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The mechanical response of transparent materials to optical forces is a topic that concerns a wide range of
fields, from the manipulation of biological material by optical tweezers to the design of nano-optomechanical
systems. However, the fundamental aspects of such forces have always been surrounded by controversies, and
several different formulations have been proposed. In this paper, we propose a general stress tensor formalism
to put all optical forces in a consistent presentation that allows us to study how different predictions emerge, and
use the specific case of light propagating as a superposition of guided modes in lossless dielectric waveguides as
a physical example. We use this formalism to calculate optical forces for straight and curved waveguide sections
and all possible excitation configurations for a given set of coupled eigenmodes, and then compare the results
for each of the known proposed optical-force laws in a framework that permits distinguishing where there will
be differences between the force laws proposed. The general formalism also allows us to show that proper use
of the divergence theorem is crucial to account for all force terms, many of which vanish if the procedure most
commonly used is applied for situations other than eigenmodes in straight waveguides in vacuum. Finally, it is
known that discrepancies in the predicted forces arise from the incompleteness of each stress tensor with respect
to the total-energy-momentum tensor of the system. A better understanding of how different stress tensors predict
very different forces for certain waveguide geometries should open a pathway to identifying how to properly
assemble the full tensor, as well as for experimental tests to confirm the predictions.
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I. INTRODUCTION

It has been known since Maxwell that electromagnetic
waves carry momentum and can exert forces on material
objects when reflected, refracted, or absorbed [1]. Mechanical
interactions between light and matter have been developed
into applications that range from atomic cooling [2] to micro-
optomechanical devices and the manipulation of living cells
using optical tweezers [3–5].

For all the applications already developed, however, there
are still points in the theory of optical forces that are open to
discussion. The most well known is the Abraham-Minkowski
controversy about how to properly define the momentum of
light in dielectric media [6–8]. Less known is the multitude
of proposed force laws or methods to calculate the optical
force [9–13], which may agree in certain situations while
disagreeing in others [8].

As discussed in [5], even though the Abraham-Minkowski
controversy is well known, the fact that a part of the optical-
force community considers that a consensus has been reached
is not. This consensus is that the Minkowski stress tensor
represents an incomplete picture of the light-matter system,
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a problem shared by all other tensors proposed when trying to
correct the lack of symmetry in the Minkowski tensor. While
there should exist a single total-energy-momentum tensor for
each system, which predicts the correct mechanical effects of
light-matter interactions, obtaining such a tensor is not trivial.
Therefore, given the variety of stress tensor and optical-force
law propositions existing in the literature, it is useful to have a
common framework upon which to build a clear understand-
ing of how and when differences arise between the predictions
of each optical-force law.

In order to compare the different proposed optical-force
laws in a way that allows us to discern the reasons for
their disagreements in certain conditions and agreements in
others, we have chosen to focus our paper on a simple,
yet enlightening, system composed of a pair of nonmagnetic
linear lossless dielectric waveguides in close proximity, so as
to be evanescently coupled. By studying the stationary regime
of light propagation and considering static waveguides, we
are able to isolate the optical-force analysis from the context
of more complex phenomena such as photon-phonon interac-
tions [14,15], especially Brillouin scattering [16,17]. While
the forces studied in our paper may provide an interaction
pathway for Brillouin scattering in certain photonic devices,
that is not within the scope of our investigation. Our choice of
constraints also sets the optical forces under study apart from
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electrostrictive effects, which are intrinsically dependent on
deformations of the dielectric material [18].

In Sec. II we present the general stress tensor, from which
we can obtain the known stress tensors by choosing two binary
parameters, and discuss how the divergence theorem, when
applied to a waveguide cross section, gives a general optical-
force density. This force density can be dissected into three
distinct contributions: one due to mode superposition, one due
to waveguide curvature, and the more well-known term due to
the global eigenmodes of the coupled system.

In Sec. III we first show numerical results for the force
densities acting on a pair of coupled waveguides. We have
simulated silicon waveguides in vacuum, with dimensions
chosen so that they support two TE-like and two TM-like
modes. For straight waveguides we present the x, y, and z
components of the force density for each force law, in single
eigenmode propagation as well as for all superpositions of the
four modes. We use the general tensor formalism to discuss
what physical insight can be gained from comparing how
some force laws agree for some components and disagree
for others, and how this relates to the broader picture of the
Abraham-Minkowski discussion. We then briefly proceed to
discuss the more complex force term arising from a curvature
in the waveguide pair, going from two parallel waveguides to
two sections of concentric rings. In this scenario all force laws
disagree even in the simplest case of single-eigenmode forces.

II. GENERAL TENSOR FORMULATION

The momentum balance in an electromagnetic system can
be cast in a simple form as [19]

F + ∂tG = ∇ · T , (1)

where t is the time, F is the force density, G is the momentum
density, and T is the stress tensor.

Let Tnm be the general stress tensor defined as

T nm = ε0
(
εnE ⊗ E − 1

2 εmE · E)
+μ0

(
H ⊗ H − 1

2H · H)
, (2)

where n and m can be either 0 or 1 and will be used to label dif-
ferent stress tensors; E and H are the time-dependent electric
and magnetic fields, respectively; ε is the relative permittivity
of the material, and 1 is the identity matrix. Henceforth it
will be assumed the material is a nonmagnetic linear lossless
dielectric and that the guided waves are monochromatic. With
this general definition, we have that T 00 is the Lorentz stress
tensor [12,13]; T 10 is the Einstein-Laub (E-L) stress tensor
[12]; T 11 is the Minkowski stress tensor, which for the linear
dielectrics under consideration coincides with the Abraham
stress tensor [12]; and T 01 is a linear combination of the
previous three stress tensors, not found in the literature. It
is possible that T 01 contains no new physics, being just a
consequence of the definition of the general stress tensor, but
as its three components are considered to be incomplete de-
scriptions of the light-matter system—in different manners—
we believe further investigation would be necessary to make
this assertion.

Taking the divergence of the general stress tensor and using
the momentum balance Eq. (1) we can define the following

force densities [12,13]:

F00 = −E∇ · P + μ0∂tP × H, Lorentz, (3)

F10 = (P · ∇ )E + μ0∂tP × H, Einstein-Laub, (4)

F11 = − 1
2ε0 E · E∇ε, Minkowski, (5)

F01 = F00 + F11 − F10, unnamed, (6)

where P = ε0(ε − 1)E is the polarization density. It should
be noted that the E-L force is also well known as the gradient
force on an induced dipole.

Taking the time average of the momentum balance Eq. (1),
we have

〈F〉 + 〈∂tG〉︸ ︷︷ ︸
=0

= ∇ · 〈T 〉, (7)

where 〈∂tG〉 = 0 comes from the time-averaging process of
time-harmonic fields. For optical frequencies, such as the
ones we consider in this paper, terms originated from the
temporal variation of the electromagnetic momentum will not
contribute to the time-averaged force 〈F〉.

The force densities shown above are very different in
form, even though they originate from quite similar stress
tensors. While a comparison of their effects based solely on
the examination of the formulations presented in Eqs. (3)–(6)
is a complex task, we can indeed analyze their differences
by calculating their effect on a model system composed of
dielectric waveguides that are assumed to be perfectly rigid.
This condition is reasonable for all time scales longer than
the optical periods, typically in the femtoseconds, but still
much shorter than those associated to acoustic responses of
solids, which are no shorter than some nanoseconds. This
allows us to examine the optical forces in a context that is
free of other optomechanical effects such as electrostriction
or photon-phonon scattering and study the regime of static
deformations.

In order to facilitate calculations, we use the standard
procedure of applying the divergence theorem to cast the total
force in terms of a surface integral instead of the volume in-
tegral of a divergence. This avoids field derivatives altogether,
which is particularly beneficial when using the finite elements
method (FEM) in numerical simulations. The total force can
be given by

Ftot =
∫∫∫

�

∇ · 〈T 〉dV =
∫∫

�

〈T out〉 · n̂ dS, (8)

where � is the volume of integration, � is its boundary,
and n̂ is the outward normal unit vector. When using the
divergence theorem for electromagnetic fields in dielectrics,
one needs to take into account the discontinuity of the fields
at the boundary and use the proper discontinuous form of the
divergence theorem [20,21]. It can be shown that the fields to
be taken into account in a discontinuous stress tensor are the
fields outside the domain of integration (T out) [22].

In our model system of light propagating in coupled
waveguides with rectangular cross sections, the boundary
� can be divided into two parts: one perpendicular, �⊥,
and another one parallel to the direction of propagation, �‖,
illustrated in Fig. 1. For applications requiring the calculation
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FIG. 1. Surface of integration for Eq. (8). In (a) we show the
simple case of propagation in the z axis along infinite straight and
parallel waveguides, whereas in (b) we present the case of a circular
path in cylindrical coordinates, parametrized by the arc length s.
Although a particular case, it can be used to approximate infinites-
imal sections of most arbitrary curved paths. �‖ and �⊥ denote,
respectively, surfaces parallel and perpendicular to the direction of
propagation. In the limit where the thickness δs or δz of the bounded
volume tends to zero, the surface �‖ is transformed into the line C,
whereas the surface �⊥ becomes the surface S. The first rows of
(a) and (b) show a view from the top, and the second rows show a
perspective view.

of a static structure deformation profile, the knowledge of the
total force is not enough, and the linear force density along the
propagation direction, ∂sF, is also required. We parametrize
the propagation direction by an arc length s so that curved
waveguides can also be described with ease. To calculate ∂sF
we integrate Eq. (8) on a slice of infinitesimal thickness δs in
the s axis and take the limit δs → 0, as shown in Fig. 1(b). In
this limit, the surfaces �⊥ and �‖ become the surface S and
the line C, respectively, illustrated in Fig. 1. The force density
on that slice becomes

∂sF =
∫∫

S
〈∂sT in〉 · n̂ dS +

∫∫
S
〈T in〉 · ∂sn̂ dS

+
∮

C
〈T out〉 · n̂ dl, (9)

where the first and second terms are integrated over the cross-
section area S and the third term is a line integral over the
boundary of C. On the surface S, the fields outside the domain
of integration are the same as the fields inside it, since S lies
entirely inside the dielectric. We rename the tensor in these
cases as T in to represent the fields inside matter to avoid
confusion.

For eigenmodes propagating in the z axis, Fig. 1(a), we
have ∂zn̂ = 0, since the normal in the cross section is not
changing, and 〈∂zT in〉 = 0, since for eigenmodes the stress
tensor is z independent. In this specific case of eigenmodes
propagating in a section of zero curvature, only the third
integral in Eq. (9) survives and the force density ∂zF is for-
mulation independent, depending solely on the fields outside
the dielectric. It is important to notice that we assume that
ε = 1 outside the material, a situation in which Eq. (2) shows
that all stress tensors will coincide with the Lorentz formula-
tion. However, if the waveguides are surrounded by another
dielectric material, different formulations lead to different
predictions even for eigenmode forces.

Since the first and second term in Eq. (9) depend on the
fields inside the material (T in), in a general scenario different
force laws will result in different forces, as we have shown in
a previous work, when studying the appearance of a beating
force due to noneigenmode excitation [23]. In summary, a
noneigenmode excitation have a non-null first term in Eq. (9),
whereas a curved propagation has a non-null second term due
to the varying normal. The third term in Eq. (9) will always
be present, but on certain occasions it can be zero due to
symmetries.

The quantity T nm · n̂ in Eq. (9) plays a major role when
analyzing the differences between force formulations. For the
case of straight waveguides, n̂ = ẑ, it can be calculated as

T E
nm · n̂ = ε0

{
εn(E · ẑ)E − 1

2εm(E · E )ẑ
}
, (10)

where for simplicity only the electric-field dependent terms
are shown since in nonmagnetic isotropic and linear di-
electrics they are the only ones that change depending on the
formulation. No time averaging is taken.

As can be seen from Eq. (10), the label m only changes
the force in the z direction. Tensors with the same value
of n, Lorentz and unnamed (n = 0), and Einstein-Laub and
Minkowski (n = 1), will give the same prediction with respect
to the transverse forces, but each tensor leads to a different
force density along z.

The differences between the quantity T nm · n̂ for different
labels, and hence formulations, can help us understand the
differences in the forces. We have that

(T 1m − T 0m) · n̂ = (P · ẑ)E, (11)

(T n1 − T n0) · n̂ = − 1
2 (E · P )ẑ, (12)

where P is the polarization. Equation (11) can be understood
as the force on the surface bound charges while Eq. (12) is the
energy stored in the dielectric media. It is worth noticing that
no geometry or other constraint is used in the derivation of
these equations besides the media being linear, therefore they
are as general as possible in this context.

For the general case of curved waveguides, using the
Frenet-Serret formulas it is possible to show that ∂sn̂ is a
vector in the cross-section plane. Therefore, there are terms
dependent on n and m in the transverse and longitudinal direc-
tions. This results in all force laws giving different predictions
for the force, even in the eigenmode case.
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FIG. 2. Field profiles for the four eigenmodes of the system of
coupled waveguides. Eigenmodes presented in (a)–(d) will be re-
ferred to as modes 1–4, respectively. The electric field perpendicular
to the page (Ez) is presented in a color scale, where the color ranges
from blue (dark gray) negative values to yellow (light gray) positive
values, while the red arrows represent the in-plane electric field (Ex

and Ey). Due to a freedom in defining the phase of the Ez component
with respect to those of Ex and Ey, we have chosen to represent the
phase of the total field for which Ez is purely imaginary and the
transverse fields are purely real.

III. RESULTS AND DISCUSSION

In order to evaluate quantitatively the force laws presented
in the previous section, we run simulations using the FEM
with the commercial software COMSOL Multiphysics, for
silicon waveguides with a refractive index of 3.45 at an
excitation wavelength of 1550 nm. We model waveguides
using a rectangular cross section with a width of 280 nm and
height of 380 nm. For the single waveguide geometry (zero
gaps) the width is 560 nm, while the height remains 380 nm.
Curved sections are simulated using sectors of concentric
rings with radii (4 ± δg/2)μm, δg being the gap between
the waveguides. A nominal gap of 80 nm is used in the
computations where the waveguide separation is not varied.

Figure 2 shows the electric-field profile for the coupled
waveguides. Color data represent the electric field perpen-
dicular to the page and the arrows show the in-plane electric
field. The modes shown in Figs. 2(a) and 2(b) have a TE-like
polarization and are referred to as mode 1 and 2, while modes
3 and 4 are shown in Figs. 2(c) and 2(d) and have a TM-like
polarization.

We now proceed to present and discuss the results for
straight coupled waveguides, with the monochromatic wave
propagating along the z direction. Figure 3 shows the optical-
force densities calculated using Eq. (9) for this geometry,
normalized for input power, as a function of their separation.
We have calculated the forces due to excitation by each

FIG. 3. Comparison of optical forces calculated using Eq. (9)
for a pair of straight coupled waveguides sustaining four eigen-
modes, two TE-like and two TM-like. Insets show the direction
and sign of the force in each waveguide, and indicate to which
mode superposition and value of n and m each curve corresponds.
The four eigenmode forces are shown in (a). Since all force laws
agree for eigenmodes, a single line is presented for each mode. For
superpositions of eigenmodes, only the beating force components are
shown in (b)–(f). The x component of the beating force, shown in
(b), is present for mode superpositions 1 + 2, red lines (light gray),
and 3 + 4, black lines. The y component presented in (c) and (d) is
nonzero for mode superpositions 1 + 3, 2 + 4, 1 + 4, and 2 + 3.
The longitudinal component, z, of the beating forces only appears
for superpositions 1 + 2 (e) and 3 + 4 (f). For (b)–(d), only the n
value of Eq. (2) is relevant, and the forces split in two groups of
similar qualitative behavior, whereas in (e) and (f) there are four
different longitudinal components, due to the dependence on both
n and m. The inset shows how the force (red arrows) acts on different
waveguides.

eigenmode individually, originating from the third term in
Eq. (9), and by all possible superpositions of the four eigen-
modes. For mode superpositions, only the additional beating
force terms [originating from the first term in Eq. (9)] are plot-
ted, as the third term of Eq. (9) is always present. Moreover, as
the beating terms vary sinusoidally along z, only the amplitude
of the forces is shown, for the sake of clarity.

Figure 3(a) shows the forces for the four eigenmodes on
the system. These are attractive or repulsive forces, and have
been known and studied since 2005 [24]. We present only one
curve for each eigenmode as, for this particular case, all force
laws produce the same result. This is simple to understand,
since the third term of Eq. (9) uses only the stress tensor
outside the material. Our simulations consider the dielectric
waveguides to be suspended in vacuum, so all stress tensors
reduce to the Lorentz one outside the waveguides. However,
if the waveguides were not in vacuum but embedded in a
different dielectric medium, the forces would differ even for
the case of eigenmode excitation.

Figures 3(b)–3(f) show the different beating force
components that can act on the system when different
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superpositions of eigenmodes propagate through the waveg-
uides. The combination of different symmetries yields forces
not only in different directions but also with different charac-
teristics. Figures 3(b) and 3(d) show the beating force acting
on the center of mass of the cross section, whereas Figs. 3(c),
3(e) and 3(f) show it acting as a shear force (opposite sign
on opposite waveguides, but orthogonal to the gap between
them). The forces acting on the center of mass of the cross
section are associated to an exchange of linear momentum due
to a change in the transverse position of the center of energy of
the light beam along the direction of propagation, as discussed
in [23] for the x component shown in Fig. 3(b). For the case
of the y component, this change is vertical, and therefore more
limited, leading to smaller forces in Fig. 3(d).

The shear forces, however, are associated to torques on
the structure, and therefore must correspond to exchanges
of angular momentum. This connection should be kept in
mind when we proceed to discuss how the different optical
forces produce different predictions, in particular for the z
shear force. It is worth noticing the y shear appears when
eigenmodes of different polarization, but same xy parity, are
combined. In this case the coupled waveguides act as an
effective birefringent medium, introducing a rotation of the
effective polarization of the beam which in turn leads to a
torque on the material system, as observed by Beth on wave-
plates [25]. The z shear can be understood as originating from
the loss of forward electromagnetic momentum in one guide
and corresponding increase in the other. By taking the straight
waveguides to be sections of arbitrarily large concentric rings,
the z shear can also be understood as an exchange of orbital
angular momentum.

Having discussed the general properties shared by all
optical-force laws for a given mode superposition, we now
compare the predictions from different optical-force laws. We
begin by reiterating that for eigenmodes all force laws give the
same result, as already proved. For the beating force, trans-
verse components (x and y) shown in Figs. 3(b)–3(d) depend
only on the value of n in Eq. (9), as was shown by expanding
the general stress tensor in Eq. (10). The dependence only
on n means that both the E-L and Minkowski forces give the
same result, different from the Lorentz force. This means the
unnamed force automatically agrees with the Lorentz force.
Contrary to the transverse forces, the longitudinal beating
force (z), shown in Figs. 3(e) and 3(f), depends on both n
and m.

For the x force due to the superposition of modes 1 and 2
we find very little disagreement between the four force laws.
It increases as the gap decreases, but the qualitative behavior
is the same for both. When calculating the y shear we also
find very little quantitative and qualitative disagreement for
both mode superpositions, showing that while the E-L and
Lorentz forces have fundamental differences on how they treat
matter this has little impact on the predictions they offer for
this particular angular momentum exchange.

Quantitative and qualitative differences are more marked
for the 3 + 4 [black curves in Fig. 3(b)], 1 + 4, and 2 + 3
[Fig. 3(d)] mode superpositions, where qualitative differences
can also be noticed. In the case of the x force due to the su-
perposition of two TM-like modes, not only does the Lorentz
force law predict a weak force for most gaps, while the E-L

and Minkowski force laws predict a stronger force, but these
predictions also have opposite signs. For the TE-like superpo-
sition the force laws are in good agreement. The most striking
result, however, is that of the z component for superpositions
1 + 2 and 3 + 4, where each force law gives a different
prediction. The Minkowski force law, in particular, predicts
no force in this direction, even though there is a clear decrease
in the linear momentum in the z direction for these cases.

Finally, we analyze the force terms due to the second term
in Eq. (9), using a curved section of a single waveguide
and of a pair of coupled waveguides. For this term each
force law gives a different prediction, even in the case of
eigenmodes. Presenting the results in the same manner used
for straight sections is therefore not possible, as the number
of optical-force densities grows drastically (there are 16 forces
for eigenmodes alone instead of four). Instead, we choose to
focus on the transverse x component of the Lorentz optical
force for curved sections of single and double waveguides,
and on how it changes along the direction of propagation,
parametrized by an arc length. For double waveguides, the
gap between waveguides is chosen to be 80 nm. Results are
presented in Fig. 4, and for a better comparison we present
results for straight (a)–(d) and curved (e)–(h) waveguides.
We show eigenmode forces (a), (c), (e), (g) and the total
force, which includes both beating and eigenmode terms, for
a superposition of modes 1 and 2 (b), (d), (f), (h).

Due to the symmetry of the fields, the eigenmode force is
zero for a single straight waveguide (a), whereas for a single
curved waveguide (e) the eigenmodes can produce a force due
to the changing linear momentum necessary for light to follow
a curved path. A mode superposition results in a pure beating
force term acting on the straight single waveguide (b), but
the corresponding total force for the curved waveguide does
not vary symmetrically from +F to −F , due to the nonzero
eigenmode force (f). It is well known that eigenmode forces
for straight coupled waveguides (c) have equal modulus and
opposite sign. This means that the total transverse force for
a mode superposition is different on each waveguide, since
the beating term has equal sign for both waveguides (d). The
case of curved coupled waveguides is even richer. Eigenmode
forces (g) do not have the same modulus on each waveguide,
since each has a slightly different radius of curvature. The
total force in a superposition (h) is not only asymmetrically
shifted, however. The amplitude of the force is different in
each waveguide and the sinusoidal modulations no longer are
in phase or have the same period, due to the different radius
of each waveguide.

IV. CONCLUSIONS

Even though classical electromagnetism has been under
study for more than a century, some core issues remain open.
One such issue is that of the correct force law to describe the
action of optical fields on dielectric objects. While there is
a growing consensus that the Lorentz, Minkowski, Abraham,
and Einstein-Laub force laws are associated to incomplete
descriptions of the field-material system, and that a proper
force law can be derived from the total-energy-momentum
tensor, these force laws are still widely used.
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FIG. 4. Transverse optical forces (x direction) along the propaga-
tion direction for straight and curved sections of a single waveguide
and a pair of waveguides. In (a), (b), (e), and (f) are shown results for
a single waveguide, whereas (c), (d), (g), and (h) present results for a
pair of coupled waveguides. The eigenmode forces are presented in
(a), (c), (e), and (g), whereas (b), (d), (f), and (h) show the total force
(eigenmode forces + beating force) in a mode superposition. Blue
(light gray) curves represent forces in a single-waveguide scenario
in (a), (b), (e), and (f), whereas red (light gray) and black curves
represent the force on the left or right waveguide of a coupled pair in
(c), (d), (g), and (h), respectively. In (a), (c), (e), and (g) solid lines
indicate forces due to mode 1, and dashed lines indicate those due to
mode 2. The inset on the right shows the waveguide configurations
considered.

We have shown that for linear media the main computa-
tional difference is that all force regimes can be described
either as a force acting on surface bound charges or as the
energy stored in the dielectric media. With this formalism it
becomes apparent what are the main distinctions of difference
force laws.

We have used a pair of coupled waveguides supporting four
global eigenmodes as a test system to study cases in which the
force laws gave different predictions. Instead of directly using
the force laws, we have constructed a general stress tensor that
reduces to each of the well-known tensors by a choice of two
binary parameters. We then used the momentum conservation

equation to calculate the force density acting on the waveguide
cross section, later obtaining the predictions from each force
law by varying the parameters in the general tensor.

We have shown that a strict application of the divergence
theorem, making no a priori symmetry assumptions, allows
this equation to be broken into three distinct contributions,
each related to different ways momentum can be transferred
within the field-matter system. The first one is associated to
the momentum of each eigenmode propagating in the system,
and how it varies due to the change in dispersion when the
gap between waveguides changes. The second is associated
to how the transverse distribution of the total momentum
varies along the direction of propagation for a superposition
of eigenmodes, due to the different propagation constants, and
gives rise to beating forces that are modulated along the direc-
tion of propagation. The third term depends on the curvature
of the waveguides, since even eigenmodes propagating in a
curved waveguide must suffer a change in the direction of
their momentum to remain guided.

This method has allowed us to identify that predictions for
transverse beating forces have large differences for certain
mode superpositions and are almost identical for others. In
particular we highlight the good agreement for the case of
the y shear force associated to a rotation of the effective
polarization of the guided fields, and the strong differences
predicted for the z longitudinal beating force, which can be
thought of in terms of orbital angular momentum transfer. An-
gular momentum has featured prominently in the discussion
about stress tensors in dielectrics, and we intend to further
investigate the y and z shears in light of the more recent idea
of constructing an energy-momentum tensor that properly
describes the full system.

Finally, we believe that this discussion should be followed
by experimental tests since in some situations the predicted
result is markedly different for each force law. We believe that
it is important to first consider all four stress tensors when
designing a device, as for some applications the differences
will be inconsequential but for others they might prove to
be critical. In addition to contributing to the ongoing dis-
cussion about optical forces in dielectrics, we believe that
our contribution can also find applications in the design of
integrated optomechanical devices, much in the same way as
the inclusion of additional material effects in the modeling has
lead to the design of new devices based on high photoelastic
coupling instead of the so-called moving boundary coupling
due to radiation pressure.
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