by Eq. (8) is F (ρ̂3, ρ̂ss) = 0.956.

In Fig. 4, we show the results for the von Neumann entropy
S and the correlation function g(1)

1,2 of the system with N = 3
cavities for different values of the Hamiltonian parameters.
Although the different parameters affect quantitatively the
curves of S and g(1)

1,2 as a function of G/γ [Figs. 4(a) and 4(b)],
their qualitative behavior is independent of J and U . Indeed,
the results in Fig. 4 indicate that, for large enough two-photon
driving, S and g(1)

1,2 tend to the corresponding limiting values
ln(6) and −1/3 for all values of J and U . Interestingly, when
the data are shown as a function of the ratio G/U [Figs. 4(c)
and 4(d)], the behavior of S and g(1)

1,2 depends on the value of
J/U but is independent of the value γ /U . This last analysis
indicates that the simulated antiferromagnetic behavior is ro-
bust with respect to dissipation and does not require low-loss
cavities to be observed. Moreover, it supports the statement
that the antiferromagnetic behavior of the photonic simulator
is related exclusively to the local Z2 symmetry, rather than to
a particular regime of physical parameters.

It is important to notice that, even though the steady state
of the system is separable in the limit of strong two-photon
driving, our simulator can support fully quantum correlated
states. This can be deduced from the computation of the
entanglement negativity N , from the partial transpose of the
steady-state density matrix with respect to one of the N

FIG. 4. (a) The von Neumann entropy S and (b) the first-order
coherence correlation function g(1)

1,2 as a function of the amplitude of
the two-photon driving rescaled with the one-photon loss rate G/γ

for the system with N = 3 cavities and for different values of the
Hamiltonian parameters. (c) and (d) The same data as a function of
the two-photon driving rescaled with the nonlinearity G/U .

cavities in the array. The results for N are presented in Fig. 5
and show clearly the presence of entanglement (N > 0 for
all G/γ ) in both the commensurate and frustrated lattices.
Only in the limit of G/γ → ∞ the negativity tends to zero,
as expected for the classical steady states in Eqs. (7) and (8).

Further evidence of the spin analogy can be found in
the nonlinear response of the quadratically driven photonic
system to a one-photon pump. The latter can be modeled with
an additional term in the Hamiltonian of Eq. (1):

ĤF = Ĥ +
∑

j

(Fâ†
j + F ∗â j ). (9)

FIG. 5. The entanglement negativity N as a function of the
amplitude of the two-photon driving for the systems with N = 2 and
N = 3 cavities. The other Hamiltonian parameters are U/γ = 10,
�/γ = J/γ = −10.
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FIG. 6. Field amplitude |〈â1〉| (rescaled by |α0|) as a function of
the amplitude F of the applied one-photon driving for the systems
with N = 2 and N = 3 cavities. The other parameters of the Hamil-
tonian are U/γ = 10, �/γ = J/γ = −10, G/γ = 60.

According to the spin approximation discussed in Ref. [44],
this term can be associated with an external field in the
magnetic analog of our system. The direction of the analog
external field depends on α0, and in the limit of large α0 (i.e.,
large G/γ ), it becomes parallel to the direction of the Ising
antiferromagnetic coupling. We have calculated the steady-
state density matrix ρ̂F of the system in the presence of
a strong two-photon driving G/γ = 60 and a variable one-
photon driving F . We show in Fig. 6 the expectation value
of the induced coherence 〈â1〉 = Tr(ρ̂F â1). The quantity 〈â1〉
strongly depends on the phase of the one-photon driving F ,
and the effect of the one-photon pump is more evident when
the quantity F ∗α0 is purely real. For this reason, in the results
of Fig. 6, we have set the phase of F according to this
condition and vary the absolute value |F |.

The dependence of 〈â1〉 on |F | is particularly different in
the two systems with N = 2 and N = 3 cavities. For N = 2,
we can distinguish two different regimes, according to the
amplitude of the one-photon driving. For small |F | (up to
|F |/γ � 20), the induced coherence increases slowly and
linearly with the pump, indicating that the system maintains a
certain antiferromagnetic order, similarly to what happens in
the absence of the one-photon driving. For large |F |, instead,
the antiferromagnetic order is broken, and the steady state of
the photonic system is a pure coherent state, with 〈â1〉 = α0.
For the system with N = 3 cavities, the behavior of 〈â1〉 is
similar to the previous case only for large |F | but is notably

different in the opposite regime. For small |F |, we notice that,
after a steep increase of 〈â1〉 with |F | at very small values
of the pump, there is a broad interval where the induced
coherence depends very weakly on |F | and stabilizes around
a value close to α0/3. This latter behavior is reminiscent of
the 1/3-magnetization plateau which emerges in the triangular
antiferromagnetic Ising model in the presence of an external
magnetic field along the direction of the coupling [74]. It
corresponds to the minimal energy configurations where two
thirds of the spins in the lattice point in the direction of
the external field and the remaining one third points in the
opposite one.

IV. CONCLUSIONS

In conclusion, we have considered a system of coupled
photonic cavities subject to a two-photon driving and showed
the existence of regimes where they can simulate the prop-
erties of Ising antiferromagnets. The key feature, allowing
the emergence of antiferromagnetic correlations among the
photonic states, is a negative hopping rate between different
cavities, a condition already realized experimentally [71].
By comparing the behavior of the systems of two and three
cavities, whose geometries are, respectively, commensurate
and incommensurate to the antiferromagnetic coupling, we
highlighted the effects due to the frustration of the lattice,
analogous to those arising in spin models. The von Neu-
mann entropy in particular signals the increased fluctuations
in the frustrated system, which can be ascribed to a larger
degeneracy of the states at minimum energy. The response
of the photonic system to a coherent one-photon drive shows
the emergence of a plateau in the induced coherence, which
is reminiscent of the behavior of frustrated antiferromagnets
under an external magnetic field.

Thanks to the possibility of realizing and manipulating
systems of quadratically driven nonlinear photonic cavities
within current experimental techniques, our results point to
a novel class of quantum simulators for antiferromagnets,
which could allow us to investigate the properties of spin liq-
uids by means of a fully controllable and versatile experimen-
tal platform. From the theoretical point of view, an important
question which should be addressed in the future concerns
the possibility to achieve strong quantum correlations in this
system and the effects the geometric frustration can have on
them. This possibility could be relevant to investigate the
elusive quantum spin-liquid phase.
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