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Optomechanical heat transfer between molecules in a nanoplasmonic cavity
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We explore whether localized surface plasmon polariton modes can transfer heat between molecules placed
in the hot spot of a nanoplasmonic cavity through optomechanical interaction with the molecular vibrations.
We demonstrate that external driving of the plasmon resonance indeed induces an effective molecule-molecule
interaction corresponding to a heat transfer mechanism that can even be more effective in cooling the hotter
molecule than its heating due to the vibrational pumping by the plasmon. This mechanism allows us to actively
control the rate of heat flow between molecules through the intensity and frequency of the driving laser.
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I. INTRODUCTION

Achieving thermal control of molecular systems is a topic
of current interest in various fields, such as quantum thermo-
dynamics, quantum biology, and quantum chemistry [1-8].
To achieve this, it is necessary to gain a fundamental un-
derstanding of the transfer of heat, and energy in general,
between molecules. In addition to well-known mechanisms
like advection, convection, conduction, and radiation, which
are responsible for the majority of heat transfer on macro-
scopic scales, additional mechanisms can play an important
role in microscopic and/or quantum systems. Some examples
of such mechanisms are seen in single-atom junctions [9], the
driven nonequilibrium spin-boson model [10], or in spatially
separated molecules entangled through strong coupling to
cavity modes [11,12]. In particular, optomechanical systems
in which photonic modes are coupled to mechanical degrees
of freedom have been studied in detail in this context [13—-15].

In this article, we demonstrate that localized surface plas-
mon polariton modes can transfer heat between molecules
placed in the hot spot of a plasmonic cavity. This transfer
is mediated through the molecular optomechanical interac-
tion between electromagnetic modes and molecular vibra-
tions, and is made possible by the fact that such systems
can reach a high optomechanical coupling rate within the
resolved-sideband limit [16-21]. While “traditional” optome-
chanics is concerned with the interaction of electromagnetic
modes with macroscopic mechanical resonators (often the
mirrors forming the cavity), with implementations in diverse
setups such as optical Fabry-Perot cavities, optomechanical
crystals, microwave LC circuits, or membrane-in-the-middle
setups [22], it was recently shown that the interaction between
vibrational modes of single molecules and plasmonic cavities
can be understood within the same framework, as first applied
in the context of surface-enhanced Raman scattering (SERS)
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[16,19]. The optomechanical interaction then occurs between
two nonresonant (approximately) harmonic oscillators, a lo-
calized surface plasmon resonance (LSPR) functioning as the
optical mode, and nuclear motion in the molecule functioning
as the mechanical resonator, with vibrational displacement of
the nuclei causing a dispersive shift of the LSPR frequency.
While both quantum and classical molecular optomechanics
(QMO and CMO, respectively) correctly describe elementary
characteristics of Raman scattering, namely, the dependence
of Raman signal on the power and frequency of the incident
laser, and on the temperature [20], QMO predicts several
phenomena that are not seen within CMO, such as dynamical
back-action amplification of the vibrational mode [19], and
gives access to nonclassical observables such as correlations
of the emitted photons [18]. Furthermore, it allows one to
distinguish two adjacent molecules with similar chemical
structure by the splitting of the transparency peak [23].

We here first demonstrate heat transfer between the vibra-
tional degrees of freedom of two molecules interacting with
a single plasmonic cavity mode that is driven by an external
laser, as sketched in Fig. 1. We then show that for realistic
parameters, this heat transfer can become efficient enough
to offset the single-molecule plasmon-induced heating and
lead to effective cooling of the hotter molecule. Furthermore,
we show that for the case of slightly different vibrational
frequencies, a competition between coherent and incoherent
coupling terms leads to an asymmetric line shape, with the
surprising result that the colder molecule becomes further
cooled down as the vibrational frequencies of the molecules
approach each other, which would normally lead to more
efficient heat transfer.

The paper is organized as follows: In Sec. II, we introduce
the QMO model for the system and describe our theoretical
approach. Through adiabatic elimination (Sec. Il A) of the
cavity mode, we derive a simplified model in which the two
molecular vibrations are directly coupled both through coher-
ent and incoherent coupling terms. In Sec. III, we present
our results for heat transfer between the molecules, both
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FIG. 1. (a) Sketch of the system of a “cold” (blue, 7}) and “hot”
(red, T5) molecule coupled to a plasmonic resonance. (b) Schematic
of the model and the relevant parameters (see text for details).

for the symmetric case of identical molecules (Sec. III A),
and the asymmetric case where the molecules and thus their
vibrational modes are different (Sec. III B). In Sec. IIIC, we
analyze the results in more detail based on the power spectral
density of the oscillations. We conclude with a summary and
discussion of the results in Sec. IV. In the following, we use
atomic units (2 = 1) unless otherwise stated.

II. THEORETICAL FRAMEWORK AND MODEL

The aim of our work is to investigate the heat transfer
between the vibrational modes of two molecules placed in the
hot spot of a LSPR mode that mediates the heat transfer, as
shown in Fig. 1. The theoretical approach then follows from
a straightforward extension of single-molecule descriptions
[16,20], sketched in the following. We assume that the plas-
monic resonance is far-detuned from any transition within the
molecule, and treat a single vibrational mode (approximated
by a harmonic oscillator) in each molecule. The interaction
between a molecular vibration and the quantized LSPR mode
can then be described by the interaction Hamiltonian

Hy = —1P(t)-E@), (1)

in which P(¢t) and E(¢) are the molecular polarization and
LSPR electric field operator, respectively. Under the assump-
tion that the plasmonic resonance frequency is much larger
than the molecular vibrational frequency, w. > w,,, this can
be expressed through a “standard” optomechanical interaction
[16,20], given by

Hip = —ga'a(b + b"). 2)

Here, & and b are the annihilation operators for optical and

. . . ORcwe -
vibrational modes, respectively, and g = Qz“SU—;C",) is the optome-

chanical coupling constant. This coupling depends on both the
properties of the nanocavity (permittivity of the surrounding
medium &y¢, effective mode volume V, and central frequency
w,) and of the molecule (isotropic Raman tensor R; and zero-
point amplitude of the vibration Q). We now assume that we
have two molecules, separated by a distance R, as well as an
external laser driving the LSPR mode. The full Hamiltonian

in the rotating frame of the laser is then given by
H = 8pa'a + wb}by + w:biby — gia"a(bl + by)
— g8 a(b} + by) — M(B] + b)) + by) + i@’ - a),
3)

where §p = w, — wy is plasmon-pump detuning and 2 deter-
mines the laser pump intensity, while
. dy-dy —3(d, - n)(d> - 1) @)
4 €9R3

is the dipole-dipole coupling constant between the molecules,
with d; the vibrational transition dipole moment of molecule
i, and Rii = 7, — 7| the vector connecting the two molecules.
We note that to lowest order, the vibrational transition dipole
moment d; depends on the derivative of the permanent molec-
ular dipole moment as a function of the relevant nuclear co-
ordinate Q, i.e., i(Q) ~ ji(0) + ' (0)Q = 1i(0) + cj(b +b"),
while the optomechanical interaction depends on the deriva-
tive of the molecular polarizability tensor «(Q) ~ «(0) +
RO (assumed isotropic here for simplicity), and the two are
thus only indirectly related. We also note that both ji(0) and
«(0) can be removed from the Hamiltonian by suitable shifts
of the equilibrium positions and frequencies. Furthermore, we
assume that the molecules are coupled to independent heat
baths at temperatures 77 and 75, as sketched in Fig. 1(b).
Plasmonic hot spots are typically very small (<« 100 nm),
such that having different local temperatures for the molecules
would require a very local source of heating. This could
be achieved, e.g., with nanometric tips used as near-field
thermal probes and for radiative heat transfer experiments
[24-27], or through frequency-selective resonant laser heating
of different bath molecules (e.g., by using DNA origami to
precisely control molecular positions [28]). Alternatively, it
would be possible to place the two molecules in different hot
spots of the same LSPR mode, as, e.g., provided by triangular
plasmonic nanoparticles [29].

In addition to the coherent dynamics described by Eq. (3),
we include the coupling to external baths within a Lindblad
master equation description [30,31]:

b= ;[H pl+ Lalpl + Ly, [p] + Ly, [ o], (5)
where

Ly [p] = vi(i + 1Dy [p] + viuDyi [ o], (62)

Lalp] = kDalpl, (6b)

where « describes the decay of the plasmon, and y;, y, are
the coupling rates of the first and second molecules to their
respective thermal baths, while Ds[p] is a standard Lindblad
superoperator,

Delpl = CpCT = L(CTCp + pCTC). (7)
The temperature of the two baths is encoded in the mean
phonon occupation numbers (7i;, #,), given by [30,31]
1

= — 8
exp (m) -1
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where kg is the Boltzmann constant. If the molecule-
molecule and molecule-plasmon interaction is negligible,
each molecule will reach thermal equilibrium with its bath,
with the populations of the vibrational levels decaying ex-
ponentially following a Boltzmann distribution. The average
phonon number, i.e., the expectation value n; = (l;:fl;,-)ss =
Tr(ElTlA),« 0ss), Where pg is the steady-state density matrix, then
becomes equal to 7;.

The dipole-dipole and optomechanical interaction between
molecules can modify the temperature, and more generally,
the steady-state distributions. We then define an effective
temperature based on the average phonon number, i.e.,

s ©)

! kgIn(1 + 1/n;)
For this effective temperature to correspond to a physical
temperature, the population of the separate levels should again
follow a thermal distribution. We have checked for all the
results presented below that this is indeed the case, i.e.,
that the steady-state distributions of the phonon populations
are well approximated by thermal Boltzmann distributions,
and the effective temperatures obtained can thus indeed be
interpreted as the steady-state physical temperatures of the
respective vibrational modes.

Finally, we mention that all the numerical results shown
below are obtained using the open-source QUTIP package
[32,33]. In the numerical calculations, we have used a cutoff
of N = 6 for the maximum phonon and photon numbers. We
have checked that this provides converged results for all the
parameters considered below.

Adiabatic elimination of the cavity mode

To analyze the numerical results below and gain more
physical insight, we perform adiabatic elimination of the
plasmon mode, which leads to an effective Hamiltonian for
the two vibrational modes. Our derivation generalizes results
obtained for the heat transfer between identical harmonic
oscillators [34] by allowing different frequencies and coupling
strengths for the two oscillators. We neglect direct dipole-
dipole interactions in the following derivation.

To perform the adiabatic elimination, we work in the
linearized limit of optomechanics [22] This amounts to
dlsplacmg the oscillators, & — « + @, b; — i + b;, where

gile?
/2+ x and B ~ s

values of & and b, respectively, with A =8y —2g; Re §; —
2g> Re B,. After the transformation, (@) = (by) = (by) =0,
and the driving term 2 disappears. By dropping quadratic
operator terms in addition, this gives

o~

are the steady-state expectation

A~ Adta+ Y lwiblb; — (@a' +o*a)gib; + b1, (10)

Inserting this into Eq. (5) and following the approach of [34]
to adiabatically eliminate the plasmon mode, we get after
some algebra

ps = —ilH,, ps] + Ly, [ps] + Ly, [ o]
+la*(BpsB, — pBuB + Bl,p.B — BB p,), (11)

where Hy = > wil;jf)i, ps = Tr, p and
B =gi(by + b))+ g2(bs + b)), (12)

B, = g181b) + g1S_1b] + 28257 + 25153, (13)

Here, we have defined S; = S(w;) and S_; = S(—w;), with
S(w) = [k/2 —i(A + w)]~'. We note that Eq. (11) is not in
canonical Lindblad form [35], but could be rewritten in this
form and expressed using the original system operators b;, l;j—
The resulting expression is unwieldy and is not shown here. It
can be simplified by performing the rotating wave approxi-
mation (RWA), i.e., only keeping slowly rotating terms that
conserve the number of vibrations. This gives

ps = —i[H + Hg"™, pq] +ZL [os]+ L™ (o, (14)

where the plasmon-induced coherent interaction is

HRVA — Z&olb bi + (AB{by 4+ H.c.), (15a)
dw;j = —|a|*g; Im(S; + S_;), (15b)

i
A= §|a|2g1g2(52 +8.1—S8F—5*), (150)

which in addition to energy shifts of the oscillators gives an
effective coupling A. We note that for the symmetric case of
identical molecules, w, = w;, g2 = g1, the new Hamiltonian
can be written as

HiW™ = —2]a|’g; Im(S) + S_1)b]b., (16)

where 136. = (b1 + bz) / /2 is the center-of-mass mode of the
molecular vibrations.
The incoherent contribution to the dynamics is

L lpd = )AL 5 o + AfFy plod. (D)

iJ
with A5 = |a|?gig;(S3; + Sx)
—{d fe, ,0}. Equation (17) can be brought into standard
Lindblad form by diagonalizing the matrices Ai We here only

show the result for the symmetric case (w; = w1, g2 = g1),
for which a simple analytical result is obtained:

Ly"[ps] = 4la|*g (ReS_1D; [ps] + ReSi Dy [pi]).  (18)

For identical molecules, the plasmon thus induces an effective
coupling of the center-of-mass mode to a heat bath with cou-
pling rate y, = 4|a|*g7 Re(S_; — S1) and occupation number
ii. = Re S;/Re(S_; — §)), corresponding to an effective bath
temperature of kg7, = w;/In(Re S_;/Re Sy).

and  F.qlp] =cpd" —

III. RESULTS

A. Identical molecules

For reference, in Fig. 2 we first show the heat transfer due
to the direct dipole-dipole interaction A between the molecules
outside of a cavity, i.e., when there is no interaction with the
plasmon mode. Here and in the following, we choose phonon
mode frequencies of w; = w, = 50 meV, with the external
baths at temperatures of 73 = 77K and 7, = 300K, and
molecule-bath coupling rates given by y; = y» = 0.25meV.
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300

A (meV)

FIG. 2. Effective temperature T, of the molecules as a function
of the dipole-dipole coupling constant A when coupling to the
plasmon mode is negligible (g; = g, = 0). Dashed lines indicate the
temperature of the bath for each molecule.

Not surprisingly, as A is increased, the molecules exchange
energy more efficiently, causing heat to flow between them
and their effective temperatures to approach each other. When
A becomes comparable to y; = y», i.e., energy exchange be-
tween the molecules is comparably fast to the molecule-bath
coupling, the steady-state temperatures of the two molecules
become almost equal. We also note that due to the symmetry
of the system in this case, the change in mean phonon numbers
(not shown) induced by the coupling is symmetric, dn; =
—d&ny, such that the total phonon number in both molecules
is conserved as A is increased.

By comparison, in Fig. 3 we study the case where there
is no direct dipole-dipole interaction, but the optomechanical
coupling to the plasmon is nonzero, and the plasmon mode is
driven by an external driving laser. We use a plasmonic
resonance frequency of o, = 1.36eV with linewidth
k = 68 meV, corresponding to a quality factor of Q = 20. The
optomechanical coupling rate is taken as g; = g» = 10meV,
similar to values derived in the literature [16,18,20], and the
laser-plasmon detuning is set to 6o = 150 meV. Due to the
dispersive nature of the plasmon-phonon interaction, the
plasmon mode does not have any influence on the phonon
population when there is no driving, since in that case (a'a) =
0. When the external laser is turned on, the molecules can
be driven out of equilibrium with their local heat baths. This
leads to two possible effects on the molecular temperature: On
the one hand, vibrational pumping of phonons through Stokes
(anti-Stokes) transitions can heat (cool) the molecules [20].
This is a well-known single-molecule effect that also occurs
when each molecule is alone in the cavity, as shown in dashed
lines in Fig. 3. On the other hand, the effective molecule-
molecule interaction mediated by the plasmon additionally
enables heat transfer between the molecules, leading the
molecular temperatures (solid lines in Fig. 3) to approach
each other compared to the single-molecule case, even though
there is no direct molecule-molecule interaction (A = 0). No-
ticeably, this coupling becomes large enough to even reverse
the trend in the change of the temperature of the hotter

A (meV)
0 0.01 0.04 0.09 0.16 0.25
350 T T T T T
300
250
=)
=200 |
=
150 i
full
100 ° adiab. elim.
-—- isolated
50 1 1 1 1 1 1
0 10 20 30 40 50 60 70
Q (meV)

FIG. 3. Effective temperature of two driven coupled molecules
as a function of driving strength 2, compared to the case of isolated
molecules. Solid lines show results of the full numerical simulations,
while dots show the results obtained after adiabatic elimination and
applying the RWA. Dashed lines show the equivalent results for
the case of isolated molecules. In all cases, blue (light orange)
lines and symbols correspond to the colder (hotter) molecule 1 (2).
The upper axis shows the values of the effective plasmon-induced
molecule-molecule coupling strength A obtained through adiabatic
elimination.

molecule: Although it gets heated by the plasmon when
it is in the cavity by itself, its temperature decreases in the
presence of the colder molecule due to their effective coupling
induced by the plasmon. The results obtained using Eq. (14),
i.e., adiabatic elimination within the RWA, are shown as dots
in Fig. 3 and are found to agree well with the full numerical
solution.

The good agreement between the full calculation and the
adiabatic elimination procedure permits a more in-depth anal-
ysis of the results by examining the obtained effective cou-
pling parameters. We therefore also show the corresponding
value of A, obtained from Eq. (15c), as the upper x axis
of Fig. 3, demonstrating that the observed values become
large enough to induce significant energy transfer between
the vibrations in the two molecules. We also note that for
the parameters used here, the effective temperature of the
common bath is almost independent of €2, with a value of
T, ~ 444K (such that the molecules are heated by the
plasmon-enhanced laser driving), while both the bath cou-
pling rate y, and the effective molecule-molecule interaction
A are to a good approximation proportional to Q?, with
Ve & 0.64|Al.

We next study the influence of various parameters on
the results obtained above, setting the driving strength to
Q =70 meV (the largest value considered in Fig. 3) here
and later. The effectiveness of the plasmon-mediated heat
transport, as measured by the deviation of the full results
from those with each molecule by itself in a cavity, is reduced
when the cavity loss rate « increases (keeping all other param-
eters constant), as shown in Fig. 4(a). Similarly, increasing
the molecule-bath coupling y; = y» leads to more efficient
thermalization of each molecule with its individual bath,
such that their temperatures approach those of their baths, as
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(a)

250 __==T —_— full
-7 . adiab. elim.
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FIG. 4. Effective temperature of the molecules as a function of (a) the cavity damping rate « and (b) the molecular damping rate
¥ = Y1 = y». In both panels, all other parameters are kept constant at the values given in the main text. The color and line styles are identical

to Fig. 3.

seen in Fig. 4(b). However, plasmon-mediated heat transfer
still constitutes an important channel and leads to significant
deviations between the individual-molecule results and the
coupled system. We note that changing the optomechanical
coupling rates g; = g, (not shown) is equivalent to changing
the external driving €2 (see Fig. 3), and leads to more efficient
energy transfer (and also more efficient heating).

Finally, we investigate the effect of the laser-plasmon
detuning &. Since the coherent and incoherent interactions in-
duced by the plasmon within adiabatic elimination depend on
the imaginary and real parts of the function S(w), respectively,
it can be anticipated that their behavior as a function of §y is
quite different. As shown in Fig. 5(a), this leads to a relatively
complex dependence of the results on the laser detuning, even
for the case of §) > w; that we are focusing on here. First
of all, it can be seen that the adiabatic elimination procedure
only works well for large enough detunings, essentially when
8o > w; + « [indicated by a thin dotted line in Fig. 5(a)].
For smaller values, the vibrational mode is quasiresonantly

T (K)

225

200 full

. adiab. elim.
175 .
isolated

pumped by the laser, with the effective temperature increasing
strongly. For larger values of the detuning, the temperature
Ty of the colder molecule decreases noticeably, while 75
stays approximately constant and only increases slowly. This
behavior can be understood by studying the effective param-
eters, shown in Fig. 5(b). This shows that both the effective
molecule-molecule coupling A as well as the coupling rate
y. to the common bath decrease as §y becomes larger, with
A having a longer tail. One could thus conclude that larger
detunings could be used to increase the relative importance
of the coherent molecule-molecule interaction (and thus di-
rect energy transfer between the molecules) compared to the
coupling y, to the common bath, while increasing the driving
intensity €2 to maintain the same absolute value of A (both y,
and A scale with oc Q2). However, this strategy is rendered
ineffective by the concomitant increase in the common bath
temperature T, for larger Jy, as seen in Fig. 5(b), such that the
overall heating of the molecules stays similarly efficient for
different values of §.

b
100 {b) 700
600
100
500 i<
o
1 400
100
300
10 : ' ' 200
100 150 200 250
dp (meV)

FIG. 5. (a) Effective temperature of the molecules as a function of the laser-plasmon detuning &y (same colors and line styles as in Fig. 3).
(b) Parameters obtained from adiabatic elimination of the plasmon mode: Molecule-molecule coupling A, coupling rate y. of the center-
of-mass mode to its bath, and new bath temperature 7.. In both panels, all other parameters are kept constant at the values given in the

main text.
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wy (meV)

57.5 60.0

FIG. 6. Effective temperature of both molecules as a function of
the frequency w, of the hotter molecule. The results obtained after
adiabatic elimination of the cavity mode are shown both with the
actual frequencies (thin black lines), as well as under the symmetric
approximation w; = w, (dotted black lines). The inset shows the re-
sults obtained within adiabatic elimination when either the coherent
interaction A or the incoherent interaction [terms mixing b; and b,
in Eq. (18)] is removed (solid and dashed lines, respectively).

B. Nonsymmetric system

In this section, we investigate the nonsymmetric situa-
tion where two molecules with different vibrational mode
frequencies are coupled to the same plasmonic resonance. For
simplicity, we only change the mode frequency of molecule
2 and keep all other parameters (couplings and bandwidths)
constant, and thus identical for both molecules. In Fig. 6, we
show the temperature of both molecules when changing the
frequency of the hotter molecule, with all other parameters as
in Fig. 3 (in particular, w; = 50 meV). It can immediately be
appreciated that plasmon-induced heat transfer between the
molecules is only efficient when the two vibrational modes
are close to resonance, with a central peak visible where the
hotter (colder) molecule is cooled (heated) compared to the
single-molecule case. We note that the width of these peaks is
approximately determined by the overall broadening induced
by coupling to the different heat baths, both the individual
baths of each molecule as well as the effective common heat
bath created by the plasmon (see Sec. IT A).

Interestingly, while the hotter molecule displays an almost
Lorentzian-like line shape, i.e., it is more efficiently cooled
the closer the two molecules are to resonance, the colder
molecule shows a Fano-like line shape as a function of fre-
quency difference. Its temperature actually decreases below
the single-molecule value at the same driving when the hotter
molecule is at a slightly lower frequency than the colder one.
As seen in Fig. 6, this behavior is well reproduced using
adiabatic elimination (thick gray lines), and is also captured
when doing the additional “symmetric approximation” that
| = w, within the terms induced by adiabatic elimination,
shown as dotted black lines. This asymmetric line shape can
then be shown to occur due to the competition of two separate
effects: On the one hand, the direct (coherent) molecule-
molecule coupling mediated by the plasmon leads to more

efficient energy transfer when the two molecules are close to
resonance, and also induces an energy shift on the symmetric
mode. On the other hand, the incoherent coupling of the two
molecules to a common heat bath becomes less efficient when
they are on resonance. This is demonstrated in the inset of
Fig. 6, where the solid lines show the results of adiabatic
elimination if the coherent coupling A is set to zero, while the
dashed lines show the results when mixed terms containing b,
and b, are removed from the incoherent contribution L;Zlm[,os]
in Eq. (18). The combination of these two effects leads to
an asymmetric line shape with regions where the plasmon-
induced contribution heats the colder molecule less efficiently
than in the isolated case, even though it is additionally effec-
tively coupled to the hotter molecule.

C. Power spectral density

We next study the power spectral density of the molecular
vibrations and the plasmon, which gives additional insight
into the dynamics of the system by showing the effective
oscillation frequencies of the various components. The power
spectral density (PSD), defined as

Se(w) = / " i (&"(1)¢(0))ss dt, (19)
0

gives a measure of the oscillation spectrum of a mode as a
function of frequency [30]. For the symmetric case of identical
molecules, Fig. 7(a), both molecules show a double-peaked
spectrum, corresponding to mode splitting between the center-
of-mass mode and the difference mode of the molecular
vibrations induced by the plasmon. This demonstrates clearly
that the effective coupling between the vibrational modes
induced by the plasmonic mode becomes large enough for the
parameters used here that normal mode splitting between the
two vibrational modes occurs. Furthermore, it can be clearly
observed that the plasmonic resonance is only modulated
at the frequency of the center-of-mass mode, as expected from
the discussion in Sec. Il A, with a clear redshift compared to
the bare molecular vibrations.

In contrast, when the two molecular vibrations have suffi-
ciently different frequencies, as shown in Fig. 7(b) for w; =
50meV, w, =45meV, they each induce a separate mod-
ulation onto the plasmonic mode, and each molecule only
is influenced by the plasmonic mode modulation at its own
frequency, such that no effective coupling between molecules
takes place. In this figure, it can also be appreciated that
the hot molecule induces much stronger fluctuations on the
plasmonic mode than the cold one.

To understand the onset of normal mode splitting between
the molecules, we plot the PSD of the two molecules for
various values of the driving intensity 2 in Fig. 8. As can
be seen, for weak driving, the two molecules only oscillate
at their natural frequency, with much weaker excitation of
the cold molecule compared to the hot one. However, as
Q is increased above about 30 meV, the driving of the
plasmonic mode induces a large enough effective coupling
between the molecules to overcome losses and lead to normal
mode splitting (or “strong coupling”) between the vibrational
modes. The accordingly efficient energy transfer between the
molecules then also leads to much more similar amplitudes for
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FIG. 7. (a) Power spectrum density for the cold molecule (blue), hot molecule (light orange), and plasmon mode in symmetric system

(dashed black). (b) Power spectrum density for nonsymmetric system.

the two molecular oscillations. The results obtained within the
adiabatic elimination are included in Fig. 8 as dashed black
lines, again showing good agreement with the full numerical
results. Interestingly, this also shows that the quality of this
approximation actually decreases with increasing driving, and
the splitting observed in the full results is slightly larger than
predicted by adiabatic elimination.

IV. SUMMARY AND DISCUSSION

To summarize, we have demonstrated that mutual coupling
of two molecular vibrations to a localized surface plasmon
resonance in the optomechanical regime can lead to efficient
plasmon-mediated heat transfer between the molecules. Im-
portantly, this plasmon-mediated channel is only active when
the plasmonic mode is driven by an external laser field. This
could enable active control of heat transfer between molecules
through an external laser field. Additionally, in some parame-
ter regimes, this optomechanically induced plasmon-mediated
heat transfer is more efficient than bare plasmon-induced
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heating, such that the hotter molecule can effectively be
cooled even though it is actively heated by a relatively intense
laser pulse. This is reminiscent of radiative cooling under
sunlight [36], with the additional twist that here it is the
external laser field itself that induces the cooling by opening
a heat transport channel to a colder reservoir.

Furthermore, we have shown that in the case of noniden-
tical molecules, heat transfer only efficiently takes place if
the relevant vibrational modes are close to resonance with
each other, which can be understood as each molecule only
interacting with modulations of its own frequency imprinted
on the plasmon mode. We note that since Eq. (3) also could be
used to describe two vibrational modes of a single molecule,
our results also imply that different vibrational modes should
behave essentially independently as long as their frequencies
are well separated compared to their linewidths, and thus
provides some additional justification for the common use of
single-mode models [16,17,20,21].

Deeper insight is gained through the analytic approach
of adiabatic elimination, which reveals both coherent and
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FIG. 8. Power spectrum density in the symmetric system (w; = w; = 50 meV), for different driving strengths 2. As the driving strength
is increased, the vibrational modes of the two molecules enter into strong coupling with a double-peaked structure, i.e., an effective Rabi
splitting, visible both for the (a) cold molecule and (b) hot molecule. Dashed black lines show the results obtained after adiabatic elimination

of the cavity mode and applying the RWA.

013826-7



ASHRAFI, MALEKFAR, BAHRAMPOUR, AND FEIST

PHYSICAL REVIEW A 100, 013826 (2019)

incoherent coupling terms induced between the molecular
vibrations by the plasmon mode. For example, this reveals
that inducing a slight detuning between the vibrational fre-
quencies can lead to a competition between the coherent and
the incoherent plasmon-induced coupling terms that leads
to a Fano-like line shape where the coupling to the hotter
molecule still cools down the colder molecule compared to
the case where it is coupled to the laser-driven plasmon mode
by itself.
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