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Self-focusing of multiple interacting Laguerre-Gauss beams in Kerr media
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Using a variational approach, we obtain the self-focusing critical power for a single and for any number of
interacting Laguerre-Gauss beams propagating in a Kerr nonlinear optical medium. As is known, the critical
power for freely propagating higher-order modes is always greater than that of the fundamental Gaussian
mode. Here we generalize that result for an arbitrary incoherent superposition of Laguerre-Gauss beams,
adding interactions between them. This leads to a vast and rich spectrum of self-focusing phenomena, which
is absent in the single-beam case. Specifically, we find that interactions between different modes may increase or
decrease the required critical power relative to the sum of individual powers. In particular, high-orbital angular
momentum modes can be focused with less power in the presence of low-orbital angular momentum beams than
when propagating alone. The decrease in required critical power can be made arbitrarily large by choosing the
appropriate combinations of modes. Additionally, in the presence of interactions, an equilibrium configuration
of stationary spot size for all modes in a superposition may not even exist, a fundamental difference from the
single-beam case in which a critical power for self-focusing always exists.
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I. INTRODUCTION

Lasers carrying orbital angular momentum [1] (OAM)
have attracted much attention recently due to a vast and
interesting set of possible applications, including in plasma-
based acceleration [2,3], optical tweezers [4,5], quantum
computation [6,7], super-resolution microscopy [8], optical
communications [9–11], imaging [12], and astrophysics [13].
Since many applications of OAM depend on the propagation
of the beams in nonlinear media it is important to establish
the self-interaction of OAM beams as well as the interactions
between different OAM modes in those media.

One way to treat the laser-medium interaction is to con-
sider the envelope evolution of the vector potential of the
laser beam, which is described by some nonlinear partial
differential equation, for instance, the nonlinear Schrödinger
equation (NLSE) for the paraxial propagation of an ultrain-
tense short-pulse laser. The optical medium is described by
a set of nonlinearities, which can be instantaneous (local
along the beam), notably quadratic (Kerr type), or nonin-
stantaneous, breaking translational invariance along the beam.
An example of a medium with both types of nonlinearity
is a relativistic underdense plasma, where an instantaneous
quadratic nonlinearity arises from the relativistic transverse
quiver motion of the electrons (relativistic mass correction)
and a noninstantaneous one results from the coupling of
the laser to the plasma waves. Neglecting noninstantaneous
nonlinearities effectively reduces the problem to (2 + 1)-
dimensional propagation (meaning that the dynamics along
the beam decouple from the dynamics in a plane transverse
to it; also, the coordinate along the beam is then essentially
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equivalent to time, and hence only one of them needs to be
considered in addition to the two transverse coordinates).

Even with the above approximation, there are in general
no exact solutions for the envelope of the beam. However,
we might not even be interested in this exact solution, but
instead in its dependence on a certain set of macroscopic
parameters which have a clear physical interpretation or can
be easily analyzed and controlled in an experiment. Examples
of such parameters are the spot size of the beam, its centroid,
or its phase. To this end, several methods have been developed
and widely applied to the study of Gaussian beams, namely,
the source-dependent expansion method [14–17], the moment
method [18], fully numerical methods [19], and the variational
method [20–26]. We shall employ the last in this paper. It has
been extensively used for Gaussian beams, in media both with
and without noninstantaneous nonlinearities, leading to self-
focusing, self-phase modulation, spot size self-modulation,
and centroid hosing of a single beam [20–23], as well as the
interaction of two beams [24–28], which leads to mutual at-
traction and spiraling, braiding, and merging. The interaction
of any number of Gaussian beams in simple configurations
has also been considered [26].

The Gaussian beam is only the fundamental mode in the
expansion of an arbitrary beam, and explicit expressions for
the critical power for self-focusing of arbitrary higher-order
transverse modes, free or interacting, are also of interest.
In particular, we consider the decomposition of an arbi-
trary beam with circular symmetry into Laguerre-Gauss (LG)
modes, which are especially relevant since they carry OAM.
LG modes are characterized by two integers (see Sec. III): The
radial index p � 0 and the azimuthal index �, which is related
to the vortex structure of the beam and directly quantifies
its OAM.

The special case of p = 0 consists of a radial profile with
a single ring, and its critical power has been addressed in
Refs. [29,30]. Assuming the beam maintains an LG profile
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with OAM � throughout the focusing process (what is
called a self-similar collapse or aberrationless approximation)
Kruglov et al. [29] directly integrated the NLSE and extracted
the critical power from the conditions of existence of periodic
solutions. Such a procedure is not easily generalized to pro-
files with higher p (i.e., more radial nodes). By employing the
variational method, Chen and Wang were able to obtain the
critical power for propagation in a cubic-quintic medium [31].
Although not explicitly written out, the critical power for an
LG mode with arbitrary p propagating in a Kerr medium can
be obtained from the results of Ref. [31]. The assumption of
self-similar collapse is also built in the variational method (for
a discussion see, e.g., Ref. [32]) and hence used throughout
this paper. In Refs. [33–36], it was shown that when the col-
lapse is not self-similar the analytic prediction for the critical
power given in Ref. [29] becomes an upper bound for the criti-
cal power. For non-self-similar collapse, only for certain input
vortex profiles can an analytic estimate be given for the critical
power. Unfortunately, this is not the case for the LG modes.

Besides the analytical works already mentioned, the prop-
agation and stability of LG modes and other types of vortex
beams (e.g., Airy vortex beams [37–40]) have also been ex-
tensively studied numerically, in instantaneous Kerr [41–47],
nonlocal [48–50], and saturable [51–56] media; see also
Ref. [57] for a review. In particular, Refs. [53,54,56] consid-
ered incoherent superpositions of two vortices.

In this paper, we use the variational method to analytically
study an arbitrary superposition of LG modes of any order,
neglecting interference effects between them (this condition
can be met, for example, when the phase of each mode varies
arbitrarily). This analysis leads to a rich phenomenology of
focusing phenomena, with the following two main findings.
First, we show that an equilibrium configuration where all
modes evolve with stationary spot size may not always exist,
a fundamental difference regarding single-beam propagation
where matched spot size evolution can always be attained.
Second, we show that in some cases the total power required
for self-focusing is lower for a set of interacting beams than
for those beams propagating alone, which is the case of a high
OAM mode being guided by low OAM modes. Since it is
possible to fully sort LG modes [58], the results of this work
should be important for the guided propagation of intense
pulses, with particular implications in compact laser-plasma
accelerators and optical communications.

The paper is organized as follows. In Sec. II we briefly
review the variational method. As a steppingstone to inter-
acting LG modes, we apply it to obtain the explicit formula
for the self-focusing critical power of a single LG beam
with arbitrary p (Sec. III), relating it to known results in the
literature. Section IV contains our central result, the critical
power for an incoherent superposition of LG beams [Eq. (15)]
and a discussion of the rich associated phenomenology. We
draw our conclusions and discuss possible applications and
extensions to this work in Sec. V. For completeness, and
as an illustration of the power of the variational method,
in Appendix A we derive the critical power for arbitrary
Hermite-Gauss modes (in a superposition or not), for which
no known expressions exist in the literature, to the best of our
knowledge. Appendices B and C present algebraic details and
useful properties of special functions, respectively.

II. BRIEF REVIEW OF THE VARIATIONAL METHOD

Considering the instantaneous response of an optical
medium with Kerr nonlinearity, the paraxial evolution of the
envelope of a laser is described by the nonlinear Schrödinger
equation (

2ik0
∂

∂z
+ ∇2

⊥ + 2κ2|a|2
)

a = 0, (1)

where a is the linearly polarized, normalized envelope of the
vector potential A:

1
2 a(r⊥, z, t ) exp{−ik0(ct − z)} + c.c. = e

mc2
A(r⊥, z, t ),

where e, m, c are the electron charge, electron mass, and
speed of light, respectively, k0 is the laser wave number, κ2

is a medium-dependent constant proportional to the nonlinear
part of the refractive index (e.g., κ2 ≡ k2

p/8 in a plasma, with
k2

p the plasma wave number), z is the coordinate along the
beam, r⊥ are the coordinates transverse to z, and ∇2

⊥ is the
Laplacian in the transverse plane. The paraxial wave equation
is derived in speed of light frame variables τ ≡ z, ψ ≡ ct − z.
Yet a single longitudinal variable z suffices here, since we
are assuming translational invariance along the beam. Some
media, such as plasmas, have a minimum propagation (cutoff)
frequency ωp < ω0 = k0c (in the plasma, ωp is the electron
plasma frequency), and in such cases an extra term −k2

pa
exists inside the bracket of Eq. (1). In this type of media,
the envelope description (and hence this work) is valid only
if the frequency of the beam is considerably larger than the
cutoff frequency. However, the extra term in the NLSE just
contributes with an overall constant in our Lagrangians below,
and hence we simply drop it throughout.

Equation (1) can be obtained by minimizing the action S =∫
L dz dr⊥, where the appropriate Lagrangian density is

L = ik0

(
a
∂a∗

∂z
− a∗ ∂a

∂z

)
+ ∇⊥a∗ · ∇⊥a − κ2a2a∗2

, (2)

using the Euler-Lagrange equations

∂

∂z

[
∂L

∂ (∂a∗/∂z)

]
+ ∇⊥ ·

[
∂L

∂ (∇⊥a∗)

]
− ∂L

∂a∗ = 0.

Instead of using the action in terms of the Lagrangian density
L to solve the problem exactly, which is in general not
possible, we seek an approximate solution. To that end, we
can make an ansatz for the functional form of the envelope,
introducing a set of parameters βi(z) depending only on z
which fully characterize the envelope a = a(βi ) and define a
reduced Lagrangian L(βi ) = ∫

L dr⊥. The set of parameters
act as generalized coordinates, with respect to which the
action S = ∫

L dz can be varied. The resulting reduced Euler-
Lagrange equations,

d

dz

(
∂L

∂β̇i

)
− ∂L

∂βi
= 0

(with β̇i = dβi/dz), determine the evolution of the parame-
ters, thus fully characterizing the evolution of the envelope a.
By integrating out the transverse coordinates from the action
we are thus substituting an infinite number of (transverse)
degrees of freedom in the field a by a finite number of
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mechanical coordinates βi, reducing the problem to a system
of coupled ordinary differential equations. In principle, the
solution can be made arbitrarily exact by considering more
parameters βi, at the cost of computational complexity. The
degree of approximation of the variational method depends,
therefore, on the choice of trial function.

III. SELF-FOCUSING OF A SINGLE
LAGUERRE-GAUSS MODE

We start by considering the (p, �) Laguerre-Gauss mode as
our trial function,

a = ACp�

(√
2r

W

)|�|
L|�|

p

(
2r2

W 2

)
exp − r2

W 2

× exp i

(
�ϕ + k0

r2

2R
− ψ

)
, (3)

where the parameters βi are the amplitude A, the spot size W ,
the radius of curvature R, and the phase ψ . The transverse
coordinates are polar (r, ϕ), with the beam centered at the
origin, p is the radial mode number (it gives the number of
radial nodes), � is the azimuthal mode number or OAM of
the vortex, and L|�|

p is an associated Laguerre polynomial. The
normalization constant Cp� = √

p!/(p + |�|)! is such that the
power P of each mode is P = (2/π )

∫ |a|2dr⊥ = A2W 2 as is
usually done for Gaussian beams. Other parameters could be
considered, e.g., the centroid of the beam and some momenta
transverse to the propagation axis (i.e., components k⊥ ⊥ k0),
but they are not crucial in what follows, since we consider
only different beams centered at the origin as is appropriate
for the modes resulting from a decomposition of an arbitrary
beam. However, these parameters have to be considered if one
wishes to study the interaction of several beams at different
transverse locations.

Inserting the trial function into Eq. (2) and integrating over
all r and ϕ we obtain the reduced Lagrangian (additional
details are presented in Appendix B)

L = π

2
A2C2

p�W
2

[
− 2I100k0ψ̇ + 1

2
I101k2

0W 2

(
1

R2
− Ṙ

R2

)

+ 4�2

W 2
I10−1 − 4|�|

W 2
(I100 + 2I110)

+ 8

W 2

(
1

4
I101 + I111 + I121

)
− κ2I200A2C2

p�

]
, (4)

where Imns is the following integral, which depends only on
the beam mode:

Imns(p, �) =
∫ ∞

0
e−mxxm|�|+s

[
L|�|

p (x)
]2m−n[

L|�|+1
p−1 (x)

]n
dx.

(5)
The evaluation of the relevant integrals (using the properties
in Appendix C) yields

I100 = (p + |�|)!
p!

, I101 = (p + |�|)!
p!

(2p + |�| + 1),

I10−1 = 1

|�|
(p + |�|)!

p!
, I110 = 0,

I121 = −I111 = (p + |�|)!
(p − 1)!

,

I200 = 1

24p+2|�|+1

[
(p + |�|)!

p!

]2

Sp�,

Sp� =
p∑

n=0

(2n)![(2p − 2n)!]2(2|�| + 2n)!

(n!)2[(p − n)!]4[(|�| + n)!]2
. (6)

We now apply the Euler-Lagrange equations to the La-
grangian of Eq. (4). Variation with respect to the phase ψ

gives rise to power conservation, since

d

dz

(π

2
W 2A2C2

p�I100

)
= 0 ⇒ dP

dz
= 0. (7)

Since the variable A arises in the Lagrangian only through
the combination A2W 2, we can replace it by the constant P,
therefore avoiding variations with respect to A. Variation with
respect to the radius of curvature R relates R to W through R =
W/Ẇ . Both this auxiliary condition and power conservation
are also present in the Gaussian case. Using these intermediate
results, as well as Eqs. (6), the variation with respect to the
spot size gives the equation for spot size dynamics:

Ẅ + 4

k2
0W 3

[
κ2P

4

2I200C2
p�

I101
− 1

]
= 0. (8)

A stationary spot size is obtained when the term inside brack-
ets vanishes, i.e., for P = Pc where Pc is the critical power
given by

Pc = 4

κ2

I101

2I200C2
p�

= PG
1

2I200

[
(p + |�|)!

p!

]2

(2p + |�| + 1)

= PG 42p+|�|(2p + |�| + 1)S−1
p� , (9)

where PG = 4/κ2 is the critical power for a Gaussian beam,
which is corrected by a factor characteristic of each LG mode.
By setting p = � = 0 in Eq. (9) we recover Pc = PG as we
should. For the particular case where the laser intensity profile
consists of a single ring (p = 0), we find I200 = 4−|�|(2|�|)!/2
and consequently recover the known result [29]:

Pc = PG 4|�| |�|!(|�| + 1)!

(2|�|)! . (10)

The expression for arbitrary p [Eq. (9)] agrees with the result
of Ref. [31], once model-specific constants are related and the
quintic medium constant is set to zero.

The evolution of the critical power with OAM for various
values of p is presented in Fig. 1. It shows that the critical
power rises monotonically with the OAM of the beams. The
critical power grows with the radial number p. As a result,
the mode which is most easily focused is the fundamental
Gaussian mode. The fact that the critical power rises with
� can be understood heuristically using a simple physical
picture, based on the centrifugal force felt by the photons of
the OAM beam. The OAM beams have helical wavefronts,
whereby photons at radius r undergo azimuthal motion in the
transverse plane with projected velocity v/c = k⊥/k0 where
k⊥ ∼ −i∇⊥ ∼ �/r is transverse momentum. In their frame
of reference, the photons are thus subjected to an outward
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FIG. 1. Critical power for different values of radial number for
the LG modes. The red dots correspond to integer values of �.
Noninteger values of � can be considered, using the � function, to
facilitate visualization. Increasing OAM or radial numbers raises the
power threshold.

centrifugal force |F | ∼ k2
⊥/r. For a ring-shaped beam (p = 0)

the profile is peaked at (r/W )2 = |�|/2 and we have F ∼√|�|. Hence, the higher the OAM mode, the more the photons
are pushed out, and the more difficult it is to focus them
inwards, requiring a higher focusing power.

For systems with rectangular instead of circular symmetry,
the expansion of a beam is best done in terms of Hermite-
Gauss (HG) modes. Proceeding in the same way, one obtains
the critical power for HG beams; see Appendix A.

IV. SELF-FOCUSING OF INCOHERENT INTERACTING
LAGUERRE-GAUSS MODES

A general treatment of interacting higher-order modes
must include the interference between them and is not readily
treated by the variational method. We will consider only the

incoherent case, where we neglect all interference between
beams. This approximation is reasonable if the beams have
(slightly) different frequencies or, for a sufficient number
of different modes, random initial phases, whereby in both
cases the interference would be averaged out during the
propagation. If we consider only two beams, the incoherent
approximation becomes exact if the beams have orthogonal
polarizations. We decompose the beam envelope a = ∑

i ai

into a linear combination of LG modes ai, given by Eq. (3)
with an index i in the parameters A, W, R, and ψ and
mode numbers (pi, �i ). The amplitudes Ai of each mode act
as linear coefficients in the expansion. Then the incoherent
approximation leads to |a|2 ≈ ∑

i |ai|2, which can be sub-
stituted in Eq. (1) for each mode envelope ai. Hence, the
interaction of incoherent beams is accounted by an extra
term 2κ2 ∑

j �=i |a j |2ai in the NLSE or equivalently by an
extra pairwise amplitude-amplitude interaction term in the
Lagrangian density [26],

Lint = −κ2
∑
i, j �=i

a∗
i aia

∗
j a j = −κ2

∑
i, j �=i

|ai|2|a j |2. (11)

We can again understand the form of the interaction in
terms of a physical picture. A relativistic beam will increase
locally the index of refraction n of the medium according
to n = n0 + �n, with n0 the linear index of refraction and
�n ∝ κ2|a|2. LG modes propagate in the z direction, have
a gradient of n in the r direction, and hence are attracted
towards radii of higher n. When two beams interact, the peaks
of the first attract the second and vice versa, while the nodes of
intensity do not attract at all, in accordance with Eq. (11). In
the case of an OAM beam, this effective attractive force has to
compete with the centrifugal force discussed previously. This
physical picture proves valuable in analyzing the results at the
end of this section.

Since the new interaction term does not depend on the
phases of the modes, only the equation for the spot sizes is
modified. Setting Wi = W for all modes after differentiating,
the variation with respect to Wi results in an extra term

∂Lint

∂Wi

∣∣∣∣
Wi=W

= 4κ2

W 3
i

(π

2
PiC

2
pi�i

) ∑
j �=i

PjC
2
p j� j

(|�i|Hi j
00 − Hi j

01 − 2Hi j
11

)
, (12)

with the Hns integrals defined analogously to before:

Hi j
ns (pi, �i, p j, � j ) =

∫ ∞

0
e−2xx|�i|+|� j |+s

[
L|�i|

pi
(x)

]2−n[
L|�i|+1

pi−1 (x)
]n[

L
|� j |
p j (x)

]2
dx. (13)

Adding Eq. (12) to Eq. (8) leads to a corrected equation of motion for the spot size of each mode given by

Ẅi + 4

k2
0W 3

i

⎡
⎣κ2Pi

4

2I i
200C

2
pi�i

I i
101

+ κ2
∑
j �=i

PjC
2
p j� j

|�i|Hi j
00 − Hi j

01 − 2Hi j
11

I i
101

− 1

⎤
⎦ = 0. (14)

Equating the term inside square brackets to zero yields the
critical power for each beam, while the set of powers which
leads to all modes evolving with constant Wi is the solution to
the following system of linear equations:

∑
j

[
δi j+(1 − δi j ) 2

C2
p j� j

C2
pi�i

|�i|Hi j
00 − Hi j

01 − 2Hi j
11

I i
200

]
Pc

j = P0
i ,

(15)

where P0
i is the free critical power given by Eq. (9) and δi j is

the Kronecker delta.
Equation (15) admits solutions where the waists of all

beams propagate with constant spot size Wi. This kind of
solution represents an equilibrium configuration where all
spot sizes are stationary. In addition to these self-focusing
solutions, Eq. (15) also predicts the existence of mode combi-
nations where no stationary solution can be found. This is in
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stark contrast with the single-mode analysis that characterizes
the usual self-focusing theory, valid for a single beam.

We start with the cases where there is no equilibrium.
For some combinations of interacting modes, a number
of Pc

j come out negative, and since power is non-negative
one concludes that no physical solutions exist and hence
the equilibrium cannot be attained. In terms of the above
physical picture, one interprets this as an impossibility to
exactly balance all the attractions of peaks and the centrifugal
forces on the beams, and to attain the equilibrium one would
require repulsive forces (expressed as negative power), to
stabilize these configurations. Examples of this situation are
the interaction of three beams with p = 0 and � = 0, ±1
with the (1, 0)-mode, in which all four required powers are
negative, and the interaction of five beams with p = 0 and � =
0, ±1, ±2 in which only the � = ±2 would require negative
power. Let us be more specific. For any of these cases, if
one inserts any positive (that is, physical) set of values for
powers Pi into Eq. (14), then one obtains at least one Wi > 0,
i.e., at least one beam defocuses. By varying Pi smoothly, all
Ẅi will also vary smoothly. But we have seen that one can
never go through the equilibrium configuration Ẅi = 0 for
all i (because the powers required for that laid outside the
set of physical solutions). So we cannot reach Ẅi < 0 (all
beams focus), because any smooth variation would have to go
through Ẅi = 0. We thus conclude that for a set of interacting
higher-order modes, it may not be possible to reach self-
focusing propagation simultaneously for all beams. This result
is fundamentally different from the single-beam case, where
self-focusing is always possible, given high enough power.

In the cases where the equilibrium configuration does
indeed exist, it is not enough to raise slightly the power of one
beam to focus it, since each power now depends on the values
of all others, and changing one could break the equilibrium of
the others. One has to define a perturbation of the power for all
beams and reinsert it into Eq. (15). We denote the term inside
square brackets in Eq. (15) by Mi j and perturb Pj = Pc

j + δPj .
Then the ith beam will focus if

∑
j Mi j δPj is positive and

will defocus if it is negative (the limiting case
∑

j Mi j δPj = 0
corresponds to the equilibrium configuration). To see this, we
note that, using Eq. (15) written as

∑
i j Mi j (Pc

j + δPj ) = P0
j ,

Eq. (14) can be rewritten as

Ẅi + 4

k2
0W 3

i

κ2

4

2I i
200C

2
pi�i

I i
101

∑
j

Mi j δPj = 0. (16)

Since the prefactor of
∑

j Mi j δPj is always positive, focusing
(resp. defocusing) of the ith beam, i.e., Ẅi < 0 (resp. Ẅi > 0),
occurs if

∑
j Mi j δPj > 0 (resp. <0). If we can find a vector

δP such that all of the entries of M · δP are positive, then
it is possible to focus all of the beams simultaneously. This
procedure is illustrated in several examples to follow.

A remarkable result is that the sum of the critical powers
for all the beams can be less when they interact than when
they do not. Also, for free modes it was seen that the Gaussian
beam always has the lowest critical power. However, in the
presence of interactions, this no longer holds. An example il-
lustrative of both these results is the interaction of four modes
with p = 0 and � = 0, 1, 2, 4, whose profiles are depicted in

FIG. 2. Radial profile for the interacting (p, �) modes with p =
0 and � = 0, 1, 2, 4 and corrections to the critical powers for
these modes due to the interaction. Both the free critical powers,
given by Eq. (9), and the interacting critical powers, given by
the solutions to Eq. (15), are given in multiples of PG. Due to
the outward net force, the inner beams, with � = 0, 1 become
harder to focus (Pc increases), while the beams with � = 2, 4 are
attracted inwards and Pc becomes smaller. In particular for the
� = 4 beam the interacting Pc is smaller than 1, which is the
free Pc for a Gaussian beam. Since the decreases in Pc for the
� = 0, 2 modes are larger than the increases for the � = 0, 1 beams,
the total power required for stationary evolution goes down from
31.29PG to 20.75PG.

Fig. 2, so that the physical picture can be visualized, together
with their free and interacting critical powers. In this case, any
perturbation around the equilibrium in which the powers of
the � = 0, 1 beams are slightly higher than the critical power
will lead to focusing of all four beams. Thus, it is possible
to focus the interacting beams with only around two-thirds of
the power required for focusing the four beams if they were
propagating individually through the medium. Note also that,
in this superposition, the Gaussian beam no longer has the
lowest critical power, having indeed the highest.

Even more interesting is the possibility of using low OAM
modes to help focus a high OAM beam. For instance, the
mode with p = 0 and � = 10 has a (free) critical power Pc ≈
62.43PG. However, if we consider the simultaneous propaga-
tion of this mode together with the three modes with p = 0
and � = 0, 5, 8, the total power required to focus all four
beams at once is only Pc ≈ 37.87PG. Hence, it is energetically
favorable to focus this set of beams instead of the � = 10 beam
individually, i.e., there is power saved by injecting further
modes in the medium. In principle, by choosing modes with
higher p and � and combinations with a higher number of
modes, the decrease in critical power can be made arbitrarily
large. However, the final required power would still be very
high (although much less than the free power) since the critical
power rises very fast with increasing mode. Nonetheless, it
could be that in some cases the interactions bring the critical
power from above the current technological capabilities to
below them, and then the above, complicated combinations
could prove to be important.

In some other cases, all of the critical powers increase. As
an example, the interaction of the (1, 0), (0, 2), and (0, 3)
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FIG. 3. Radial profile for the interacting (1, 0), (0, 2), and (0, 3)
modes and corrections to the critical powers for these modes due
to the interaction. Free and interacting powers are again multiples
of PG. Effective forces are such that all beams spread: the innermost
(1, 0) mode is pulled by the external peaks of the p = 0 modes, while
those modes feel an effective inward force due to the first peak of the
(1, 0) mode and an effective outward force due to the second peak of
the (1, 0) mode and the other p = 0 mode. The total power required
for stationary evolution goes up from 26.8PG to 134.44PG.

modes has a fivefold increase in critical power required as is
depicted in Fig. 3. It is again qualitatively explained by the
physical picture. As before, the increase of critical power can
be made arbitrarily large. These cases are also of considerable
importance when one wants the beams not to focus, and the
calculations of critical power must include the interactions to
ensure that the power is in fact below the threshold.

Given an arbitrary beam envelope with circular symmetry,
one can decompose it into LG modes, and knowing the spot
size of the beam, the coefficients of the expansion squared
give the power of each mode, which can then be compared
to the solutions of Eq. (15) to check if the beam as a whole
will focus or not, as long as the modes can be considered
incoherent superpositions. This analysis results from a situ-
ation where one solves Eq. (15) for all beams involved in the
interaction. However, it is also possible to tune and fix the
power of one (or more) of the modes to increase or decrease
Pc for the remaining ones. In this case, only a subsystem of
Eq. (15) is to be solved.

V. CONCLUSIONS

In summary, we have obtained explicit expressions for the
critical self-focusing power of all basis modes with circular
symmetry in a Kerr medium. Here the main conclusion is
that the fundamental Gaussian mode has the lowest critical
power, which increases monotonically with both p and �.
In addition, we have shown that, as was already known for
Gaussian beams [24–26], LG modes can attract each other,
altering the power thresholds for simultaneously propagating
beams and for different modes of a decomposition of an
arbitrary beam. Although the interaction is always attractive,
the existence of multiple peaks and troughs in the intensity
profile of LG beams allows for combinations of modes where
the interaction leads to focusing or defocusing of some or all

beams. Together with the natural diffraction of the laser beams
and the enhanced defocusing of LG modes due to its OAM,
this allows for rich possibilities of focusing phenomena. In
particular, in major contrast with single-beam propagation,
propagation for all beams with stationary spot size may be
impossible to attain.

Our results could prove useful in a variety of situations.
First, if we want to perform experiments with multiple modes
where self-focusing is important, one can perform the exper-
iments simultaneously, saving power in the focusing process,
since it is now possible to fully sort LG modes [58]. Second,
even if one is interested in the propagation of a single beam (in
particular, a high OAM one), it may be energetically favorable
to use other beams (particularly low OAM ones) to help
focus it. Third, when one wants the beams not to focus (for
instance, to prevent optical damage to the nonlinear medium),
secondary beams could be used to raise the critical power of
the main beam, avoiding self-focusing.

The quantitative expressions derived in this work should
be most reliable at the onset of self-focusing and for mod-
erate powers (not too high compared with Pc). On the one
hand, this ensures that higher-order corrections in the NLSE
may be neglected and also that the paraxial approximation
holds. On the other hand, it has been pointed out [31] that
the results of the variational method are most accurate for
moderate powers. This shortcoming at intense powers could,
in principle, be overcome by choosing a trial function with
more variational parameters and therefore does not rule out
the variational method itself as an accurate approach to self-
focusing. Notwithstanding the (controllable) loss of quanti-
tative accuracy in certain situations, the qualitative picture
introduced in this work remains valuable.

Furthermore, the set of variational parameters considered
in this paper allows for the study of self-focusing only. The
inclusion of centroid positions and transverse momenta would
allow other possibilities, namely, hosing of a single beam or
interaction of several beams at different transverse positions,
as has been done for the Gaussian case. Furthermore, this
work considered only instantaneous quadratic nonlinearities,
neglecting spatiotemporal evolution along the beam (e.g., the
coupling of a laser to plasma waves). The Lagrangian density
for this more general case is known [22,25,26], but a study
of this phenomenon for higher-order modes is still lacking.
Also of interest would be to extend the variational method
to include interference between modes. In that case, power
would no longer be constant and could be exchanged between
the beams, and dynamical equations for the amplitude and the
phase would need to be taken into account. The phenomenon
of filamentation could possibly be treated this way.

Finally, other trial functions (say, Hermite-Gauss, Bessel,
or Airy beams) could be employed to (1) obtain the respective
critical powers and (2) investigate some new possible phe-
nomenology arising due to interactions. We followed path (1)
for Hermite-Gauss beams, and the expressions thus obtained
are given in Appendix A.
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APPENDIX A: SELF-FOCUSING
OF HERMITE-GAUSS BEAMS

For completeness, we now consider the case where a
system exhibits rectangular instead of cylindrical symmetry.
The beam expansion is then most conveniently done in terms
of Hermite-Gauss (HG) modes. The trial function is the (m, n)
HG mode,

a = ACmn Hm

(√
2x

W

)
Hn

(√
2y

W

)
exp −x2 + y2

W 2

× exp i

(
k0

x2 + y2

2R
− ψ

)
, (A1)

where A, W, R, and ψ are as above, the transverse coordinates
are Cartesian (x, y), m and n are the x and y mode numbers,
respectively, and give the number of nodes in each direction,
and Hn is a Hermite polynomial. The normalization constant
Cmn = 1/

√
2m+nm!n! is again chosen such that P = A2W 2,

irrespective of the mode.
Following the same procedure as in Sec. III, the integrated

Lagrangian is found to be

L = 1

2
A2C2

mnW
2

[
− 2Jm

100Jn
100k0ψ̇ + 1

2

(
Jm

102Jn
100

+ Jm
100Jn

102

)
k2

0W 2

(
1

R2
− Ṙ

R2

)

+ 8

W 2

(
m2Jm

120Jn
100 + n2Jm

100Jn
120 − mJm

111Jn
100 − nJm

100Jn
111

)
+ 2

W 2

(
Jm

102Jn
100 + Jm

100Jn
102

) + −κ2Jm
200Jn

200A2C2
mn

]
,

(A2)

where the relevant integrals for the HG beams are defined by

Jq
αβγ =

∫ +∞

−∞
e−αξ 2

ξγ [Hq(ξ )]2α−β
[
Hq−1(ξ )

]β
dξ . (A3)

The α = 1 integrals can be readily evaluated using the or-
thogonality and recursion relations for Hermite polynomials
of Appendix C:

Jq
100 = √

π2qq!, Jq
102 =

(
q + 1

2

)
Jq

100,

Jq
120 = 1

2q
Jq

100, Jq
111 = 1

2
J1

100. (A4)

Variation of the Lagrangian with respect to ψ and W gives
the same intermediate results as in Sec. III, and the variation
with respect to the spot size yields the HG critical power

Pc = PG
π

2Jm
200Jn

200

(2m+nm!n!)2(m + n + 1). (A5)

As in the cylindrical case, the lowest mode (m = n = 0)
recovers the Gaussian result as expected, and for higher modes
self-focusing is more difficult since the power threshold rises.

The interaction Lagrangian density is again the one of
Eq. (11), which after integration in the transverse plane and
variation with respect to W leads to the interacting equation
of motion for the spot sizes of each beam,

Ẅ + 4

k0W 3

[
κ2Pi

8

2C2
nimi

Jmi
200Jni

200

Jmi
102Jni

100 + Jmi
100Jni

102

+ k2
p

8

∑
j �=i

PjC
2
mj n j

2miK
mimj

11 K
nin j

00 + 2niK
mimj

00 K
nin j

11 − K
mimj

02 K
nin j

00 − K
mimj

00 K
nin j

02

Jmi
102Jni

100 + Jmi
100Jni

102

− 1

]
= 0,

(A6)

where the integrals Kqr
βγ are defined as

Kqr
βγ =

∫ +∞

−∞
e−2ξ 2

ξγ [Hq(ξ )]2−β[Hq−1(ξ )]β[Hr (ξ )]2dξ . (A7)

Equating the term in square brackets to zero gives the linear system

∑
j

[
δi j + (1 − δi j ) 2

C2
mj n j

C2
mini

2miK
mimj

11 K
nin j

00 + 2niK
mimj

00 K
nin j

11 − K
mimj

02 K
nin j

00 − K
mimj

00 K
nin j

02

Jmi
200Jni

200

]
Pj = P0

i , (A8)

where P0
i is given by Eq. (A5), whose solution is the set of

interacting critical powers for interacting HG modes.

APPENDIX B: ALGEBRAIC COMPUTATIONS LEADING
TO THE REDUCED LG LAGRANGIAN

In this Appendix we present some auxiliary computa-
tions leading to the Lagrangian of Eq. (4). We start with
the first term in the Lagrangian density of Eq. (2), noting
that a ∂a∗/∂z − a∗∂a/∂z = 2i Im(a ∂a∗/∂z). Using the trial

function of Eq. (3), we have

Im

(
a

∂a∗

∂z

)
= |a|2

(
ψ̇ + k0

r2

2R2
Ṙ

)
. (B1)

For the gradient term, we must use the derivative property
of associated Laguerre polynomials (L|�|

p )′(x) = −L|�|+1
p−1 (x),

where the prime denotes differentiation with respect to the
whole argument. Using the gradient in polar coordinates,
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∇⊥ = r̂∂/∂r + ϕ̂ 1/r ∂/∂ϕ, we obtain

∇⊥a∗ · ∇⊥a = |a|2
r2

(
k0r4

R2
+ �2

+
{

|�| − 2r2

W 2

[
1 + 2

L|�|+1
p−1

(
2r2

W 2

)
L|�|

p
(

2r2

W 2

)
]}2)

.

(B2)

The last term is trivial, a2a∗2 = |a|4. Concerning the in-
tegration of L in the transverse plane, all integrals in
ϕ give 2π , and the radial integrals are proportional to
either

∫ ∞
0 |a|2r dr,

∫ ∞
0 |a|4r dr,

∫ ∞
0 |a|2r3 dr,

∫ ∞
0 |a|2/r dr,

or
∫ ∞

0 |a|2 L|�|+1
p−1 (2r2/W 2)/L|�|

p (2r2/W 2)r dr, which can be
brought to the form Imns of Eq. (5) using the change of
variable x = 2r2/W 2. Adding all the above terms yields the
Lagrangian of Eq. (4).

The derivation of the HG Lagrangian is identical but
uses the derivative of the Hermite polynomial, (Hn)′(x) =
2nHn−1(x). In this case, the integrals can be separated in x
and y, and hence every term in Lagrangian of Eq. (A2) has
two J-integrals multiplying it.

APPENDIX C: USEFUL PROPERTIES
OF SPECIAL FUNCTIONS

The following orthogonality and recursion relations of the
associated Laguerre polynomials [59] were used in evaluating
the I-integrals:∫ ∞

0
e−xx|�|L|�|

p (x)L|�|
q (x) dx = (p + |�|)!

p!
δpq, (C1a)

∫ ∞

0
e−xx|�|+1

[
L|�|

p (x)
]2

dx = (p + |�|)!
p!

(2p + |l| + 1),

(C1b)

L|�|
p (x) = L|�|+1

p (x) − L|�|+1
p−1 (x), (C1c)

L|�|+1
p (x) =

p∑
k=0

L|�|
k (x). (C1d)

Also used were the orthogonality and recursion relations
for Hermite polynomials, given by∫ +∞

−∞
e−ξ 2

Hm(ξ )Hn(ξ ) dξ = √
π2nn!, (C2a)

Hn+1(ξ ) = 2ξHm(ξ ) − 2nHn−1(ξ ). (C2b)
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