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We study the Bloch-Messiah reduction of parametric down-conversion of light in the pulsed regime with a
nondegenerate phase matching providing generation of twin beams. We find that in this case every squeezing
eigenvalue has multiplicity at least two. We discuss the problem of ambiguity in the definition of the squeezing
eigenmodes in this case and develop two approaches to unique determination of the latter. First, we show that
the modal functions of the squeezing eigenmodes can be tailored from the Schmidt modes of the signal and
idler beams. Alternatively, they can be found as a solution of an eigenvalue problem for an associated Hermitian
squeezing matrix. We illustrate the developed theory by an example of frequency nondegenerate collinear twin
beams generated in beta barium borate crystal. In this example we demonstrate how the squeezing eigenmodes
can be approximated analytically on the basis of the Mehler’s formula, extended to complex kernels. We show
how the multiplicity of the eigenvalues and the structure of the eigenmodes are changed when the phase matching

approaches the degeneracy in frequency.
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I. INTRODUCTION

In the process of parametric down-conversion (PDC) one
photon of pump wave is converted into a pair of signal and
idler photons, which are almost simultaneous [1,2]. A multi-
mode analysis [3,4] of this process shows that the correlation
time between the two photons is determined by the inverse of
the down-converted light bandwidth, which is typically in the
subpicosecond range. Thus, detection of the idler photon re-
sults in a localization of the signal one [1], which is known as
“photon heralding” technique [5], widely used today. Analysis
of the joint quantum state of two photons shows that a discrete
set of orthogonal modes, Schmidt modes, can be defined for
each photon of the pair such that detection of a photon in
an idler Schmidt mode projects the other photon onto the
corresponding signal Schmidt mode [6,7]. In the high-gain
regime, when the initial spontaneous photon pairs experience
amplification by stimulated emission and many photons are
generated in the principal modes, nondegenerate PDC results
in generation of two beams of light, signal and idler, having
equal numbers of photons in any time interval longer than
the inverse bandwidth of one beam. These highly correlated
beams are known as “twin beams” and were generated both
in the cavity [8] and the single-pass [9] configurations. Early
multimode theory of PDC [10,11] allowed one to calculate
many important properties of the generated field for the case
of monochromatic pump. Later a modal decomposition for
pulsed high-gain PDC was introduced [12], which represented
the output field as an assembly of independent squeezing
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eigenmodes, each being in a single-mode squeezed state. Es-
sentially similar approach was formulated in the language of
symplectic transformations [13—16], and is known as Bloch-
Messiah reduction in reference to a similar reduction in the
elementary particle physics [17,18]. In the case of degenerate
PDC, where the signal and the idler photons are indistin-
guishable, the Bloch-Messiah reduction has proven to be a
powerful tool for determining the squeezing eigenmodes for
single-pass optical parametric amplifiers (OPA) [19,20] and
multipass optical parametric oscillators [21-24]. Application
of this formalism to a degenerate PDC with a monochromatic
pump, undertaken recently by some of us [25], resulted in
a successful identification of bichromatic squeezing eigen-
modes. For nondegenerate high-gain PDC it has been found
[26] that up to certain level of gain the Schmidt modes of
photon pairs determine a modal decomposition for the signal
and idler beams such that the corresponding modes are in
a two-mode squeezed state. This decomposition is obviously
related to the Bloch-Messiah reduction but does not coincide
with it, since in the latter, as introduced by Braunstein [13], the
field is represented as an assembly of single-mode squeezed
states.

The aim of the present article is to apply the Bloch-Messiah
reduction to twin beams generated in a nondegenerate PDC
with any pump, pulsed, or continuous wave. We develop a
general formalism applicable in all cases where signal and
idler beams can be discriminated either by frequency, direc-
tion, or polarization. We find a fundamental result applicable
to all these cases: Every squeezing eigenvalue of twin beams
has multiplicity at least two. This result follows directly from
the symmetry of the interaction Hamiltonian in the case where
the down-converted light is partitioned into a signal and an
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idler parts. As consequence, the squeezing eigenmodes are
determined up to an orthogonal rotation in the subspace,
corresponding to a given eigenvalue. Such a rotation leads
to ambiguity in the definition of squeezing eigenmodes and
often makes impossible obtaining reproducible results when
the eigenmodes are found numerically by a singular value
decomposition (SVD) of the Bogoliubov transformation ma-
trices [13] or by a Takagi factorization of the transformation
generator matrix [12,15,16]. We propose two solutions for this
problem. First, we show how the squeezing eigenmodes can
be composed from the Schmidt modes of each beam. Sec-
ond, we show that the Takagi factorization of the squeezing
matrix can be easily found from the spectral decomposition
of an associated Hermitian matrix. As consequence, we find
that under rather simple experimental conditions the modal
functions of the squeezing eigenmodes can be identified as
transform-limited waveforms. These modal functions create
a basis in the subspace, corresponding to a given eigenvalue,
and are represented (up to constant phase) by real functions
of their spatiotemporal arguments. Measurement of pulsed
squeezing is realized by pulsed homodying [27], which re-
quires a precise shaping of the local oscillator pulse to fit the
target eigenmode. Thus, finding a simple transform-limited
basis in a continuous family of eigenfunctions means a sig-
nificant simplification of the measurement process, especially
in the full three-dimensional case, where the modal functions
depend on two transversal coordinates and time. We illustrate
our general results by an example where the modal functions
depend on frequency only, postponing the treatment of the
much more complicated three-dimensional case to a future
publication.

The article is structured as follows. In Sec. II we give a
brief review of the complex symplectic formalism for descrip-
tion of Gaussian unitary transformations, encompassing all
variants of PDC with undepleted pump. The Bloch-Messiah
reduction has a simple mathematical form in terms of this
formalism. This formalism simplifies the mathematics of sub-
sequent sections. Besides, we plan to apply this formalism
in further publications to the description of three-dimensional
spatiotemporal modes of a noncollinear OPA, which explains
its rather detailed character. In Sec. III we review different
ways of determining the squeezing eigenmodes and show their
equivalence. We consider here the Magnus expansion of the
field evolution operator. The complex symplectic formalism
helps us to clarify the general structure of the lowest orders of
the Magnus expansion and the role of the interaction picture
reference frame. Section IV is devoted to generation of twin
beams, which is a special case of PDC where the signal and
the idler modes are distinct. We show that in this special
case the Hamiltonian of the unitary transformation possesses
a symmetry, leading to double multiplicity of the squeezing
eigenvalues. We describe two procedures allowing one to
avoid the ambiguity in the determination of the squeezing
eigenmodes. The developed theory is illustrated in Sec. V
by a concrete example of bright twin beams discriminated in
frequency only with the conditions close to the experiment,
which is underway in the Sorbonne University group. Sec-
tion VI summarizes the results and makes an outlook for the
future research.

II. SYMPLECTIC FORMALISM FOR GAUSSIAN
UNITARY TRANSFORMATIONS

A. Field decomposition

In quantum theory a multimode optical field is described
by a Hermitian operator A(r, t) of its vector potential in point
r and time ¢. In the absence of sources this operator, in the
Coulomb gauge, can be uniquely decomposed into a complete
orthonormal set of modal functions { f;(r, ¢)} [28,29]:

Ae,0) =) afie, 0+ ) af fi(r,0), ()
k k

so that —0,A(r,t) = E(r,t) is electric component and V x
A(r,t) = B(r, t) is the magnetic component of the optical
field. The operators a; and a}{' are known as photon anni-
hilation and creation operators for the kth mode and obey
the canonical commutation relations [ak,a;] = ;. In the
presence of sources these operators become slowly varying
functions of time or one of spatial coordinates.

In the following we consider a finite number n

of optical modes. We introduce a column vector
of field operators a=1(ay,...,a,, a;, el aZ)T
and a column vector of modal functions f(r,t)=

(fr@e, 1), ..o, fulr, 1), f7(x 1), ..., f5(x,1))". Now Eg. (1)

can be rewritten in a matrix form as A(r, ) = f(r, t)a, and
. . T
the commutation relations as aa’ — (a"”a”)’ = K, where

I 0
K = (O _11) @)

and I is the n x n unit matrix. Here and below we adopt
bold font for 2n x 2n matrices and 2n x 1 column vectors,
the uppercase letters being reserved for matrices and the
lowercase ones for vectors. The “blackboard bold” font is
used for n x n matrices, while n x 1 column vectors are
marked by a bar above a lowercase letter. We introduce here
a “complex symplectic matrix formalism,” where a Hermi-
tian conjugation applied to a matrix of operators means a
transposition of the matrix and a Hermitian conjugation of
its elements. Transposition applied to such a matrix means a
transposition of the matrix without any effect to the elements.
This formalism differs from the traditional real symplectic
formalism [30-33] in two aspects. First, our variables are non-
Hermitian operators of photon creation and ahhihilation and
not positions and momenta. Such an approach is mentioned
in Refs. [30-32], though not used for practical calculations.
Second, all relations are expressed in a compact matrix form,
simplifying the calculation, while in the traditional approach
many important relations are expressed via matrix elements.

B. General Gaussian unitary transformation

Interaction between the modes in a nonlinear optical pro-
cess results in a transformation of the field operators. The case
of a linear in a transformation is called a Gaussian unitary
transformation and has the form

a’ = Sa, 3)

where S is a complex matrix. The conservation of the commu-
tation relations requires SKS™ = K, i.e., that the matrix S is
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complex symplectic and has the following structure [30-32]:

S = (SO Sf), *)

S; S§
where the complex n x n matrices Sy and S;, known as
Bogoliubov transfromation matrices, satisfy the relation
S()SS — SIS; = I and the matrix SOS,T is complex symmetric.
For each symplectic matrix S there exists a unitary operator

U, defined up to phase, producing the corresponding transfor-
mation of the field operators [30]

a’ =UTald. &)

For two subsequent transformations we have S = S,S; and
U=UU.

Any unitary operator can be written as U = exp(—iH),
where the Hermitian operator H is called transformation gen-
erator. For a Gaussian unitary transformation its generator is a
polynomial of a of the second order at maximum. For the sake
of simplicity we omit the linear part of this dependence, which
is rather trivial, and consider the generators being quadratic
forms in the field operators: H = %a'r Ha, where the Hermitian
matrix H, which we call “transformation generator matrix,”

has the structure
H, H,
= (H}‘ Hé) ©

with Hy Hermitian and H; complex symmetric.

The symplectic matrix, Eq. (4), can also be expressed via
its generator [32], which is simply related to the matrix of
the quadratic form: S = exp(—iKH). Thus, any symplectic
matrix can be written as

ZHI). (7)

g —iH,
= X
R N ¢

The dimension of the group, created by symplectic matri-
ces of the form Eq. (4) or Eq. (7) is 2n®> + n. This is also
the number of linearly independent generators of the form
KH. We note that any pair of n x n matrices, a Hermitian
Hy and a complex symmetric H;, define an n-dimensional
Gaussian unitary transformation. Thus, parametrization of a
Gaussian unitary transformation in terms of these matrices is
much simpler than in terms of the Bogoliubov transformation
matrices Sy and S;, which should satisfy additional equations
involving both matrices, as indicated above.

C. Passive Gaussian unitary transformation

An important subclass of Gaussian unitary transformations
contains the transformations, preserving the total number of
photons a’a. Such transformations correspond physically to
mixing different modes on a multiport interferometer and are
known as passive Gaussian unitary transformations [30-33].
The passive transformations necessarily have H; = S; = 0,
the matrix Sy becoming unitary: Sy = exp(—ilH). The sym-

plectic matrix
e~ Ho 0
S = ( 0 eiHé) (8)

is also unitary in this case. The corresponding transformation
generator can be obtained by writing

1 1 _, Hy O a
— i — —(a" ar
H = Ea Ha = z(a a )( 0 HS) <(—1}T>

1 . 1
= E(aTHOa +a"Hia™) = a'Hoa + 3 TrHy, (9)

where @ = (ay, ..., a,)T is the column vector of the anni-
hilation operators of the modes. The corresponding unitary
operator in the state space is (up to phase)

U = @ Hoa, (10)

The dimension of this (compact) subgroup of transforma-

tions is n?.

D. Modewise squeezing

Another important subclass of Gaussian unitary transfor-
mations consists of single-mode squeezing of all modes with
the squeezing parameters {ry, ..., r,,}, some of which may be
zero [30-33]. For definiteness we accept that all squeezing
parameters are non-negative and sorted in the decreasing
order. They can be written in a form of a positive diagonal
matrix R = diag{ry, ..., r,}. We define the modewise squeez-
ing transformation as a Gaussian unitary transformation with
Hy = 0 and H; = iR. The symplectic matrix for this class of
transformations is

S — 0 RY _|cosh(R)

=®PI\R  0) = |sinh(R)

The corresponding Hamiltonian can be obtained by writing
1 "Ha — 1(_T ) 0 iR\ [ a
2= YL o )\

1
= E(izﬁRzﬁT —ia" Ra). (12)

(1)

sinh(R)
cosh(R) |

H

The corresponding unitary operator in the state space is
U = e%(ai‘Rai‘T,aTRa). (13)

The dimension of this (noncompact) subgroup of transfor-
mations is 7.

E. Bloch-Messiah reduction

The central mathematical procedure for determining the
modes of squeezing of a multimode optical field is the de-
composition of an arbitrary Gaussian unitary transformation
into two passive transformations and one modewise squeezing
transformation:

|
(3 Dorlt HE ). o

where the matrices V and QQ are unitary and the matrix R
is positive diagonal. This decomposition is known as Bloch-
Messiah reduction. It was introduced by Bloch and Mes-
siah for fermions [17] and later generalized to bosons [18].
The physical meaning of this procedure is the possibility of
realizing any Gaussian unitary transformation by means of
two multiport interferometers and a number of single-mode
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squeezers [13]. It should be noted that in practice a passive
Gaussian transformation can be realized not by a multiport in-
terferometer but by a change of modal basis, corresponding to
a proper shaping of the local oscillator used in the homodyne
measurement of the field.

Decomposition defined by Eq. (14) can be written in the
following form, used by Braunstein [13]:

So = Veosh(R)Q', S; = Vsinh(R)QT, (15)

which means a simultaneous SVD of two Bogoliubov trans-
formation matrices.

The corresponding expression for the unitary operator in
the state space is

U= p—id'Hya 3 (a"Ra'™ —aT]Ra)eiaTHQa, (16)

where the Hermitian matrices IHy and H are the generators
of the corresponding unitary matrices in Eq. (14): V = ¢~Hv,
Q = ¢ He,

F. Gaussian states

A fundamental property of a Gaussian transformation is
that it transforms a Gaussian state into another Gaussian one.
Any n-mode state with a density operator p is characterized
by its Wigner function

iW@z-%/ﬁﬁﬁwﬂ““k”“%, (17)
b
where @ = (o, ..., a,) and X = (A4, ..., A,) are two col-
umn vectors of complex variables and o = (&, &)

A state is called Gaussian if its Wigner function is a
multivariate Gaussian distribution [30-32]:

W (et) = e re T e (1)

1
Qmr)/det X

where oy = (a) is the column vector of mean field and

(a—ap)@ —a)) (@ — ) (@a—a)]")
2 2

is the 2n x 2n complex covariance matrix.

If a Gaussian state with mean o and covariance matrix X
undergoes a Gaussian transformation with matrix S, then the
state at the output is a Gaussian state with the mean Setp and
the covariance matrix ¥’ = SEST [30].

The complex covariance matrix X has the following struc-

ture:
b %
z:(i ?, (20)
DS

Yy =

19)

where the Hermitian matrix
o= H@-ao)a —a))+1@ —a) @—an’1") @

is the phase-insensitive covariance (also known as coherency
matrix), while the complex symmetric matrix

T = ((@—ap)@—ap)") (22)

is the phase-sensitive covariance of the field (also known as
anomalous correlator [34]).

In the next section we will see how the developed formal-
ism leads to a natural determination of squeezing eigenmodes
in the process of PDC.

III. SQUEEZING EIGENMODES

A. Determining the squeezing eigenmodes
by Bloch-Messiah reduction

In many nonlinear optical experiments, such as PDC and
four-wave mixing (FWM), a squeezed light is generated
by amplification of vacuum fluctuations. The formalism of
Bloch-Messiah reduction, when applied to a Gaussian unitary
transformation with the vacuum field at the input, gives a
possibility to define a set of modes at the output, such that
each mode of the field is in a squeezed vacuum state with
the squeezed quadrature along the same direction in the phase
space or vacuum. Indeed, the field transformation Eq. (3) can
be written with the help of Eq. (14) as

i, [cosh(R)  sinh(R)
Via = |:sinh(IR<) cosh(R):|avaC’ @9

where ay,. = Q'a and the unitary matrices V and Q' are
the leftmost and the rightmost ones in the right-hand side of
Eq. (14), defined as

vV o Q 0

The modes characterized by operators b = V'a’ with the
modal functions g(r,¢) = V'f(r, ) are generally known as
“modes of squeezing” or “squeezed modes.” We shall call
them “squeezing eigenmodes” and the corresponding diago-
nal values of the matrix R “squeezing eigenvalues.” These
modes are important for considering encoding quantum in-
formation into continuous variables of the optical field. For
example, in homodyne detection, for observing the maximal
squeezing, the modal function of the local oscillator should
match the mode with the maximal squeezing eigenvalue .

B. Determining the squeezing eigenmodes by squeezing matrix

An alternative way of determining the squeezing eigen-
modes can be obtained from Eq. (16), which we rewrite as
[35]

U= e%(zﬁrzﬁ’—aTF*a)e—iaTHVaeiaTHQa’ (25)

where ' = VRV? is a complex symmetric matrix, called “the
squeezing matrix,” and we have used the identity

[ o _
P Hvuaela Hya _ elea — VTa, (26)

following from the properties of a passive Gaussian trans-
formation, described in Sec. Il C. When the operator Uf acts
on a vacuum field, as in the case of unseeded PDC, two
rightmost factors in the right-hand side of Eq. (25) have no
effect, and the resulting state is determined only by the third
factor, dependent on I".

Bennink and Boyd [12] considered the Takagi factorization
of the squeezing matrix I' = VRV’ and called the modes
defined by the columns of V the “eigenmodes of the squeez-
ing.”” We see from the above that the Takagi factorization
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of I' results in the same matrix V as the Bloch-Messiah
reduction, and therefore this way of determining the squeezing
eigenmodes is equivalent to that of Sec. Il A.

C. Determining the squeezing eigenmodes by covariance matrix

One more alternative way for determining the squeezing
eigenmodes is based on the diagonalization of the covariance
matrix. The state at the input of the nonlinear crystal in the
case of unseeded PDC is vacuum, which is a Gaussian state
with zero mean and the covariance matrix %I. In accord with
Sec. ITF the output field has zero mean and the covariance
matrix

SST = 1VeRvT, (27)

0 R
R=<R O). (28)

The blocks of the covariance matrix, defined by Eq. (20),
are X) = 1VcoshR)V' and £} = 1Vsinh(2R)V’. Note
that the matrix V obtained from the Takagi factorization of
¥, fits also the spectral decomposition of X, but the inverse
is not true in general.

We see thus that the squeezing eigenmodes can be ob-
tained from the Takagi factorization of the phase-sensitive
covariance X; of the output field, similarly to the approach of
Shapiro and Shakeel [36]. In the latter approach the squeezing
eigenmodes are obtained from a diagonalization of a real sym-
metric covariance matrix, including both the phase-insensitive
and the phase-sensitive covariances. As we have shown above
the same result can be achieved by a diagonalization of
the phase-sensitive covariance alone. However, this matrix is
complex symmetric, not real symmetric, as in Ref. [36].

As we have seen from the two last sections, the matrix
of squeezing eigenmodes V can be obtained by the Takagi
factorization of either the squeezing matrix I determined
by the physical model of PDC, or the phase-sensitive co-
variance matrix X;, directly measurable by the homodyne
technique. Takagi factorization can be rather easily calculated
numerically when all the squeezing eigenvalues are different.
This case is typical for degenerate OPA [19,20] and optical
parametric oscillators [21,24,37]. As we will see in Sec. IV,
in the case of twin beams each squeezing eigenvalue has a
multiplicity of at least two and the squeezing eigenmodes are
defined with some degree of freedom. Takagi factorization in
this case requires computing a balancing matrix and its square
root [16], which introduces a higher level of complexity,
especially in a multidimensional case. We show below how
this complexity may be reduced in many practically important
cases.

where

D. Frequency eigenmodes

To show how the formalism developed above is related to
generation of squeezed light in PDC, we limit our consider-
ation to the case, where the generated photons differ in one
variable only, the frequency, i.e., to the case of type-I collinear
PDC. However, all obtained results will be valid when the
photons differ in any combination of frequency, direction and
polarization with a proper relabeling of the modes.

- A h
RN wo
—
X(2)

0 20 L z

FIG. 1. Schematic representation of a collinear type-I PDC in
the pulsed regime. Pump pulse with the central frequency w, passes
through a x ® nonlinear crystal. For z > 0 this pulse is accompanied
by the signal and the idler pulses at frequencies close to wy =
wp/2. The point z, is the origin of the “interaction picture reference
frame” and can be chosen anywhere inside the crystal. Relative delay
between the pulses at the output is caused by the crystal positive
dispersion: waves with a higher frequency travel at a lower group
velocity.

We consider PDC in a nonlinear x® crystal with a pulsed
plane-wave pump of central frequency w,. We assume that the
pump wave is strong enough and is undepleted. A coordinate
system is chosen with the z axis in the direction of the pump-
wave propagation and with the origin at the input edge of the
crystal, see Fig. 1. The pump is considered as a classical wave
with the (time-dependent) amplitude E,, the wave vector k,
and the frequency w,. The down-converted wave may have a
broad spectrum of frequencies w = wq + €2 around the central
frequency wy = w,/2, with the corresponding wave vector k.

The down-converted wave is described by the positive-
frequency operator E (¢, z) normalized to photon-flux units,
which can be decomposed into Fourier components as

1 .
E(+)(l" Z) — 2_ / a(Q’ Z)efl(a)O‘i’Q)tdQ’ (29)
T

where a(€2, z) is the photon annihilation operator with the
frequency wp + €2 and the longitudinal coordinate z.
Another operator, €(£2, z), is defined by the relation [38]

a(Q,7) = (R, 2)e" D), (30)

where k(£2) is the wave vector of the down-converted light in
the crystal, corresponding to the frequency wy + €2. Operator
€(£2, z) is convenient for the description of the nonlinear
interaction inside the crystal and is a quantum-mechanical
analog of the classical slowly varying amplitude [39]. The
point zy, where a(2, z9) = €(£2, z0), can be placed anywhere
inside the crystal. Variation of this point results in a phase
factor for the slowly varying amplitude. The transformation
Eq. (30) can be alternatively considered as passage to the
interaction picture [19,20]. This passage is dependent on the
reference frame, and the point zy can be viewed as the origin
of the “interaction picture reference frame.” We recall that the
“working reference frame” has its origin at the crystal input,
so that the field evolution in the crystal is considered between
the points z =0 and z = L, where L is the crystal length.
Such a choice of the working reference frame simplifies the
formulas. We analyze below several choices for 7y, including
zo = 0 and zp = L/2, used in the literature.

The classical pump field is decomposed into Fourier com-
ponents as

1 in ey i :
ESD.0) = o / gn@)e @it (31
v/
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where k,(€2) is the wave vector of the pump at the frequency
w, + © and £(R) is the Fourier transform of the pump wave
at the crystal input at z = 0. We note that for the type-I phase
matching the polarization of the pump wave is orthogonal to
that of the generated light and the refractive index determining
the dependence k,(£2) is different from that determining the
dependence k(2).

Instead of working with continuous functions of frequency,
we prefer to define discrete modes at frequencies, equidis-
tantly spaced by the value 27 /T, which is determined by the
duration T of the time interval where the quantum field is
considered. We limit our consideration to the frequency band
[wo — A2, wy + AQ], where the photons are mainly gener-
ated, and call the photons with positive (negative) detunings
signal (idler) ones. We split each band into m modes and write
the discrete frequencies as

1\ 27
Q,:(l—m—§>T, (32)

where [ runs from 1 to n = 2m.

For these discrete modes we have a set of annihilation oper-
ators a;(z) = a(£2;, z) and a set of slowly varying amplitudes
€/(z) = €(€2, 7). Composing the vectors of length 2n, we ob-
tain a(z) = [a1(2), ..., ay(2), a;(@), ..., ajl(z)]T and &(z) =
[€1(2), ..., €(2), €] @), ..., €.

The evolution of the down-converted light in the crystal is
described by the following equation [12,19]:

¥

9 . . - in i i
320(0) = ik(Q))a;) —io ;%ze L@ g7 (Z), (33)

where £, = £™(Q; + ), and the first term in the right-
hand side corresponds to dispersive propagation, while the
second term corresponds to nonlinear interaction with the
coupling constant o, proportional to the nonlinear suscepti-
bility of the crystal. In this nonlinear interaction a photon of
the pump wave with the frequency €2; + €2; is annihilated
and converted into two photons with frequencies €2; and €;
respectively.

For slowly varying amplitudes we obtain from Egs. (30)

and (33),

9 Z ;
a—ZGj(Z) = —io 6;<)+161Aj1(17m)€;(2)a (34)
=1

where
€y = Efy et (35)

is the Fourier component of the pump field at z = zo and
Ay = k(2 + ;) — k() — k(£2;) is the phase mismatch
of the corresponding modes. Equation (34) can be rewritten in
a compact matrix form as

d .
775@) = —IF (@), (36)
where the matrix F(z) is given by

0 ]F(z)]

F(z) = [_]F* @ 0 (37)

with the complex symmetric matrix F(z) defined as
Fji(z) = o &, e ®1 ), (38)

Equation (36) can be written in a Hamiltonian form
0.£(z) = —i[&(2), F(z)] with a z-dependent Hamiltonian,

F(2) = 2@ Fe™ + & F(2)e) = LE'KF()E,  (39)

where € = (¢, ..., €,)T.
Solution of Eq. (36) can be written in the form of a T
exponent either for a symplectic matrix, transforming &(0) to

E(L):
S — Te—ifoL F(Z)dz’ (40)

or, for a unitary operator,

U= Te_ifﬂL]:(Z)dZ, (41)

where 7 denotes the z-ordering superoperator, placing the
operators (matrices) with higher z to the left in the Tay-
lor series of the exponential. Comparing Eq. (41) with the
definition of the transformation generator in Sec. II B, we
conclude that the latter is given by H = FL in the case of
z-independent Hamiltonian, which can be met, e.g., in the case
of perfect phasematching for all modes, where A j; = 0. This
fact explains the widely used referring to the transformation
generator H as “Hamiltonian.” However, in the general case
the Hamiltonian of the field is z dependent and is defined by
Eq. (39).

E. Magnus expansion

Both T exponents, Egs. (40) and (41), can be represented
as Magnus expansions [40,41]

S = eﬂl+92+93+...’ (42)

u — 651+Ez+53+...’ (43)
where € is a 2n x 2n matrix proportional to |o|¥. The first
term in Eq. (42) is

L
Q =i / dzF(2), (44)
0

and the higher-order terms are expressed via integrals over
nested commutators of F(z) with itself at different spatial
points. Equivalently, E; is an operator proportional to |o|¥,
and the first term in Eq. (43) is

L
=, = i / dz F(2). (45)
0

while the higher-order terms are expressed via integrals over
nested commutators of F(z) with itself at different spatial
points.

First-order Magnus approximation to the symplectic ma-
trix is denoted as S; and obtained by leaving the first term only
in the exponent of Eq. (42), while a similar approximation to
the evolution operator is denoted {; and obtained by leaving
the first term only in the exponent of Eq. (43). Let us show
that {/; is a Gaussian transformation with the corresponding
symplectic matrix S;. Substituting Eq. (39) into Eq. (45)
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we obtain
2 = ;' KQE, (46)

corresponding to a Gaussian transformation with the symplec-
tic matrix K% = ¢ , which is exactly S;.

The symplectic matrix S; is determined by its generator,
which we denote by H'!l, as S| = exp (—iKH!!'). The gener-
ator is determined according to Eq. (6) by two n x n matrices:
H([)l], which is Hermitian, and HE”, which is complex sym-

metric, as
[1] [1]
HY = <H0 H1 ) (47)

We have from Eqgs. (44) and (37) HE)” =0, and

L
H;' = / F()dz, (48)
0

wherefrom with the help of Eq. (38) we obtain
(H}Y),, = o L&}, e 2 sine(A1L/2).  (49)
From Eq. (46) we have

U, = e%E%Kﬂlé — e—%(E%HP]E%T*‘ETHE”*?)' (50)

Comparing this expression with Eq. (25), we arrive at the
conclusion that in the first order of Magnus expansion the
squeezing matrix is ' = —iHIIH. As consequence, the squeez-
ing eigenmodes are determined by the Takagi factorization
—iH"" = VRV”, where V is unitary. We note that the Tak-
agi factorization for iH"™ reads iH!'™ = V*RV'. When the
matrices V and R are found, the Bloch-Messiah reduction in
the first order of Magnus expansion can be easily written in
the form

S 0  —imM 0
= € =¢c
PP o PAvrve o

(V0 0 R\/V 0\ 5
_<0 V*)eXp<R o>(o V*)’ Gh

which is a special case of Eq. (14) with Q@ = V. Note that in
this special case the coincidence of the input and the output
eigenmodes reflects certain symmetry of the first order of
Magnus expansion which does not hold in the higher orders.

The unitary evolution operator in the state space is given
by Eq. (16) with H, = Hy. When this operator acts on the
vacuum, it produces a multimode squeezed state

|\IJ) — e—ié%Hvée%(é%Réir—&TRé)|O>' (52)

In the new basis, defined as

i
(V0
§ = (0 V*> £ (53)
the transformation of the field operators has a form of mode-
wise squeezing:

g - [cosh(R)

sinh(R) |,
sinh(R) ]Ei"' 54)

cosh(R)

The new modal functions are f'(r, t) = V'f(r, ¢). Note that
the field operator is invariant with respect to the choice of the
modal basis: A(r, 1) = £'7(r, )€ =£(r, 1)&.

In the present work we limit our consideration to the
first order of the Magnus expansion, which has been found
a good approximation for not very high squeezing, be-
low 12 dB [25,42]. An analytic treatment of higher or-
ders of the Magnus expansion in PDC can be found in
Refs. [25,43,44].

F. Reduction of the Takagi factorization to a real symmetric
spectral decomposition

As we have seen above, in the first order of the Mag-
nus expansion the squeezing eigenmodes are defined by the
Takagi factorization applied to the complex symmetric
squeezing matrix I' = —iHE”, whose matrix elements are
determined by Eq. (49). Takagi factorization can always be
realized for a complex symmetric matrix by performing a
singular value decomposition and then computing a balancing
matrix [15,16]. However, this procedure can be significantly
simplified under certain conditions. We notice that the el-
ements of the squeezing matrix can be made real if two
conditions are satisfied: (i) the origin of the interaction picture
frame is chosen at the center of the crystal, zo = L/2, and
(ii) the pump pulse at this point is transform limited, i.e., all
elements of the vector £° " have the same phase ¢,. Then, as is
easily seen from Eq. (49), all elements of the squeezing matrix
have the phase ¢ = ¢ + arg(o) — /2. This phase can be
removed by a trivial transformation € — &¢/? in Eq. (36)
which makes the squeezing matrix real.

When the squeezing matrix is real symmetric it can be
represented in the form of spectral decomposition

I'=0A07, (55

where O is a real orthogonal matrix and A is the real diagonal
matrix of eigenvalues. If all eigenvalues of I" are non-negative,
i.e., the squeezing matrix is positive semidefinite [45], then
Eq. (55) is a Takagi factorization, the columns of O are the
modal functions of the modes of squeezing, and the eigenval-
ues of I' are the squeezing parameters. In the opposite case,
when some of the eigenvalues of I" are negative, the Takagi
factorization can be reconstructed from the spectral decompo-
sition in the following way. Leté; = (0, ..., 1,...,0)" be the
1 x n column vector with the jth element equal to 1 and all
others zero. Then Q@é; = O; is the eigenvector corresponding
to the jth eigenvalue A;. We define a set of column vectors
V; as follows: V; =0; if A; >0 and V; =i0; if A; < 0.
We build a square matrix V= (Vi, ..., V,) from the columns
V;. It is easy to verify that this matrix is unitary, since O
is orthogonal. We define also r; = |A;| and build a diagonal
matrix R with r; at diagonal. Now we can rewrite Eq. (55) as

r=0) xee,0" =3 10,07
J J
=Y Vvl = VRV, (56)
J

which is a Takagi factorization for I'. Thus, in the case of
real squeezing matrix the modal functions of the squeezing
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eigenmodes, defined by the columns of V, are either purely
real or purely imaginary, which greatly simplifies their analy-
sis and visualization.

The price to be paid for the possibility to work with real
modal functions is, as shown above, the necessity to have the
pump pulse transform limited at the center of the crystal. In
a physical experiment the pump pulse is typically generated
as transform limited by the laser, and is therefore transform
limited at the crystal input. During its propagation inside
the crystal the pulse experiences dispersion determined by
the dependence k,(2) in Eq. (35). As a result, at the point
z0 = L/2 it acquires the phase k,(2)L/2. In the quadratic
dispersion approximation we can write

kp(QL/2 ~ kpoL/2 + 5k LQ + 1hkoLQ%,  (57)

where k9, k;o’ and &, are the value and the two derivatives of
k,(€2) at 2 = 0. Thus, the phase of the pump pulse at the crys-
tal center is composed of three major terms: (i) constant phase
shift due to optical oscillations at the carrier frequency, which
can be included into the phase ¢y; (ii) absolute group delay of
the pump pulse, which can be put to zero by adjusting the time
origin; and (iii) the frequency chirp, which is equivalent to
pulse spread in the temporal domain. The latter phase cannot
be removed by a simple mathematical transformation and
its removal has physical meaning. First, it can be neglected
if the pump bandwidth €2, is small enough so that , <
2/2(k/j,L)~"/2. Second, it can be compensated by prechirping
the pump pulse with the frequency chirp —k;,/OLQ2 /4. Since
most nonlinear crystals have positive dispersion (kgo > 0),
this prechirp should be negative and thus require an active
phase control.

In the examples of the squeezing eigenmodes presented
below in Sec. V we suppose that one of these conditions holds
and the modal functions of squeezing eigenmodes, defined in
terms of the slowly varying amplitudes €(£2), are either real
or imaginary. For the choice of zyp = L/2 the slowly varying
amplitude coincides with the full field a(£2) at the crystal cen-
ter, and at the crystal output the latter operator has additional
phase determined by Eq. (30). This phase includes the three
terms shown in Eq. (57) for the pump: constant phase shift,
group delay, and chirp. The full analysis of the output modal
functions is outside of the scope of the present treatment,
which is limited to the squeezing eigenvalues and eigenmodes
at the crystal center. We note that recently the eigenmodes
of a similar parametric nonlinear process—sum-frequency
generation—have been found for the case of prechirped pump
pulse [46].

G. Summary

In this section we have shown how the squeezing eigen-
modes and the corresponding squeezing eigenvalues can be
obtained from the Takagi factorization of the squeezing matrix
of the multimode optical field. Further, we have shown how
the squeezing matrix can be obtained from the physical model
of PDC and discussed a special case where this matrix is real.
In the next section we apply this general theory to twin beams
of light having remarkable additional symmetries.

IV. TWIN BEAMS OF LIGHT
A. Parametric down-conversion in the case of twin beams

To this point our consideration of PDC related any case
of phase-matching: degenerate and nondegenerate. In the
following sections we apply the developed formalism to the
specific case of twin beams and demonstrate some important
regularities inherent in this case. Twin beams are generated
in nondegenerate PDC where signal and idler photons are
discriminated by frequency, direction, polarization, or a com-
bination of these variables. For the description of twin beams
we need to consider a set of m signal modes and m idler modes
which should be united in the formalism of the previous sec-
tions with the total number of n = 2m modes. The fact that in
every photon pair the photons are always created in different
sets of modes imposes additional constraints on the matrices
H and H;, defining the Gaussian unitary transformation.

To be specific, we again limit our consideration to the
case of twin beams discriminated by frequency, with obvious
extensions to other cases. Twin beams generation is charac-
terized by phase-matching conditions, providing emission of
signal photons in a frequency band [w; — AL, ws + AQ]
and idler photons in a frequency band [w; — ARy, w; + Ap]
such that the frequency gap between the highest idler fre-
quency w; + Ay and lowest signal frequency w; — A is
much higher than the width of the pump spectrum. In this case
emission of two photons into one band (signal or idler) is prac-
tically impossible, because the sum of their frequencies would
be outside of the spectrum of the pump. As consequence, the
elements of the matrix HE”, defined by Eq. (49), are almost
zero when two indices belong to the same group of modes
(signal or idler). With a good degree of approximation we can
put them to zero exactly and write the matrix H!!'! defining
the generator of the Gaussian transformation in the first-order
Magnus expansion as

0 0 0o J
0 o JT o

HU= "~ 5 ol (58)
J 0 0O O

where J is a complex m x m matrix, known as joint spectral
amplitude (JSA) for two photons generated in an elementary
nonlinear process. This matrix in general possesses no prop-
erties of symmetry.

As indicated above, our consideration here is limited to
the first-order Magnus approximation and for simplicity we
omit the superscripts and the subscripts indicating the first
order of Magnus expansion. We adopt the name of “twin
beam Gaussian transformation” for a unitary transformation
U = e~ with a generator H = ja'Ha, where the matrix H
has the structure defined by Eq. (58).

The main regularity inherent in twin beams is stated by the
following theorem.

Theorem 1. All squeezing eigenvalues of a twin beam
Gaussian transformation have multiplicities of at least two.

Proof. Applying the SVD to the matrix —iJ, we write
—iJ = CR;D", where C and D are unitary m x m matrices and
R; is a diagonal m x m matrix with non-negative elements.
Now we can write the n x n matrix Hj;, defined according to
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Eq. (6), as
_iH, = —i( 0 J) — VRV, (59)

where

< _(C 0 = (0 Ry

V_<0 D*)’ ]R{_<RJ 0). (60)
Therefore, the full 2n x 2n generator matrix defined by
Eq. (58) is

s E Y

and the corresponding symplectic matrix is

3 S\ /% t
(] Deolt ()

which corresponds to a decomposition into two-mode squeez-
ers. Note that this decomposition is not the Bloch-Messiah
reduction, since the matrix R is not diagonal.

The true Bloch-Messiah reduction can be obtained by an
additional rotation. For each pair of conjugated modes the
submatrix of R is proportional to the Pauli matrix o,. The
Takagi factorization for this matrix is o, = xxT, where

1 /1 i
A e

Defining the matrix X as a direct sum of m matrices x for each
pair of conjugated modes, we rewrite Eq. (59) as

T
: c 0 c 0
—iH; = (0 D*>XRXT (0 D*> , (64)
where the diagonal matrix
_ (R, O

R = < 0 R,) (65)

is the matrix of squeezing eigenvalues. Now, defining

c 0

V= (O D*)X, (66)

we interpret Eq. (64) as the Takagi factorization of the
squeezing matrix, which is equivalent to the Bloch-Messiah
decomposition in the form Eq. (51). It is clear from Eq. (65)
that each squeezing eigenvalue is found twice in the diagonal
of R and therefore has multiplicity of at least two. |

The columns of matrices C and D are known as modal
functions of the signal and idler Schmidt modes of a pho-
ton pair generated in the elementary process of photon-pair
creation [6,7]. It follows from the proof of Theorem 1 that
the two squeezing eigenmodes corresponding to the same
eigenvalue can be constructed from the Schmidt modes in a
straightforward way. Let us denote the jth columns of the
matrices C and D by C; and D, respectively, similarly to how
it was done in Sec. IIIF for V;. Both C; and D; are m x 1
matrices (column vectors) and their corresponding singular
value is ;. From Egs. (66) and (63) we obtain a m x 2 matrix
containing two squeezing eigenmodes corresponding to the

same eigenvalue 7},

v (G O\, L(G i o
=10 p:)' = A\D: —iDt) 67

Thus, one squeezing eigenmode can be constructed by con-
catenating the signal Schmidt mode C; and the conjugated
idler Schmidt mode D;. Another squeezing eigenmode can be
constructed in a similar way from iC; and iD;.

Let us study the uniqueness of the squeezing eigenmodes
constructed in this way. For simplicity we suggest that each
singular eigenvalue r; of —iJ has multiplicity 1. Then by the
Autonne’s uniqueness theorem [45] the eigenvectors C; and
D; are defined up to arbitrary phase ¢;, i.e., C;e'¥ and D;e'i
are eigenvectors of an alternative SVD of —iJ. It means that
the general form of Eq. (67) is

V _ 1 Cjei"’f iCjei“’f
(rj: ¢)) = V2\Die i —iDte i
=V(rj,0)[°f’s(‘p-") _Sm(g"f)] (68)
sin(p;)  cos(;)

It follows from the last expression that the squeezing eigen-
modes corresponding to a given eigenvalue with multiplicity
2 are defined up to an orthogonal rotation. This rotation
corresponds to shifting the phases of the signal and idler
Schmidt modes by the same angle.

The multiplicity of the eigenvalues and the lack of definite-
ness of the eigenfunctions can be understood from considering
just two modes with photon annihilation operators a and b.
The following identity holds [47]:

er(ab—a%bT) — e%(cz_‘ﬁ)e%(dz_dﬁ), (69)

where the real number r is the squeezing parameter [38]
and we have introduced two other modes with photon an-
nihilation operators ¢ = ¢/*(a — ib)/+/2 and d = € /*(b —
ia)/~/2. The left-hand side of Eq. (69) represents the two-
mode squeeze operator [48], while the right-hand side of this
equation represents a product of two single-mode squeeze
operators. Thus, a two-mode squeezed state can be repre-
sented by a unitary rotation in the modal space as direct
product of two single-mode squeezed states with the same
squeezing parameter. An important and less known feature
of this representation consists in invariance of the right-hand
side of Eq. (69) with respect to orthogonal rotations in the
modal space, c — ccos¢ +dsingp,d — —csin¢ + d cos ¢,
where ¢ is an arbitrary angle. Such a rotation is similar to that
described by Eq. (68).

The practical importance of Theorem 1 is connected to its
general applicability when the signal and the idler waves are
well separated. Being a consequence of a symmetry condition,
the multiplicity of the eigenvalues can be used as a priori
information for fitting and reconstruction of the field state at
the measurement stage.

B. Reduction of the Takagi factorization to a spectral
decomposition for twin beams

We have seen that the Takagi factorization of the squeezing
matrix I' = —iH; can be obtained by an SVD in a two
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times smaller space of JSA. An alternative method consists
in finding a spectral decomposition for the Hermitian matrix
(cf. Theorem 7.3.3. of Ref. [45])

0 —iJ +
r,= (iﬁ 0 > = UAU', (70)
which we call “associated squeezing matrix.” It can be shown
by direct substitution that the vectors

1 (C; 1 (¢
Uf“:—( f), UH:—( / > 71
g V2\D;)" V2 \-D; 7h

are eigenvectors of I', with the eigenvalues r; and —r;,
respectively. Comparing Eq. (71) with Eq. (67), we arrive
at a conclusion that the modal functions of the squeezing
eigenmodes can be obtained by finding the eigenvectors of ',
and then complex conjugating the idler part and shifting the
phase of the vector with the negative eigenvalue by 7 /2.

This method is especially fruitful in the case of real ma-
trix I' = —iH,;, where we have a situation already met in
Sec. IITF. If we consider a pump pulse which is transform
limited at the center of the crystal, then the squeezing matrix
is real (for an appropriately chosen pump phase), as follows
from Eq. (49) with zo = L/2:

Ty = |o|LEY,, sinc(AyL/2). (72)

The associated squeezing matrix I', in this case coincides
with T and is also real symmetric. The eigenvectors U j(+)

and U ;7) can be chosen real in this case [45]. Note that the
eigenvectors of a complex spectral decomposition, Eq. (70),
are complex vectors defined up to an arbitrary phase, while
the eigenvectors of the real spectral decomposition, Eq. (55),
are real vectors defined up to a sign. It means that by passing
from a complex to a real matrix we find the eigenmodes in a
more definite and reproducible way.

Indeed, choosing U ;Jr) and U j(*) real, we can omit the com-
plex con;ugation of the idler part of these vectors. It follows
that U;+ and in(_) are the modal functions of the squeezing
eigenmodes corresponding to the squeezing eigenvalue r;
with the multiplicity 2. Note that the two modal functions
found by this algorithm are almost uniquely defined (up to
sign), one of them being purely real and the other one being
purely imaginary. Of course, orthogonal rotations in the space
of these two functions give us other possible modal functions
of the squeezing eigenmodes.

V. EXAMPLE OF TWIN BEAMS DISCRIMINATED
BY FREQUENCY

A. Nondegenerate phase matching: Numerical solution

As an example of the theory developed in the previous
sections we consider twin beams generated by PDC in a
2 mm long sample of beta barium borate (8-BaB,O4 or BBO)
crystal. For an angle between the crystal optical axis and the
pump wave vector of 8y = 28.81° the type-I phase matching
is satisfied for pumping at 397.5 nm, the signal and idler
frequency being around 677 and 963 nm, respectively. We
consider a Gaussian pump pulse, which is transform limited
at the center of the crystal with the intensity full width at half
maximum 7, = 129 fs, corresponding to a spectral width of

0.06 Phase-matched area
o Pump-limited area

2 o004t
G
é 0.02 ¢ 1
BN\ /22
2 -0.021 1
c
S
@ -0.04r
(]

-0.06 1

-0.5 0 0.5
Detuning difference (2-Q')/w,
FIG. 2. The squeezing matrix I' = —iHl; as a function of de-

tunings Q2 and Q' for frequency-nondegenerate PDC. The matrix
elements are essentially nonzero at the intersection of the phase-
matched area, where the sinc function in Eq. (72) is close to 1, and the
pump-limited area, where |2 + Q'| is within the pump bandwidth.
The two regions where the elements of I' are close to maximum
correspond to the signal and the idler bands.

1.8 nm. The squeezing matrix is given in this case by Eq. (72)
and is shown in Fig. 2 as function of detunings 2 and Q'. The
signal and the idler bands shown in Fig. 2 are well separated,
which corresponds to twin beams generation.

We solve numerically the eigenvalue problem for real
symmetric matrix I' = —iH;, using the Sellmeier equation for
the dispersion of the BBO crystal. The squeezing eigenvalues,
given by the absolute values of the eigenvalues of I', r;, = |A¢],
are shown in Fig. 3. We see that each squeezing eigenvalue
has multiplicity 2, as stated by Theorem 1, and its logarithm
is a linear function of the eigenmode pair number, so that the
eigenvalues can be approximated as

o~
Fi421 = 12421 ~ G (73)

with gpym = 0.8903 and / running from O to co.
The corresponding modal functions of the squeezing eigen-
modes are shown in Fig. 4. Modal functions corresponding

00=28.81°
Ofee T
oo
oo
oo
~ 05f i
o ) (X3
~c (X3
= oo
c (X ]
- -1 ')
oo
oo
oo
15+ (X ]
oo

0 5 10 15 20 25 30
k
FIG. 3. Squeezing eigenvalues of twin beams generated in
frequency-nondegenerate PDC. For well-separated signal and idler

spectral regions all eigenvalues have multiplicity 2 and the logarithm
of eigenvalue is a linear function of the mode pair number.
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FIG. 4. Modal functions of the squeezing eigenmodes of twin beams generated in frequency-nondegenerate PDC. The corresponding
eigenvalues XA of the squeezing matrix I are shown for each mode. The squeezing eigenvalues are given by |A| and have multiplicity 2, as
prescribed by Theorem 1. Each modal function represents a concatenation of two Schmidt modal functions localized in the idler and the signal

frequency bands.

to the positive eigenvalues of I' are real. Modal functions
corresponding to its negative eigenvalues are purely imaginary
and their imaginary part is plotted. The structure of the modal
functions corresponds to that prescribed by Eq. (67): They are
concatenations of Schmidt modal functions for the signal and
the idler beams.

The effective number of squeezing eigenmodes can be
estimated by a measure similar to the Schmidt number, widely
used in the photon-pair generation regime [49-51]:

o0 2
KS= (Zk;lrkz) =21+Qnum%34’ (74)
Zk:l r k 1- Gnum
where we have used the approximate expression for the
squeezing eigenvalues, Eq. (73). We see that as gnum ap-
proaches unity the effective number of squeezing eigenmodes
tends to infinity.

B. Nondegenerate phase matching: Analytic Gaussian modeling

As has been pointed out before, the problem of finding the
squeezing eigenvalues and the squeezing eigenmodes can be
approached by the SVD of the JSA matrix J rather than by
the Takagi factorization of the squeezing matrix I'. In this
section we follow this approach. The JSA matrix, defined
by Eq. (58), is given by the top right m x m block of the
matrix HE”, determined by Eq. (49). We set zop = L/2, as
in the previous section, but here we consider a pump pulse
transform limited at the crystal input face, which is a typical
experimental situation, so that at the crystal center it acquires
a frequency-dependent phase determined by Eq. (35).

One advantage of the JSA approach consists in the econ-
omy of computational resources: The JSA matrix can be
limited only to the spectral regions where the signal and
the idler amplitudes are non-negligible, while the squeezing
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matrix is mainly filled by zeros in the case of well-separated
twin beams. Another advantage is the possibility to find the
squeezing eigenvalues and the squeezing eigenmodes approx-
imately by replacing the JSA with a double-Gaussian function
and applying the well-known spectral decomposition of a real
symmetric double-Gaussian kernel [7,19-21,50],

1 L g2y 2, > X
—=e =T T =d T =y pgth (Ol (y),  (75)
= 2
where —-1<g<1, p=.1-—¢* and =)=

(Zkk!ﬁ)f%Hk (x)e=*/? is the Hermite-Gauss function, Hj (x)
being the Hermite polynomial. Equation (75) is obtained by
multiplying both sides of the Mehler’s formula for Hermite
polynomials [52] by ¢*/27°/2_ Since the Hermite-Gauss
functions are orthonormal and complete on the Hilbert space,
they represent eigenfunctions of the double-Gaussian kernel,
while pg* are the corresponding eigenvalues.

Though Eq. (75) proved to be highly efficient for finding
the eigenmodes and the eigenvalues of a degenerate PDC,
in the nondegenerate case one needs an SVD for a complex
double-Gaussian kernel, in general not symmetric. Such a
decomposition can be obtained in the following form (see
proof in Appendix):

1

N

o0
T : 2 - 2.
— =2 D P I (n)hy(ray) TR (76)

k=0

o~ 2 (P vyt )+(rti€ )y

where u, v, n, and £ are real numbers, satisfying the rela-
tions wu,v > 0, \/uv > |nl|, necessary and sufficient for this
kernel to be square integrable. The parameters in the right-
hand side of Eq. (76) are 1) = /uv/v, ©o = Juv/p, { =
n&/Quv), p = /1 — g%, and

fu—v an
4= u+v’

where u = /uv + &2 and v = /uv — n%. The phase 6 is

determined in Appendix. Note that the factor v™2 in the
right-hand side of Eq. (76) is the Hilbert-Schmidt norm of the
kernel in its left-hand side. In Eq. (75) this norm is equal to
1. Another difference in the structure of two decompositions
is the sign of the parameter ¢g. In Eq. (75) this parameter
can be negative, while in Eq. (76) it is always positive and
is complemented by the phase 6;. In the limiting case & =
0, u=v=+/1+n% 6 =xk(1—n/n|)/2, Eq. (76) repro-
duces Eq. (75).

Equation (76) shows that the left-singular functions of a
complex double-Gaussian kernel are chirped Hermite-Gauss
functions ¥ (x) = \/r_lhk(rlx)e"“lzxzﬂek/ 2. 1t is straightfor-
ward to verify that these functions create a complete orthonor-
mal set on the Hilbert space. The right-singular functions
of this kernel are obtained from the left-singular ones by
replacing 7| by 1.

In this section, for the sake of analytic treatment, we write
the JSA function as a kernel depending on two continuous
frequencies 2; and €2, but a similar approach applies to the

matrices obtained by passing to discrete frequency modes.
To write the JSA in a double-Gaussian form, we make four
following approximations.

The first approximation is the quadratic approximation
for the dispersion law, which is a good approximation for a
not-too-broadband PDC [50,51,53]. It has been applied to the
pump in Eq. (57). Applying it to the down-converted light
results in limiting the Taylor series of the phase mismatch
function A(£21, 22) = kp(21 + Q2) — k(£21) — k(£2,) to the
terms up to the second order in both frequencies:

A(Q1L ) & Mg + (kg — kp
+ 1@k — kQT — kg2, (78)
where Ag = k0 — 2k and we have introduced new variables
Q4 = Q) £ Q,. Here we denote by ko, k;, and k; the value
and the two derivatives of k(2) at Q = 0, as we did for the
pump in Sec. IITF.

The second approximation consists in disregarding the
third term in the right-hand side of Eq. (78) with respect
to the second one, which can be done if |Q2| K 4|k;o —
kyl/ |2k;§0 —kgyl. For the considered example this means
|24| <« 1.04w, while |€24] is limited by the pump band-
width Q, = 2/log2/7, ~ 0.0091w,, which means that this
approximation is well justified. In this approximation the line
in the frequency space corresponding to the perfect phase
matching is represented by a parabola

Ao+ (kg — k)R — 1k Q2 =0. (79)

This parabola, corresponding to the middle of the phase-
matched area in Fig. 2, intersects the 2, = 0 line at two
points Q_ = +2Q, where Q, = /Ao/k{ is the central de-
tuning of the signal beam, —€2; being the central detuning of
the idler one. In the vicinity of the point 24 = 0, Q_ = 2€;
we introduce new variables §Q2, = Q,, §Q2_ = Q_ — 29,
corresponding to small deflections from the frequencies where
the signal-idler coupling is maximal. Further, we disregard
8Q?* compared to Q2,6€2_, which is the third approximation
we make. This approximation is always valid for twin beams
well separated in frequency, when the bandwidth of one beam
is much less than the frequency distance between the central
frequencies of the beams.

In these three approximations the JSA function is obtained
from Egs. (49), (35), and (57) as

@9 ( aszi) , (rd5§2+—n5§2_>
L,W)=gexp| —== |sinc| ————
222 2

; 22
% elT,,dSQ+/2+le5Q+/4’ (80)

where g = o LEye™»/? is the coupling constant, E, being
the peak pump amplitude, and we have introduced four char-

acteristic times: the absolute group delay time of the pump
Tpd = k;OL, the pump spread time 7,, = k’p’OL, the relative
pump-signal group delay time 7; = (k,; — ko)L, and 7, =
Vkj AoL. The latter time is proportional to the spread time of

the signal pulse during its passage through the crystal |/k(L
[50,51] but also depends on the phase mismatch at degeneracy
Ay. It is straightforward to find that in the vicinity of the point
Q. =0, Q_ = —2Q;, the signal-idler coupling is determined
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map) and its double-Gaussian approximation (red dashed line). L=2.0mm
0.2
by the function J(£2;, €21), which is the transposition of the (b)
JSA defined by Eq. (80). 1730
The fourth and the final approximation consists in making o1r >
a replacement sinc(x) ~ ¢=*"/2%), where o = 1.61 is chosen /\
so that these two functions have the same width at half- % Py - %
maximum [7,19-21,50]. As a result, JSA in the variables - T
8 = Q1 — Q4,882 = Q) + Q, takes the form J (2, 2,) =
~ . ) 2 2 ; ; ;
&I (Q, Q)e M ORHIRIZHTONHRIL where 041} T2 Ampitude analyical
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(81)

is the part of the kernel with a nonseparable phase. This
function is shown (in its absolute value) in Fig. 5, where it
is compared to the exact one.

Comparing Eq. (81) to Eq. (76) and accepting for sim-
plicity that arg(—ig) = 0, we find the modal functions of the
signal and the idler Schmidt modes:

CL(Q1) = o/Tihy (11682 ) iai o2t
. . (82)
Di(Q) = /Tl (128Q e ¥R mi02m00%

where the parameters 7; and 7, are defined as in Eq. (76) with
&= rjs /2 and

1 (Td — T )2

Q2 408
1 (Td + Ts)z
V= — + ———, (83)
Q2 408
1 17 — 12
= _§ B d4a2 ’
P 0

while the signal and the idler chirp rates are ¢, = &(v +
n)/Quv) and & = &(n + n)/(2uv).

For the considered example 7; =48 fs, 7, = 60 fs, {; =
0.0086, & = —0.0063, and g = 0.8681. The modal function

erly delayed) signal Schmidt mode C;(2;) = k(11882 )e“1 7% ob-
tained by Gaussian modeling and by numerical SVD of JSA for two
BBO crystal lengths: L = 0.5mm in (a) and L = 2.0mm in (b). A
longer crystal corresponds to a narrower bandwidth. The chirp rate
increases with length but for the considered example (BBO pumped
at 397.5 nm) is negligible at any crystal length.

of the signal Schmidt mode C,(£2;) is shown in Fig. 6 together
with the modal function obtained by a numerical SVD of JSA
for two different crystal lengths. We see that the analytic so-
lution follows closely the numerical one for a shorter crystal,
with slight differences for a longer one.

We note also that the variation of the phase of the modal
function due to its chirp within the signal frequency band is
much less than 7 and therefore negligible for the considered
example. This fact justifies the approach of the previous
section, where the pump chirp was disregarded from the
beginning.

It is interesting to analyze the influence of the crystal
length L on the shape of the Schmidt modes. As typical for
PDC, growing crystal length results in a more restrictive phase
matching and to narrower signal and idler bandwidths. This is
clearly seen in Fig. 6. The absolute value of the chirp increases
for a longer crystal; however, the maximal variation of the
phase remains small because of decreased bandwidth. The
dimensionless chirp parameters ¢; and ¢, allow us to estimate
the importance of considering the complex squeezing matrix
instead of a real one. In the considered example they are
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FIG. 7. The squeezing matrix I" as function of the signal and
idler detunings 2 and €', respectively, for type-I PDC close to

degeneracy. The signal and the idler bands are not separated in this
case.

much less than 1. Asymptotically with growing L they tend
to length-independent constants, determined by the dispersive
properties of the crystal material only, as can be seen from
their definitions and Eq. (83).

We observe that the idler characteristic time 7, is 25%
higher than the signal characteristic time 7;. This explains
the asymmetry of the signal and idler Schmidt modes in
Fig. 4. The eigenvalues shown in Fig. 3 correspond to the
geometric progression g .., With gum = 0.8903, which is
slightly higher than the value of g given above by the Gaus-
sian modeling. This and other slight differences between the
numerical and the analytical solutions are caused by some of
the four approximations we made.

0,=29.18°
OQree
e
LAl I ..
~ -0.1 °,
= °
o °
- °
£ 027 .
°
°
°
-0.3} .
°
0 5 10 15 20
k

FIG. 8. Squeezing eigenvalues of twin beams generated in PDC
close to degeneracy in frequency. Only four first eigenvalues create
pairs, as required by Theorem 1. At higher mode number the emis-
sion of two signal or two idler photons in one elementary act becomes
significant and the Theorem 1 is not valid any more.

The treatment of this section demonstrates the effective-
ness of Gaussian modeling for the Schmidt modes, based on
the complex Mehler’s formula.

C. Twin beams close to degeneracy

To illustrate the disappearance of the features peculiar to
twin beams, now we consider a different angle between the
crystal optical axis and the pump wave vector of 6y = 29.18°,
for which the PDC is close to be frequency degenerate. The
squeezing matrix is shown in Fig. 7. In this case the signal and
the idler areas are not well separated and we expect deflections
from the theory developed above.

The squeezing eigenvalues are shown in Fig. 8. Only
the four first eigenvalues show multiplicity 2, predicted by
Theorem 1.

The modal functions of the corresponding squeezing eigen-
modes are shown in Fig. 9. Only the four first modal functions
resemble concatenations of local Hermite-Gauss modes. At
higher mode numbers the deflection of the transformation
generator matrix from the form of Eq. (58) becomes signif-
icant and Theorem 1 loses its validity. Physically it means
that the emission of two signal or two idler photons in one
elementary act of photon-pair creation becomes significant
as we approach the degenerate regime by varying the phase-
matching conditions. We conjecture that the eigenvalues cease
to be multiple at the mode number k for which the Schmidt
modal functions calculated separately for the signal and the
idler beams start to overlap in the area around the origin. For
the considered case it is k = 5 and k = 6, see the two bottom
plots in Fig. 9, where the signal and the idler parts of the modal
function start to deflect from the shape of the Hermite-Gauss
function of the corresponding (second) order.

VI. CONCLUSIONS

We have applied the formalism of Bloch-Messiah reduc-
tion to the parametric down-conversion of light in the case
where pulsed twin beams are generated. We have shown
how the squeezing eigenvalues and the squeezing eigenmodes
can be obtained in the case of moderate squeezing, where
the solution of the wave equation is obtained in the first
order of Magnus expansion. For this case we have proven
a fundamental result: All the squeezing eigenvalues of twin
beams have multiplicity at least two. As consequence, the
modal functions of the squeezing eigenmodes are not unique
and defined up to an orthogonal rotation in the space of two
eigenmodes related to the same eigenvalue. We established
two methods for avoiding the ambiguity in the definition of the
squeezing eigenmodes: (i) reducing the Takagi factorization
of the squeezing matrix to the spectral decomposition of an
associated Hermitian matrix and (ii) tailoring the squeezing
eigenmodes from the Schmidt modes of the signal and the
idler beams obtained by SVD of the JSA matrix.

These general results have been illustrated by an example
of twin beams discriminated by frequency. For the case of
good separation of the signal and the idler spectra we have
found the multiplicity two of all eigenvalues, predicted by
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FIG. 9. Modal functions of the squeezing eigenmodes of twin beams generated in PDC close to degeneracy in frequency. The corresponding
eigenvalues of the squeezing matrix I" are shown for each mode. The four first modal functions can be considered as concatenations of the
Hermite-Gauss functions in the signal and the idler bands. However, the two last modal functions deflect from this rule around the origin. For
these and higher order modes the twin beam analysis is not valid any more.

the general theory. We have also shown that the Schmidt
modal functions of the signal and the idler beams can be
modeled with very good precision by replacing the JSA by
a complex double-Gaussian function. The modal functions
of the squeezing eigenmodes in this case are two chirped
Hermite-Gauss functions in the signal and the idler frequency
bands.

There are several important extensions of the present work.
The considered example corresponds to rather narrow-band
twin beams discriminated by frequency. It would be interest-
ing to apply the developed formalism to ultrabroadband fields
with almost constant spectrum, for example, those generated
in aperiodically poled crystals [54-57]. In the narrow-band
regime a full treatment of 3D spatiotemporal modes is possi-
ble in the framework of complex analytic modeling developed
here. It should reveal correlations between the spatial and tem-
poral degrees of freedom of entangled twin beams. Another
important direction of future research is related to twin beams

discriminated by polarization or wave-vector direction. In the
latter case two beams can be frequency degenerate and their
correlations can be converted to single-mode squeezing by
means of interference on a beam splitter. This approach has
high potential for producing highly multimode pulsed cluster
states in a form of entangled frequency combs, similarly to
continuous-wave cluster states successfully produced over the
past several years [58].
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APPENDIX: PROOF OF THE COMPLEX
MEHLER’S FORMULA

Here we prove a relation which is equivalent to Eq. (76)

and is obtained from it by letting x' = 71x, ¥ = 1y, ' =

n/Juv, & = &/ /uv. Omitting the primes for simplicity, we
obtain the following identity:
1

N

31 (492 )+ 5 (i€ )y

oo
= VI +E)pe™ Y " (qe" i () (»)et B, (AT
k=0
which can be viewed as the Takagi factorization of

a complex symmetric double-Gaussian kernel. Here
w=yA+EHA -0, ¢=n§/Qw), p=y1-g,

q =T =q0)/(T+4q0), where go=+/(1—n?)/(1+E?).
The angles 6 and 6, are found below. Note that the
factor /(1 +&2%) in the right-hand side of Eq. (Al) is
the Hilbert-Schmidt norm of the kernel in its left-hand side.

Let us denote the kernel in the left-hand side of Eq. (A1) by
K (x,y). This kernel corresponds to some integral operator K.
The standard method of finding the singular functions of this
operator consists in solving the eigenvalue problems for the
Hermitian operators X and K'/C. However, the phases of
the singular functions cannot be determined in this way, since
the eigenfunction is defined up to a unitary rotation (phase
in one dimension), while the singular function in a Takagi
factorization is defined up to an orthogonal rotation (sign in
one dimension). For a full Takagi factorization we apply a
more powerful method of generating function.

The generating function for the Hermite polynomials reads

00 k
o 2xt—1? t_
Do(x,1) =¥ = ZHk(x)k!. (A2)
k=0
Now consider the following function:
> —y?/2—ity?
Q(x, 1) = K(x, y)@o(y,0)e™> /""" dy, (A3)

where the last factor under the integral is the complement of
the Hermite polynomial to the singular function in Eq. (A1)
(up to normalization). Differentiating the integrand k& times
we obtain

D, 1)

a7k (A4)

o0
= Ny / K(x, )h(y)e " dy,
=0 -

=l o0

where N; = /2kk!\/7 is the normalization constant of the
Hermite-Gauss function.

On the other hand, Eq. (A3) represents an integral of a
complex Gaussian function of y, which can be taken analyti-
cally:

D(x, 1) = poe /AT Paext=ait’, (AS)
where the complex numbers ¢, and p, are defined as
W bk, S (A6)
1+ w4+ ing
2w
Pe= = (A7)
1+w+ing

Note that p? + g2 = 1. The last factor in the right-hand side
of Eq. (AS) is exactly ®@¢(x, g.t). Differentiating it k times we
obtain

ok d(x, 1)

. = Nipeqthi(0)e™.

t=0

(A8)

Comparing Eq. (A4) with Eq. (A8) we conclude that
the function Wi (y) = hy(y)e’s> HEHk0/2 \where 6y = arg(p,)
and 0 = arg(q.), is the right-singular function of the kernel
K(x,y) with the singular value |p.g*|. It is not hard to find
that |g.| = ¢ and |p.| = py/(1 + &2). Since the considered
kernel is symmetric, its left-singular function is Wy (x), which
concludes the proof.
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