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Wave-vector quasi-phase-matching was devised in the 1960s as a way to boost nonlinear interactions
with efficient quantum noise squeezing as one outstanding outcome. In the era of quantum technologies, we
propose a coupling quasi-phase-matching for efficient generation of multimode down-converted quantum light
in nonlinear waveguide arrays. We highlight this technique achieving multimode quantum entanglement and
Einstein-Podolsky-Rosen steering buildup. We discuss the feasibility of this method with current technology and
demonstrate its competitiveness as a resource for continuous variables quantum information.
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I. INTRODUCTION

The buildup of second-order nonlinear interactions is di-
rectly related to the ability to propagate the interacting waves
at the same phase velocity, i.e., the phase-matching condition.
The most efficient strategy, birefringence, is not always suf-
ficient to compensate the phase mismatch (e.g., semiconduc-
tors) or it is not applicable to the highest second-order tensor
component (e.g., lithium niobate) for high conversion effi-
ciency. Quasi-phase-matching (QPM) is nowadays the usual
name of a clever solution introduced in the seminal paper
of Armstrong et al. [1]. This method is based on periodical
reset of wave-vector phase mismatch to maintain a coherent
buildup of the nonlinear interaction and it is conventionally
obtained by periodic modulation of the nonlinear coefficient
[2]. The QPM approach was successfully extended to several
situations where the mismatch could be compensated at first,
second, or nth order, or tailored to enhance cascaded second-
order nonlinearities [3]. Optical-field noise squeezing and
twin photons are produced in quantum-optics labs worldwide
using this technique [4].

The key resource of disruptive quantum technologies is
entanglement and the quest of efficient multimode sources
is a thriving area of research [5]. In tabletop bulk-optics
experiments entanglement is typically generated in nonlinear
crystals either by suitable (quasi-)phase-matching of nonde-
generate fields or by linear interaction in beam splitters of
degenerate squeezed light [6]. However, these resources are
far away from real-world technology: they are neither off-
the-shelf nor compact, stable or low-cost. Integrated and fiber
optics are strong candidates to take over [7]. Entangled states
of light have been indeed produced through sequential pro-
duction of squeezed light and injection in directional couplers,
which couple the propagating modes through evanescent-field
tails [8,9]. Remarkably, coupling can be incorporated differ-
ently to enable another class of integrated-optics elements
without bulk-optics analogous: nonlinear waveguide arrays
which rely on distributed coupling and nonlinearity [10–12];
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i.e., light undergoes coupling and nonlinearity simultaneously
and not sequentially. The phase matching in these compact,
novel, and versatile devices is not trivial since a cascade
phase mismatch is introduced by the evanescent coupling
between waveguides with impact on the nonlinear efficiency
[13,14]. Some strategies have been developed to avoid this
detrimental effect: intensity modulation-based QPM has been
proposed for second harmonic generation in coupled waveg-
uides [15,16] and that approach has been extended recently
to sum frequency, difference frequency, and third harmonic
generation [17,18]. These relevant proposals, however, do not
take advantage of the eigenmodes—or supermodes—of the
linear array [19], are not combined with wave-vector QPM
(�β-QPM), and deal with classical light. In this paper we
introduce coupling-QPM (C-QPM) and we show how C-QPM
can be seen as phase matching of the array supermodes. Our
technique can be combined with the usual wave-vector phase
mismatch compensating technique to achieve a continuous
growth of the nonlinear interaction for certain eigenmodes of
the linear system. We thus further demonstrate the powerful
potential of C-QPM as a quantum resource as this continuous
nonlinear interaction results in strong entanglement between
the individual elements of these eigenmodes. We focus on
the simplest case, the emblematic nonlinear directional cou-
pler (NDC), and analyze its performance in the spontaneous
parametric down-conversion (SPDC) regime. We study the
abilities of the C-QPM NDC in the framework of continu-
ous variables (CV). Integrated CV quantum information is
indeed a thriving area of research [9,20–24] and it includes
the discrete variables regime as a limit case. We illustrate
the impact of C-QPM on CV quantum information features
such as noise squeezing, quantum entanglement, and Einstein-
Podolsky-Rosen (EPR) steering, and conclude discussing the
feasibility of our method.

II. COUPLING QUASI-PHASE-MATCHING

The NDC, sketched in Fig. 1, is made of two identical
χ (2) waveguides in which degenerate SPDC takes place [25].
In each waveguide, a pump photon (p) at frequency ωp is
down-converted into indistinguishable idler (i) and signal (s)
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FIG. 1. Sketch of the proposed nonlinear directional coupler
made of two identical waveguides a and b with second-order sus-
ceptibilities χ (2). In blue the noninteracting pump waves. In red
the efficiently built up signal waves. ��β stands for the period of
the uniform grating. �C stands for the period of the phase-reversal
grating (superperiod).

photons with equal frequencies ωs,i = ωp/2 and identical
polarization modes (type-0 process). The efficiency of the
nonlinear interaction in a single waveguide depends on the
propagation constants mismatch between the pump and signal
photons caused by dispersion �β ≡ β(ωp) − 2β(ωs), with
β(ωs,p) the propagation constant corresponding to frequency
ωs,p. A common implementation of �β-QPM is periodi-
cal inversion of the second-order susceptibility χ (2), like
for instance in periodically poled lithium niobate waveg-
uides (PPLN) [26]. The energy of the down-converted sig-
nal modes is exchanged between the waveguides through
evanescent tails, resulting in a linear coupling C of the signal
fields, whereas the interplay of the higher frequency pumps
is negligible for the considered propagation lengths. The
pump can be safely assumed undepleted if strong coherent
pumps are used. The production of CV entangled states in
a perfectly phase-matched NDC has been theoretically stud-
ied in Refs. [13,14,27]. These works demonstrated that in
the technologically available range of cw-PPLN directional
couplers—where linear coupling dominating over nonlinear
coupling and sample lengths are a few centimeters—the en-
tanglement between the two signal output fields is maximized
for equal input pump powers and phases, showing an oscilla-
tory evolution which periodically shifts between a maximum
and zero values [28]. This detrimental periodic evolution
arises from a coupling-based nonlinear phase mismatch and
limits the amount of available entanglement. We introduce
below C-QPM as a method to avoid this unfavorable conse-
quence and show its effect on equal input pump power and
phase in each waveguide.

The relevant operator which describes the propagation in
this system is the interaction momentum, which can be written
as follows [14]:

M̂ = h̄ {CÂB̂† + η ei(�βz+φ)(Â† 2 + B̂† 2) + H.c.},
where Â and B̂ are slowly varying amplitude annihilation
operators of signal photons in the upper (a) and lower (b)
waveguides, respectively, ηa = ηb ≡ η is the nonlinear con-
stant proportional to χ (2) and to the pump power coupled
into the waveguides, C is the linear coupling constant, h̄ is
the Planck constant, φa = φb ≡ φ is the input phase of the
pump fields, z is the coordinate corresponding to the direction
of propagation, and H.c. stands for Hermitian conjugate. C
has been taken as real without loss of generality. From this
momentum operator, the following Heisenberg equations are

obtained:

dÂ

dz
= iCB̂ + 2iη ei(�βz+φ)Â†,

dB̂

dz
= iCÂ + 2iη ei(�βz+φ)B̂†. (1)

These equations hold all the dynamical information of the sys-
tem. However, the individual mode’s basis hides the coupling-
based phase introduced above. The natural basis for this
problem is indeed the eigenmodes basis—supermodes—for
the evanescently coupled signal modes [19]. The Heisenberg
equations (1) take in this basis the following simple form:

dÊ

dz
= 2iη ei(�βz−2Cz+φ)Ê†,

dÔ

dz
= 2iη ei(�βz+2Cz+φ)Ô†, (2)

where we have introduced the even and odd supermode oper-
ators Ê , Ô, defined as

Ê = Â + B̂√
2

e−i Cz, Ô = B̂ − Â√
2

ei Cz.

These are the equations for two decoupled parametric ampli-
fiers in the supermodes basis with a z-dependent gain. This
longitudinal dependence degrades periodically the amplifier
gain with fast and slow periods respectively related to the
wave-vector and coupling phase mismatches as �β is a few
orders of magnitude higher than C in general. Equations
(2) thus suggest that a suitable tailoring of the effective
nonlinearity η through periodic domains and superdomains
could compensate both phase mismatches and would lead
to an efficient amplification of the supermodes. A suitable
engineering of the nonlinear parameter can be then

η = η0 f�β (z) fC (z), (3)

with f�β (z) and fC (z) standing respectively for fast and slow
periodical square-wave domains along propagation with duty
cycles of 50% (Fig. 1) [29]. By inspection of Eqs. (2), the
wave-vector ��β and coupling �C periods can be tentatively
set as ��β = 2π/�β for a uniform wave-vector fast grating
and �C = π/C � ��β for a coupling phase-reversal slow
grating. The use of ��β and �C superperiods leads to a
coherent buildup of the nonlinear interaction at the cost of a
reduction in the effective nonlinearity to

ηC = (2/π ) η�β = (2/π )2 η0 (4)

for first order �β- and C-QPM. This drop in the nonlinear
efficiency can be compensated by a longer interaction dis-
tance. Engineered phase-reversal gratings in PPLN have been
reported in single waveguides to produce multiple wavelength
conversion [30]. In our case wavelength degeneracy is pre-
served by the coupling phase matching. In waveguide arrays,
it has been recently shown that suitable engineering of nonuni-
form poling domains can produce any set of path-entangled
biphoton states in the discrete-variables regime [31]. Nev-
ertheless, this technique can be technologically demanding
and prone to fabrication errors. In contrast, our approach
involves two poling periods that compensate for the fast and
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slow mismatches. Indeed, for propagation distances z � �C ,
Eqs. (2) are approximated by

dÊ

dz
≈ 2iηC eiφÊ†,

dÔ

dz
≈ 2iηC eiφÔ†. (5)

These equations are analogous to the evolutions of fields in
individual waveguides with ideal perfect wave-vector phase
matching (PPM) in the undepleted pump regime [32]. This
analysis explains why the proposed C-QPM is indeed QPM
at the supermodes level and brings out the mechanisms at
play. Notably, it shows that this approach is scalable to any
number of waveguides as it relies on the supermodes only. In
general, �C (k) will match the propagation constant βS

k of the
kth slowly varying supermode amplitude. In the case of homo-
geneous arrays, βS

k = −βS
N+1−k ≡ 2C cos [kπ/(N + 1)] with

N the number of waveguides [19], and the coupling period can
be set as

�C (k) =
∣∣∣∣ π

2C cos [kπ/(N + 1)]

∣∣∣∣,
thus phase matching the kth and (N + 1 − k)th supermodes.
Note that, in the case of odd number of waveguides N ,
the supermode k = (N + 1)/2 is phase matched without the
use of C-QPM since βS

(N+1)/2 = 0 [33]. This supermode
is then the only one efficiently building up. Remarkably,
C-QPM opens up the possibility to efficiently build up any
pair (k, N + 1 − k) of supermodes. The above analysis is
also valid for optical parametric amplification in the classical
regime.

Therefore, numerical analysis of Eqs. (2) and (3) could
in principle be enough to compute optical-fields propaga-
tion, squeezing, and entanglement. Nevertheless, the above
analysis does not give the full picture: exactly compensating
phase for mismatch involves a nonlinear dependence of the
wave-vector ��β and coupling �C periods. Since �β � η,
��β = 2π/�β is a suitable selection [34]. However, in the
case of the coupling period �C , the nonlinearity has a stronger
influence since coupling and nonlinearity can present similar
orders of magnitude depending on the pump power. Typical
values in PPLN waveguides are �β = 20 × 10−2 μm−1, C =
36 × 10−2 mm−1, and η0 = 15 × 10−4

√
P mm−1mW−1/2,

with P the input pump power [9,11]. Thus a thorough analysis
is needed to validate �C = π/C as a good setting. Moreover,
a phase retardation −π/2 appears in �β-QPM single waveg-
uides and affects quantum noise squeezing [34]. Similarly,
coupling-based phases can play a role in the entanglement
of the fields in the case of evanescently coupled waveguides.
Thus we present here a full model of the propagation in a
C-QPM NDC by studying analytically the propagation at the
level of each wave-vector period. This analysis gives insight
to correctly set �C and includes and recovers all the relevant
phases.

III. PROPAGATION IN A C-QPM NDC: FULL MODEL

Our full model consists in the study of the propagation at
the level of each inversion period. Since we are interested in
CV squeezing and entanglement of the individual fields, it
is more convenient to deal with the field quadratures X̂(A,B),
Ŷ(A,B), where X̂S = (Ŝ + Ŝ†)/

√
2 and ŶS = i(Ŝ† − Ŝ)/

√
2 are,

respectively, the orthogonal amplitude and phase quadratures
corresponding to a signal optical mode S ≡ A, B. The system
of equations (1) can be rewritten as d ξ̂ /dz = �(z) ξ̂ in terms
of the individual-modes quadratures, where �(z) is a 4 × 4
matrix of coefficients and ξ̂ = (X̂A, ŶA, X̂B, ŶB)T . The formal
solution of this equation is given by ξ̂ (z) = S(z) ξ̂ (0), with
S(z) = exp{∫ z

0 �(z′) dz′}. This is a linear unitary operator
which contains the full evolution of our quantum system.
This propagation matrix S(z) is given by the following eight
independent coefficients as

S1,1 = S3,3 ≡ 1
2 {(CK− + CK+ ) − (�−SK− + �+SK+ )Sφ},

S1,2 = S3,4 ≡ 1
2 {(�−Cφ + �−)SK− + (�+Cφ + �+)SK+},

S1,3 = S3,1 ≡ 1
2 {(CK− − CK+ ) − (�−SK− − �+SK+ )Sφ},

S1,4 = S3,2 ≡ 1
2 {(�−Cφ + �−)SK− − (�+Cφ + �+)SK+},

S2,1 = S4,3 ≡ 1
2 {(�−Cφ − �−)SK− + (�+Cφ − �+)SK+},

S2,2 = S4,4 ≡ 1
2 {(CK− + CK+ ) + (�−SK− + �+SK+ )Sφ},

S2,3 = S4,1 ≡ 1
2 {(�−Cφ − �−)SK− − (�+Cφ − �+)SK+},

S2,4 = S4,2 ≡ 1
2 {(CK− − CK+ ) + (�−SK− − �+SK+ )Sφ}, (6)

where we have defined the effective coupling K± =√
[(�β/2) ± C]2 − 4η2 and the dimensionless variables

CK± ≡ cos(K±z), SK± ≡ sin(K±z), Cφ ≡ cos(φ), Sφ ≡ sin(φ),
�± ≡ 2η/K±, and �± ≡ C/K±. From Eqs. (6) we can easily
calculate the mean number of generated signal photons in each
waveguide, given by

Ns = 2η2

(
S2

K+

K2+
+ S2

K−

K2−

)
. (7)

Note that, in the case of PPM (�β = 0),

Ns = 4η2(SK/K )2, (8)

with a unique effective coupling K± ≡ K =
√

C2 − 4η2, and
in the case of no coupling (C = �β = 0), the usual

Ns = sinh2(2ηz) (9)

is recovered [14].
We base our analysis of C-QPM on the comparison of the

ouputs of the NDC in the PPM and C-QPM regimes. We
also compute and display the relevant �β-QPM in a single
waveguide for comparison.

It is common to consider PPM to be fulfilled in theoretical
works about nonlinear waveguide arrays [13]. This model is
exact in the case of birefringence-based phase matching. Then
�β = 0 and the nonzero coefficients in the evolution matrix
given by Eqs. (6) are

S1,1 = S3,3 = CK − �SK Sφ,

S2,2 = S4,4 = CK + �SK Sφ,

S1,2 = S3,4 = S2,1 = S4,3 = �CφSK ,

S1,4 = S3,4 = −S2,3 = −S4,1 = −�SK .

These solutions have been recently used to study the
continuous-variables capabilities of this device [13,14]. The
intensity in Eq. (8), the noise squeezing, and the entangle-
ment oscillate with z with maximum values at beat lengths
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Δβ

FIG. 2. Mean number of signal photons in waveguide a (or b) vs
propagation distance in terms of the number of phase mismatch peri-
ods ��β : for PPM with η ≡ η�β = (2/π ) η0, without coupling (dot-
dashed) and with coupling (dashed); for C-QPM with a pump input
phase φ = −π/2 and η ≡ η0 (solid). PPM with η ≡ ηC = (2/π )2 η0

and no coupling (dotted) is also shown for comparison. η0 = 15 ×
10−3 mm−1, C = 36 × 10−2 mm−1, and �β = 20 × 10−2 μm−1.
The vertical lines show the phase-reversal lengths Lp = 139 × 2Lc =
4.37 mm.

(2l + 1)Lb with Lb = π/2K and l a positive integer [Figs. 2,
3(a), and 4(a) (dashed)] [13,14]. This is a widely used model
of NDC. For a single waveguide, PPM and �β-QPM provide
the same results in terms of gain and noise squeezing apart
from a reduction in the effective nonlinearity, η ≡ η�β =
(2/π )η0, for first order �β-QPM. However, as outlined
above, there is also a phase retardation effect that has to
be borne in mind in the case of two evanescently coupled
waveguides. Thus we discuss below the realistic case of �β-
QPM in the NDC.

Now, let us make a reminder of the �β-QPM technique
and see what happens when applied to coupled waveguides.
The relative phase between the nonlinear polarization and
the pump beam varies linearly along propagation through the
nonlinear material. This phase drives a periodic cascade effect
from down-conversion to up-conversion, which periodically
wipes away the generated signal light [1]. For a single waveg-
uide, the generated signal intensity oscillates as a function
of the propagation distance with a typical period ��β =
π/

√
(�β/2)2 − 4η2 ≡ 2Lc, with Lc the coherence length [see

Eq. (7) for C = 0]. Usually �β � η and the period is approx-
imately equal to 2π/�β. The �β-QPM technique consists
in inserting domains with an inverted nonlinear polarization,
changing η into −η in the second half coherence length in
order to build up the nonlinear interaction, achieving large
parametric gains. Therefore, after the first complete period
��β , the propagation matrix Eq. (6) is

S�β (2Lc, η → −η, 0) = S(Lc,−η, 0)S(Lc, η, 0),

where ±η → ∓η stands for an inversion of the nonlinear
polarization and S(z, η,C) for the propagator S at given
length, nonlinearity, and coupling. After propagation through
n periods, the propagation matrix for �β-QPM in a single
waveguide is

S�β (2nLc, η → −η, 0) = (S�β (2Lc, η → −η, 0))n. (10)

ΛΔβ

FIG. 3. Elements of the covariance matrix for PPM with φ = 0
and η ≡ η�β (dashed) and C-QPM with φ = −π/2 and η ≡ η0

(solid) vs propagation distance in terms of the number of phase
mismatch periods ��β . From top to bottom: (a) variance of the
amplitude and phase quadratures, V (XA, XA) (black) and V (YA,YA)
(gray), respectively; (b) correlation elements V (XA, XB) (black) and
V (YA,YB ) (gray), (c) V (XA,YA) and V (XB,YB ), and (d) 103 V (XA,YB )
and 103 V (XB,YA). η0 = 15 × 10−3 mm−1, C = 36 × 10−2 mm−1,
and �β = 20 × 10−2 μm−1. The vertical lines show the phase-
reversal lengths Lp = 139 × 2Lc = 4.37 mm.
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0.2

FIG. 4. Logarithmic negativity (a) and Gaussian steering (b) for
PPM with φ = 0 and η ≡ η�β (dashed) and C-QPM with φ = −π/2
and η ≡ η0 (solid) vs propagation distance in terms of the number
of phase mismatch periods ��β . η0 = 15 × 10−3 mm−1, C = 36 ×
10−2 mm−1, and �β = 20 × 10−2 μm−1. The vertical lines show the
phase-reversal lengths Lp = 139 × 2Lc = 4.37 mm.

This equation is easily computed if S�β (2Lc, η → −η, 0)
presents independent eigenvectors u. In this case,
(S�β (2Lc, η → −η, 0))n = uλnu−1, with λ the diagonal
matrix of eigenvalues of S�β (2Lc, η → −η, 0). Using this ap-
proach, analytical solutions to Eq. (10) have been found [34].

In the case of evanescently coupled waveguides there is
a second cause of phase mismatch: the coupling C. Since in
general �β � C, the fast oscillation period is approximately
2π/�β; thus the �β-QPM uniform grating can be safely
set as ��β = 2π/�β. Similar to the case of the PPM NDC,
the intensity in the coupler oscillates with maxima obtained
at beat lengths (2l + 1)Lb. The physics in NDC is the same
as for wave-vector mismatch in a single waveguide, but the
oscillation in NDC is in general much slower as Lb � Lc.
Thus following the �β-QPM strategy above, we propose to
invert superdomains with a period 2Lb to compensate for
the phase retardation generated by the coupling. However,
the beat length is pump-power dependent Lb ≡ Lb(η). For
typical input powers in the continuous wave regime—tens or
hundreds of mW—C > 20η, such that Lb ≈ π/2C ≡ Lp. We
use then P = 100 mW as input power in the remainder of the
paper. The power-independent linear-coupling beat length—
or phase-reversal length Lp—can then be safely used as a
design parameter. The superperiod is thus given by �C = 2Lp

(phase-reversal grating, Fig. 1). Note that, when C � 2η, the

solutions are no longer oscillatory and the mismatch rephasing
is not necessary [13]. However, this regime is far from being
technologically accessible in cw traveling-wave integrated
devices.

For the sake of simplicity, let us choose the experimental
phase-reversal length as an even number of coherence lengths
Lp = 2nLc. This fixes the value of the coupling constant with
respect to the wave-vector mismatch to C = �β/4n. After the
first complete superperiod, the propagation matrix S(z) in the
C-QPM NDC is

SC (2Lp) = S�β (2nLc,−η → η,C)S�β (2nLc, η → −η,C),

where we have used Eq. (10) and include in addition the effect
of the coupling C. Again, after a number m of superperiods we
have

SC (2mLp) = (SC (2Lp))m. (11)

This matrix contains the full evolution of any classical or
quantum state of light propagating in the device. As above,
we can make use of the matrix diagonalization of SC (2Lp) to
calculate numerically the result of Eq. (11) [35].

The signal light intensity generated in each waveguide can
be readily extracted from this evolution operator generalizing
Eq. (7). Figure 2 shows the mean number of signal photons
in waveguide a (b) for the different cases of phase matching
we introduced: PPM and C-QPM. We use the relation in
Eq. (4) for a fair comparison between cases. We give PPM
without coupling as given in Eq. (9) (dot-dashed), PPM with
a coupling K as given in Eq. (8) with η ≡ η�β (dashed),
and C-QPM with φ = −π/2 and η ≡ η0 as calculated from
Eq. (11) (solid). A similar figure is obtained for �β-QPM
after a scale change from Lp to 2Lc. This type of figure appears
ubiquitously in the �β-QPM literature [29]. We demonstrate
thus how the C-QPM similarly rephases the coupling-based
phase mismatch. For a further comparison with C-QPM, we
also display the intensity obtained via PPM with η ≡ ηC and
no coupling [Eq. (9)] (dotted), which is the same we can
retrieve via the simplified model and the supermode equations
(5). This establishes C-QPM as a first-order coupling QPM for
the directional coupler supermodes producing a clear intensity
buildup of the signal in a NDC in the SPDC regime.

IV. NOISE SQUEEZING, CV ENTANGLEMENT,
AND EPR STEERING

The most interesting observables of the NDC in terms
of squeezing and CV entanglement are the second-order
moments of the quadrature operators, properly arranged in
the covariance matrix V [36]. The elements of this matrix
can be efficiently measured by means of homodyne detection
[37]. The covariance matrix at any propagation plane z is
given by V(z) = S(z) V(0) ST (z), where V(0) = (1/2) 1 is the
covariance matrix related to the vacuum state of the input
signal modes, with 1/2 the shot noise. Evolution of squeezing
Vii = V (ξi, ξi ) and quantum correlations Vi j = V (ξi, ξ j ) can
be obtained at any length z from the elements of this matrix.

Figure 3 shows all the relevant elements of the co-
variance matrix for a realistic implementation of C-QPM.
We compare PPM with φ = 0 and η ≡ η�β (dashed) with
C-QPM with φ = −π/2 and η ≡ η0 (solid) due to the
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�β-QPM-based phase retardation [34]. The vertical lines cor-
respond to the selected experimental lengths (phase-reversal
lengths Lp) where the superperiods are inverted. Figure 3(a)
shows the amplitude and phase squeezing of the signal mode
A in waveguide a. The same result is obtained for mode B
due to the symmetry of V. Quantum noise buildup above shot
noise is clearly displayed. This is a signature of entanglement:
the fields-superposition quantum noise, i.e., the supermode
quadratures noise, is squeezed, whereas the individual-fields
quantum noise is super-Poissonian [38]. As expected, after
few phase-reversal lengths, amplitude and phase squeezing
have different evolutions in the C-QPM case, in contrast
with the PPM case where they overlap. This is due to the
evolving coupling-based phase generated through propagation
in �β-QPM structures which retards the phase quadrature
with respect to the amplitude quadrature. Figures 3(b), 3(c),
and 3(d) show the buildup evolution of all correlations in the
device. These elements follow a similar evolution for QPM
and PPM except for the elements V (XA,YB) [V (XB,YA)] in
Fig. 3(d), where the ordinate axis has been expanded by a
factor of 103. A small decoupling between the phase-reversal
lengths Lp and the coupling beat lengths Lb is observed for
all the elements of V after a large number of superperiods.
This effect is due to the nonlinear correction to the coupling
beat length implicit in Eq. (8). However, for typical cw pump
powers and PPLN lengths this shift is negligible.

The input-output transformation generated by a NDC in
the undepleted regime can be decomposed into elementary
transformations generated by a beam splitter and optical
parametric amplifiers with suitable parameters [39]. Using
this substituting scheme, we identify the quantum states
|ψ (z)〉 generated at each propagation plane z from the
off-diagonal elements V (ξi, ξ j ) of the covariance matrix
V. At lengths zEPR(m) = mLb, the quantum state is a
two-mode squeezed (EPR) state given by |ψ (zEPR)〉 =
ŜAB[r(zEPR)]|0A 0B〉 with ŜAB[r] = exp {−r[Â† B̂† − Â B̂]}
and where V (XA, XB) = −V (YA,YB) 
= 0, whereas at
lengths zNOON(m) = (2m + 1)Lb/2 the quantum state
is a separable two single-mode squeezed state given
by |ψ (zNOON)〉 = ŜA[r(zNOON)]ŜB[r(zNOON)]|0A 0B〉 with
ŜA[r] = exp {−(r/2)[Â† 2 − Â2]}, and where V (XA,YA) =
V (XB,YB) 
= 0. In fact, the state |ψ (zNOON)〉 is not
perfectly separable due to the small contribution of the
cross-correlation elements V (XA,YB) = V (XB,YA). These
elements are 100 times lower than the autocorrelation
elements V (XA,YA) = V (XB,YB), thus making the state
separable in practical terms. At lengths zNOON(m) the state can
then be written as |ψ (zNOON)〉 ≈ |0A0B〉 − (r/

√
2)(|2A0B〉 +

|0A2B〉) + O(r2). Thus the device generates two-photon
NOON states with probability r2/2 when low pump
power is used in order to avoid the contribution of higher
number-of-photon states. In contrast to the PPM NDC case
where the squeezing parameter is bounded, here the squeezing
parameter r(z) is building up with propagation. The squeezing
parameter can be extracted from the covariance matrix values
through a Bloch-Messiah decomposition [40].

The amount of CV entanglement of the two-mode sys-
tem is easily quantified through the logarithmic negativ-
ity EN [41]. This entanglement witness is based on the
Peres-Horodecki-Simon criterion, which establishes that a

quantum state is entangled if the partially transposed density
matrix is nonpositive. EN can be obtained from the covari-
ance matrix V and is defined in such a way that any value
EN > 0 indicates entanglement. For two-mode Gaussian pure
systems, it reads

EN = max

{
0,−2 log2

(√
1

2μA
− 1

2
−

√
1

2μA
+ 1

2

)}
,

(12)

with μA the partial purity related to mode A, μA =
[4(V (XA, XA)V (YA,YA) − V (XA,YA)2)]−1/2 [41]. Figure 4(a)
displays the buildup evolution of the logarithmic negativity.
EN linearly increases in the zEPR(m) planes with the number
of superperiods m, leading to strongly entangled two-mode
squeezed states. For instance, for z = 7Lb ≈ 3.1 cm, a typical
length in PPLN waveguides, we have thus designed a buildup
of ≈7 × (2/π ) = 4.5 times with respect to the PPM case,
since ECQPM

N (η, Lb) ≈ (2/π )EPPM
N (η, Lb) for η small.

An even stronger type of quantum correlation is EPR
steering. This quantum feature allows one party, Alice, to
change the state of a distant party, Bob, by exploiting their
shared entanglement [42]. From a quantum information pro-
cessing perspective, quantum steering corresponds to the task
of verifiable entanglement distribution by an untrusted party,
and it has been shown that this quantum protocol provides
security in one-sided device-independent quantum key distri-
bution [43]. Recently, a quantum steering witness for Gaus-
sian systems has been proposed [44]. In the case under study,
a two-mode pure system, the Gaussian A → B steerability is
given by [45]

GA→B = max{0,− log2 μA}. (13)

Since we are dealing with pure Gaussian states, thus sym-
metric, the steering is also symmetric with GA→B = GB→A ≡
GA↔B. Figure 4(b) shows the buildup evolution of the Gaus-
sian steering. GA↔B increases faster than EN at zEPR(m)
distances. This feature is the consequence of a faster-than-
linear decrease of the partial purity μA(z) at zEPR(m) lengths
(not shown) and the definitions of EN (μA) and GA↔B(μA),
Eqs. (12) and (13), respectively. Thus, as Gaussian steering is
a measure of how useful entanglement is in certain quantum
protocols, the C-QPM NDC represents a potential candidate
as a resource for CV quantum information processing.

V. DISCUSSION AND CONCLUSION

We finally analyze the robustness of the C-QPM approach
for efficient generation of squeezed light. In practice, the
C-QPM approach does not increase the propagation losses
with respect to �β-QPM PPLN waveguides. A state-of-the-
art value for signal field losses is γs ≈ 0.14 dB cm−1 in
reverse-exchange PPLN waveguides [9]. The influence of
linear losses, like scattering or absorption, on the fields’
quadratures can be easily included in our analysis by inserting
in Eqs. (6) fictitious beam splitters with effective transmittiv-
ities proportional to the losses corresponding to each mode
[27]. Our simulations point out that the noise squeezing and
entanglement buildup produced by C-QPM is quite robust
under these values of losses. For instance, a fall lower than

013824-6
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FIG. 5. Logarithmic negativity for PPM with φa = 0 and �φ ≡
φa − φb = π/4 (dot-dashed, gray), �φ = π/2 (dotted, black),
�φ = 3π/4 (dashed, black), and �φ = π (small dashing, gray) and
C-QPM with φa = −π/2 and �φ = 0 (solid, black) vs propagation
distance in terms of the number of phase mismatch periods ��β .
η ≡ η0 = 15 × 10−3 mm−1, C = 36 × 10−2 mm−1, and �β = 20 ×
10−2 μm−1. The vertical lines show the phase-reversal lengths Lp =
139 × 2Lc = 4.37 mm.

2% is obtained from an ideal 3 dB squeezing using the
above value of losses. In the case of imperfect C-QPM due
to a small mismatch in the superperiods the entanglement
still increases although with reduced efficiency, as it happens
for �β-QPM in single waveguides. However, typical �C in
PPLN waveguide arrays are of the order of mm or cm, thus
easily realizable with the current state-of-the-art technology
[26]. As commented above, since the coupling length Lb

depends on the input pump power, there will be always a
small shift between the phase-reversal length Lp and Lb. This
mismatch grows with the number of superperiods. However,
the entanglement buildup is not affected to a great extent as
shown in Fig. 5 (solid, black). We have also compared the
performance of C-QPM with that obtained engineering the
pump’s phase, i.e., using �φ ≡ φa − φb 
= 0 [13,28]. Figure 5

compares the amount of entanglement generated in C-QPM
(solid, black) with that obtained by only tuning of the pump’s
phase difference �φ = π/4 (dot-dashed, gray), π/2 (dotted,
black), 3π/4 (dashed, black), and π (small dashing, gray).
In contrast with previous figures, here we compare directly
both cases, i.e., using η = η0 for both. We have found that,
for the parameters used along the paper, C-QPM is more
efficient in terms of entanglement than any �φ 
= 0 up to
z = 25Lb ≈ 11 cm (not shown). To our knowledge, the largest
lithium niobate chips are ≈7 cm long, but typical PPLN
waveguides cover the 2–4 cm range, to avoid problems related
to inhomogeneities. To find a device length where �φ 
= 0
beats C-QPM available with present technology, such as z =
7Lb ≈ 3.1 cm, P � 625 mW per waveguide is necessary. Note
that for long distances and/or high input power, the unde-
pleted pump approximation is no longer valid. In such case
the depletion of the pump has to be taken into account [14,27].
Thus we conclude that C-QPM is the best option available as
of today in terms of compactness and efficiency to generate
quantum correlations in cw-PPLN directional couplers.

The analysis presented here can be extended to any device
supporting supermodes. Particularly, bipartite and multipar-
tite entanglement enhancement can be obtained in nonlinear
waveguide arrays in the SPDC regime under well-chosen
pump configurations and suitable phase reversal periods. A
detailed analysis will be presented elsewhere. Finally, note
that this scheme also applies to second harmonic generation,
where entanglement of the generated signal fields has been
predicted [27].
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