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Role of generalized parity in the symmetry of the fluorescence spectrum from two-level systems
under periodic frequency modulation
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We study the origin of the symmetry of the fluorescence spectrum from the two-level system subjected to
a low-frequency periodic modulation and a near-resonant high-frequency monochromatic excitation using the
analytical and numerical methods based on Floquet theory. We find that the fundamental origin of symmetry
of the spectrum can be attributed to the presence of the generalized parity of the Floquet states, which depends
on the driving parameters. The absence of the generalized parity can lead to the asymmetry of the spectrum.
Based on the generalized parity, the conditions for the symmetry and asymmetry of the spectrum can be derived,
which succeeds in predicting symmetry and asymmetry of the spectrum for the harmonic, biharmonic, and
multiharmonic modulations. Moreover, we find that the secular approximation widely used in the analytical
calculation may lead to artifact symmetry of the spectrum, which vanishes when such an approximation is
avoided. The present study provides a significant perspective on the origin of the symmetry of the spectrum.
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I. INTRODUCTION

Resonance fluorescence, arising from a quantum emitter
driven by an external field and coupled to a radiative reservoir
[1–3], not only is an important concept in quantum optics
but also has potential application in quantum information
technology; for instance, it plays an important role in realizing
the single-photon source [4–6]. Particularly, the resonance
fluorescence of two-level systems has attracted much interest
and been studied in various aspects such as spectra [7–14],
squeezing [15–17], photon statistics [18–21], photon anti-
bunching [22–24], and others. The line shape of the spectrum
is found to depend strongly on the external field that interacts
with the quantum emitters as well as the reservoirs to which
the quantum emitters are coupled. As is well known, for a
sufficiently strong monochromatic field, the spectrum has a
symmetric three-peak structure, known as the Mollow triplet
[1]. More recently, the bi- and multichromatically driven
quantum systems are of interest [25–28]. In such systems, the
spectrum turns out to have a complicated multipeak structure
[7–13], which can be either symmetric or asymmetric. In
principle, the physical origin of the triplet and multipeak
structures can be understood in terms of the transitions be-
tween the quantum dressed states [3] or in terms of the
transitions between the semiclassical Floquet states [29,30].
The studies of the resonance fluorescence have enriched the
physics concerning the light-matter interaction.
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The origin of the symmetry of the spectrum has been found
in the case of the monochromatic field. Specifically, it is the
detailed balance condition that guarantees the symmetry of
the Mollow triplet [3]. As is well known, the breakdown of
such a condition leads to the asymmetry of the spectrum,
for instance, in the presence of a pure dephasing reservoir
[31,32] or the counter-rotating terms of the external field
under certain conditions [30,33,34]. The dephasing-induced
asymmetric Mollow triplet has been experimentally observed
in the quantum dots (the pure dephasing arises because of
the interaction between the quantum dot and its solid-state
environment) [35,36]. For the bi- and multichromatic fields,
the origin of the symmetry of the spectrum is rarely discussed,
owing to the fact that the physically transparent spectrum is
hardly analytically derived and has not been comprehensively
understood.

Recent studies show that the fluorescence spectrum from
a driven two-level system with a modulated transition fre-
quency is symmetrically multipeaked for the vanishing detun-
ing while asymmetrically multipeaked for the finite detuning
[25–27,37]. Such an exotic bichromatically driven two-level
system with coexistence of the longitudinal and transversal
coupling between the system and the applied fields has been
experimentally studied in the superconducting qubits [38,39],
single molecule [40], and nitrogen-vacancy spin qubits [41].
The quantum systems under frequency modulation are also
of interest in theoretical studies [42–46], the intriguing phe-
nomena of which were reviewed recently [47]. It is worth-
while to note that the bichromatically driven two-level system
with frequency modulation differs from those considered in
Refs. [7,8], where the two-level systems are transversely
driven by a bichromatic field. In such a case, the symme-
try of the fluorescence spectrum is found to depend on the
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average detuning if the strengths of the two components of
the bichromatic field are the same; the pronounced asymmetry
of the spectrum is revealed when the average detuning is
finite and/or the strengths of the two components of the field
are unequal [7,8]. For a bichromatically amplitude-modulated
field, the spectrum is also found to be symmetric and asym-
metric for the vanishing and finite detuning, respectively [48].
So far the fundamental origin of such a detuning-dependent
symmetry remains obscure.

In this work, we use both analytical and numerical methods
based on Floquet theory to study the fundamental origin of
the symmetry of the fluorescence spectrum from the two-
level system under a low-frequency periodic modulation and
a near-resonant monochromatic excitation. We address the
symmetry and asymmetry of the spectrum by considering the
generalized parity of Floquet states rather than the behaviors
of the bare-state or dressed-state populations as considered in
Refs. [26,46,49]. The generalized parity is found to guarantee
the symmetry of the spectrum, while the breaking of such a
parity can yield a pronouncedly asymmetric spectrum even in
the vanishing detuning case. Based on the generalized parity,
the conditions for the symmetric and asymmetric spectra are
derived, which are not given in previous works and cannot
be derived from the behaviors of the bare or dressed state
population. The generalized-parity-induced symmetry of the
spectrum is verified and illustrated in the context of the bihar-
monic modulation by the comparison between the analytical
and numerical results. The analytical results are found to be
in agreement with the numerically exact results in the regimes
where the perturbation theory and secular approximation can
be justified. In addition, we find that the spectrum with the
secular approximation may have artifact symmetry under cer-
tain conditions, i.e., the spectrum with secular approximation
is symmetric while the numerically exact calculation shows
asymmetric spectra because of the broken parity. The present
finding simply interprets the detuning-dependent symmetry
in the harmonic modulation case and can also be extended
to analyze the symmetry and asymmetry of the spectrum in
the multiharmonic modulation cases. Our results suggest that
it is feasible to control the symmetry and asymmetry of the
spectrum via engineering the generalized parity of the Floquet
states.

The rest of the paper is organized as follows. In Sec. II
we first discuss the generalized-parity-induced symmetry of
the fluorescence spectrum without the secular approximation
and further elucidate the symmetry of the spectrum with
a physically transparent formal spectrum with the secular
approximation. In Sec. III we analytically and numerically
calculate the fluorescence spectrum in the context of the bi-
harmonic modulation to verify the symmetry and asymmetry
of the spectrum predicted based on the generalized parity. In
the last section, the conclusions are given.

II. FLUORESCENCE SPECTRUM
AND GENERALIZED PARITY

We consider that the transition frequency of the two-level
system is modulated periodically via a low-frequency external
field f (t ), and the two-level system is also excited by a
near-resonant monochromatic field, which is described by the

following Hamiltonian (h̄ = 1):

H (t ) = 1

2
[ω0 + f (t )]σz + �x

2
(σ+e−iωxt + σ−eiωxt ), (1)

where σz(x,y) is the usual Pauli matrix, ω0 + f (t ) is the
modulated transition frequency, σ± = (σx ± iσy)/2 are the
raising and lowering operators, and �x (ωx) is the strength
(frequency) of the monochromatic driving. Here we choose
f (t ) = f (t + T ) with T being the fundamental period of the
modulation and much greater than 2π/ωx. This is a general-
ized model as compared with the previous one considered in
Refs. [25,26,37].

To study the emission processes, we need to take account of
the spontaneous decay. Thus, the time evolution of the driven
two-level system under study is modeled by the Lindblad
master equation. In the frame rotating at the frequency ωx,
the Lindblad master equation takes the form

d

dt
ρ̃(t ) = L(t )ρ̃(t ), (2)

where ρ̃(t ) is the reduced density matrix in the rotating
frame and the superoperator L(t ) is given by L(t )ρ̃(t ) =
−i[H̃ (t ), ρ̃(t )] − κ/2[{σ+σ−, ρ̃(t )} − 2σ−ρ̃(t )σ+] with κ be-
ing the radiative decay rate. H̃ (t ) is the effective Hamiltonian
and reads

H̃ (t ) = �x

2
σx + 1

2
[δ + f (t )]σz, (3)

with δ = ω0 − ωx being the detuning between the bare transi-
tion frequency and monochromatic excitation frequency. This
master equation is actually a set of first-order differential
equations with periodic coefficients. It can be directly solved
by the so-called Floquet-Liouville (FL) approach with a de-
sired accuracy [37,50]. Although such a Floquet-theory-based
numerical method is simple and efficient, it is not physically
transparent to analyze the role of generalized parity of Floquet
states in the symmetry of the fluorescence spectrum. We use
an alternative method which is developed in our previous
works [27,30] to solve the master equation and calculate the
fluorescence spectrum. We first calculate the Floquet states
for H̃ (t ) and use them as the bases to reformulate Eq. (2) and
derive its analytical formal solutions with the aid of the secular
approximation in the Floquet picture.

A. The symmetry of the fluorescence spectrum without
secular approximation

The steady-state fluorescence spectrum is given by the
Fourier transform of the time-averaged first-order correlation
function [1,50],

S(	) ∝ Re
1

T

∫ ∞

0

∫ T

0
lim

t ′→∞
〈σ̃+(t ′ + τ )σ̃−(t ′)〉e−i	τ dt ′dτ,

(4)

where 	 = ω − ωx and 〈σ̃+(t ′ + τ )σ̃−(t ′)〉 is the first-order
correlation function, and the tilde indicates that it is evaluated
in the rotating frame. In general, it is difficult to derive an
exact analytical spectrum. Nevertheless, we find that it is
possible to show that the spectrum is exactly symmetric about
	 = 0 when δ + f (t ) = −[δ + f (t + T/2)] by realizing the
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fact that the driven two-level system possesses a generalized
parity symmetry:

σxH̃ (t + T/2)σx = H̃ (t ). (5)

Here the generalized parity transformation consists of an
exchange between the up and down states of two-level system
(σz → −σz) and a time shift of a half period of the modulation
(t → t + T/2).

We state briefly how the generalized parity guarantees
the symmetry of the spectrum. Owing to Eq. (5), we can
construct a generalized parity transformation in the Liouville
space, the details of which can be found in Appendix A.
When δ + f (t ) = −[δ + f (t + T/2)], the superoperator L(t )
is similarly found to be invariant under the generalized parity
transformation. Based on this property, it can be derived
from the master Eq. (2) without the secular approximation
that in the steady-state limit, the time-averaged first-order
correlation function is a real-valued function in the rotating
frame. As a result, the fluorescence spectrum is symmetric
about 	 = 0. This finding shows that the symmetry of the
spectrum occurs when δ + f (t ) = −[δ + f (t + T/2)] and re-
sults from the generalized parity. We will numerically verify
the generalized-parity-induced symmetry in Sec. III.

B. The symmetry of the fluorescence spectrum
with secular approximation

To further elucidate the role of the generalized parity in
determining the symmetry of the spectrum, we calculate the
spectrum in the Floquet picture, which allows us to derive
a physically transparent formal spectrum with the aid of the
secular approximation.

According to the Floquet theory [51,52], the time-
dependent Schrödinger equation governed by H̃ (t ) pos-
sesses a set of formal solutions |ψ̃α (t )〉 = |ũα (t )〉e−iε̃αt , where
|ũα (t )〉 = |ũα (t + T )〉 is a Floquet state and ε̃α is the corre-
sponding real-valued quasienergy. The index α labels inde-
pendent Floquet states. Substituting the formal solution into
the Schrödinger equation, one readily finds that

[H̃ (t ) − i∂t ]|ũα (t )〉 = ε̃α|ũα (t )〉. (6)

On solving this equation, one obtains the Floquet states and
quasienergies of the driven two-level system.

We use |ũα (t )〉 (α = ±) as the basis to reformulate the
master Eq. (2) and invoke the secular approximation [27,30],
yielding

d

dt
ρ̃++(t ) = −�relρ̃++(t ) + �s, (7)

d

dt
ρ̃+−(t ) = −(i	+− + �deph )ρ̃+−(t ), (8)

where ρ̃αβ (t ) = 〈ũα (t )|ρ̃(t )|ũβ (t )〉 is the element of density
operator, 	+− = ε̃+ − ε̃− is the difference of two quasiener-
gies, and �s = κ

∑
l |x(+)

−+,l |2, where x(+)
αβ,l is a time-averaged

transition matrix element defined as follows:

x(±)
αβ,l = 1

T

∫ T

0
〈ũα (t )|σ±|ũβ (t )〉e−i2π lt/T dt . (9)

The relaxation rate �rel and dephasing rate �deph are given by

�rel = κ
∑

l

(|x(+)
+−,l |2 + |x(+)

−+,l |2), (10)

�deph = κ

2

∑
l

(|x(+)
+−,l |2 + |x(+)

−+,l |2 + 4|x(+)
++,l |2). (11)

The analytical formal solutions in the Floquet picture can be
easily found as follows:

ρ̃++(t ) = ρ̃++(0)e−�relt + ρ̃ss
++(1 − e−�relt ), (12)

ρ̃+−(t ) = ρ̃+−(0)e−(�deph+i	+− )t , (13)

where

ρ̃ss
++ = �s

�rel
=

∑
l |x(+)

−+,l |2∑
l (|x(+)

+−,l |2 + |x(+)
−+,l |2)

(14)

is the steady-state population of the Floquet state. These so-
lutions together with the quantum regression theory enable us
to derive a physically transparent spectrum function [27,30]:

S(	) ∝
∑

l

{
π |x(+)

++,l |2(ρ̃ss
++ − ρ̃ss

−−)2δ(	 − lωz )

+ 4|x(+)
++,l |2ρ̃ss

++ρ̃ss
−−

�rel

�2
rel + (	 − lωz )2

+ |x(+)
+−,l |2ρ̃ss

++
�deph

�2
deph + (	 − lωz − 	+−)2

+ |x(+)
−+,l |2ρ̃ss

−−
�deph

�2
deph + (	 − lωz + 	+−)2

}
. (15)

It is evident that the accuracy of Eq. (15) is limited by the sec-
ular approximation when the transition matrix elements x(+)

αβ,l
and quasienergies are exactly calculated. As is well known,
the secular approximation can be justified under the strong
driving condition, 	+− � κ . In general, we can calculate the
quasienergies and transition matrix elements based on both
analytical and numerical diagonalization (ND) of the Floquet
Hamiltonian H̃ (t ) − i∂t in the Sambe space [51,52], yielding
the analytical and semianalytical spectra, respectively.

Next, we discuss the parity phenomenon of the Floquet
states resulting from Eq. (5). We consider the behavior of the
Floquet states under the generalized parity transformation PG,
which is defined as

PG|ũα (t )〉 := σx|ũα (t + T/2)〉. (16)

By differentiating σx|ũα (t + T/2)〉 with respect to t , we read-
ily obtain

[σxH̃ (t + T/2)σx − i∂t ]σx|ũα (t + T/2)〉
= ε̃ασx|ũα (t + T/2)〉. (17)

When δ + f (t ) = −[δ + f (t + T/2)], σx|ũα (t + T/2)〉 satis-
fies the same differential equation as |ũα (t )〉 because of
Eq. (5). Recalling the uniqueness of solutions of the differ-
ential equations, in such cases we must have

σx|ũα (t + T/2)〉 = λα|ũα (t )〉, (18)

where λα is a constant. Furthermore, we have λα = ±1 be-
cause of P2

G|ũα (t )〉 = λ2
α|ũα (t )〉 = |ũα (t )〉. Specifically, when
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δ + f (t ) = −[δ + f (t + T/2)], the Floquet states may be
even or odd functions under the generalized parity transfor-
mation, which is referred to as the generalized parity of the
Floquet states. The generalized parity has been previously
investigated in other phenomena such as the coherent de-
struction of tunneling [53] and the laser-induced electronic
transport [54].

Clearly, if δ + f (t ) 	= −[δ + f (t + T/2)], Eq. (18) cannot
hold as σxH̃ (t + T/2)σx 	= H̃ (t ), i.e., the effective Hamil-
tonian is no longer invariant under the generalized parity
transformation. Consequently, the Floquet states also do not
have the generalized parity.

We show that the symmetry of the spectrum may be a
consequence of the generalized parity of the Floquet states.
By using Eq. (18) and x(+)

αβ,l = [x(−)
βα,−l ]

∗
, it is straightforward

to show the following identity for arbitrary integer l from the
definition (9) of the transition matrix element:

x(+)
αβ,l = (−1)lλαλβ[x(+)

βα,−l ]
∗, (19)

provided δ + f (t ) = −[δ + f (t + T/2)]. It follows that

|x(+)
αβ,l | = |x(+)

βα,−l | (20)

also holds for any integer l . We emphasize that the relation
(20) can be deduced from relation (19); however, the relation
(19) cannot be derived from relation (20). With the relation
(20), it is straightforward to show that the spectrum (15) is
symmetric about 	 = 0 [27]. Specifically, since |x(+)

++,l | =
|x(+)

++,−l |, the emission lines at 	 = ±lωz (the positions are
symmetric about 	 = 0) have the equal weights. Moreover,
since |x(+)

+−,l | = |x(+)
−+,−l |, we also have ρ̃ss

++ = ρ̃ss
−− accord-

ing to Eq. (14), leading to |x(+)
+−,l |2ρ̃ss

++ = |x(+)
−+,−l |2ρ̃ss

−−, i.e.,
the emission lines at 	 = ±(lωz + 	+−) (the positions are
symmetric about 	 = 0) have the same weights. It turns out
that the symmetry of the spectrum fundamentally originates
from the generalized parity of the Floquet states when δ +
f (t ) = −[δ + f (t + T/2)]. Conversely, one may expect that
the symmetry of the spectrum may break when such a parity
is absent. However, it is a formidable task to analytically
prove that the spectrum is asymmetric in the absence of the
generalized parity.

Let us discuss what happens to the formal spectrum if
δ + f (t ) 	= −[δ + f (t + T/2)]. Under such a condition, the
generalized parity is absent, and thus we cannot have the
relation (19). In principle, the absence of the generalized

parity will result in two possible situations. One is that the
spectrum becomes asymmetric about 	 = 0 because the re-
lation |x(+)

αβ,l | 	= |x(+)
βα,−l | can be derived at least for a certain

l . The other is that the spectrum is symmetric because the
equality |x(+)

αβ,l | = |x(+)
βα,−l | still holds for any l , originating

from other kinds of identities between the transition matrix
elements rather than the generalized-parity-induced identity
(19). Apparently the first situation is more trivial than the
second one. Most importantly, the present analysis suggests
that the formal spectrum may be symmetric even without the
generalized parity. Consequently, we cannot conclude from
the formal spectrum (15) that the symmetry of the spectrum
breaks as long as the generalized parity is absent.

To end this section, we give some remarks on the above
findings based on the formal spectrum. First, we find that the
symmetry of the spectrum may result from the generalized
parity and requires δ + f (t ) = −[δ + f (t + T/2)]. This is
consistent with the analysis above without the secular ap-
proximation. Moreover, the generalized parity is found to be
an important underlying cause of the relation (20), which
was numerically found in the harmonic modulation case [27].
It turns out here that the relation (20) can be established
due to the generalized parity in the bi- and multiharmonic
cases. Second, without the generalized parity, namely, when
δ + f (t ) 	= −[δ + f (t + T/2)], the formal spectrum can be
either trivially asymmetric or nontrivially symmetric. The
symmetry requires the relation (20) in the absence of the gen-
eralized parity, namely, Eq. (19). Third, the formal spectrum is
derived with the secular approximation, and thus the present
analysis needs further verification. In what follows we con-
sider a concrete biharmonic modulation to verify whether the
generalized parity guarantees the symmetry of the spectrum
when the secular approximation is not invoked, and we also
check whether the relation (20) can be established without
the generalized parity and whether such relations lead to the
symmetry of the spectrum without the secular approximation.

III. VERIFICATION OF SYMMETRY AND ASYMMETRY
OF THE SPECTRUM

To calculate fluorescence spectrum, without loss of gener-
ality, we mainly consider the biharmonic modulation in this
work, namely, the modulation consists of two harmonics,

f (t ) = �z[cos(ωzt ) + r cos(pωzt + φ)], (21)

FIG. 1. The incoherent components of the fluorescence spectrum for p = 3, �x = 10κ, δ = 0, �z = ωz = 40κ, r = 1, and various
phases. “Ana.” and “Num.” denote the analytical and the FL numerical results, respectively.
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FIG. 2. The incoherent components of the fluorescence spectrum for p = 3, δ = 5κ, �x = 10κ, �z = ωz = 40κ, r = 1, and various
phases.

where �z and ωz = 2π/T are the amplitude and fundamental
frequency of the modulation, respectively, p is a positive
integer, r is the ratio of the amplitude of the second har-
monic to that of the first one, and φ is a relative phase.
Since 1

T

∫ T
0 f (t ) dt = 0, the condition for the presence of the

generalized parity δ + f (t ) = −[δ + f (t + T/2)] is equiva-
lent to δ = 0 and f (t ) = − f (t + T/2). The condition for
the absence of the generalized parity δ + f (t ) 	= −[δ + f (t +
T/2)] is simply divided into three cases:

δ 	= 0 and f (t ) = − f (t + T/2),

δ = 0 and f (t ) 	= − f (t + T/2),

δ 	= 0 and f (t ) 	= − f (t + T/2). (22)

It is noted that for the biharmonic modulation (21), both
f (t ) = − f (t + T/2) and f (t ) 	= − f (t + T/2) can be real-
ized by setting p odd and even numbers, respectively. To
verify the above analysis, we calculate the numerically exact
fluorescence spectrum from master equation (2) with the FL
formalism [37,50], which is compared with the analytical and
semianalytical results from Eq. (15). The analytical and semi-
analytical results are obtained by using the transition matrix
elements and quasienergies calculated with the Van Vleck
perturbation theory and the ND of the Floquet Hamiltonian,
respectively. The detailed analytical calculation is presented
in Appendix B. In addition, we just focus on the incoherent
components of the fluorescence spectrum, which is of interest
in the experiments. In principle, similar analysis is applicable
to the coherent components. In this work, we mainly consider
the parameter regime ωz ∼ �z � �x � κ , in which case both

the Van Vleck perturbation theory (up to second order in �x)
and secular approximation can be justified. Importantly, this
regime is experimentally accessible in the artificial atoms,
e.g., the transmon qubit [38]. We should emphasize that if
the perturbation theory is inapplicable, we can obtain the
transition matrix elements and quasienergies by the ND of the
Floquet Hamiltonian.

We first verify whether the generalized parity guarantees
the symmetry of the spectrum. In Fig. 1 we display the
incoherent component of fluorescence spectra obtained by the
FL numerical method (solid line) and analytical result (dashed
line) for p = 3, δ = 0, and various values of φ. Apparently
the spectra are symmetric as expected. The analytical results
are in agreement with the FL results. These results also show
that the spectrum depends weakly on the relative phase φ. In
addition, it is straightforward to verify that for other driving
parameters, the spectrum is symmetric as well when p is
an odd number and δ = 0. In Appendix C, we show that
when δ = 0 and p is odd, the transition matrix elements
indeed satisfy Eq. (19), which guarantees the symmetry of the
spectrum. The present results suggest that the symmetry of the
spectrum appears as long as δ = 0 and f (t ) = − f (t + T/2)
and fundamentally originates from the generalized parity of
the Floquet states in such a situation.

We move to examine whether the symmetry of the spec-
trum breaks when the generalized parity is absent, namely,
under the conditions δ + f (t ) 	= −[δ + f (t + T/2)]. We cal-
culate the spectra with the parameters being the same as
in Fig. 1 except for the detuning δ = 5κ , corresponding to
the case of δ 	= 0 and f (t ) = − f (T + T/2). In Fig. 2 the

FIG. 3. The incoherent components of the fluorescence spectrum for p = 2, δ = 0, �x = 10κ, �z = ωz = 40κ, r = 1, and various phases.
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FIG. 4. The incoherent components of fluorescence spectrum for p = 2, δ = 5κ, �x = 10κ, �z = ωz = 40κ, r = 1, and various phases.

analytical and FL numerical spectra agree with each other and
are found to be asymmetric for the finite detuning, indicating
that in spite of f (t ) = − f (t + T/2), the asymmetry of spec-
trum appears when δ 	= 0.

Let us consider the case of δ = 0 and f (t ) 	= − f (t +
T/2) by setting p being even. We calculate the spectrum for
p = 2 and the other parameters being the same as in Fig. 1.
Figure 3 displays that the analytical and numerical spectra
are pronouncedly asymmetric even though δ = 0 except for
φ = π/2 in which case the analytical spectrum is found
to be strictly symmetric (see discussion below), while the
numerical spectrum is slightly asymmetric [in particular, the
intensities of emission lines at 	 = ±ωz are unequal as shown
in Fig. 6(a) below]. These results confirm that the formal spec-
trum (15) may be symmetric without the generalized parity of
the Floquet states. However, the numerically exact spectrum
is asymmetric in the absence of the generalized parity. This
shows that the generalized parity plays an important role in
determining the symmetry of the exact spectrum. We will
further analyze such a discrepancy between the analytical and

numerical results later. In addition, we find that in contrast
with p = 3, the spectrum is found to depend strongly on
relative phase φ when p = 2.

Finally we calculate the spectra for δ 	= 0 and f (t ) 	=
− f (t + T/2). Figure 4 shows the spectra obtained for the
detuning δ = 5κ and the other parameters being the same
as in Fig. 3. The spectra are still asymmetric. In general, it
is straightforward to verify the asymmetry of the spectrum
under the condition that δ + f (t ) 	= −[δ + f (t + T/2)]. All
in all, it turns out that the symmetry of the spectrum breaks
in the absence of the generalized parity. Conversely, we can
say that the symmetry of the spectrum can be fully attributed
to the presence of the generalized parity. In contrast to the
previous studies, we ascribe the asymmetry to the breaking of
the generalized parity rather than the unequal populations of
dressed states [26] or the breakdown of relation (20) [27].

Let us explore how the analytical spectrum becomes sym-
metric in the absence of the generalized parity of the Floquet
states. To this end, we show that the relation (20) can originate
from the identities different from Eq. (19). Based on the

FIG. 5. Transition matrix elements x(+)
++,l versus driving strength �x , calculated from the analytical method and the numerical method based

on the ND of the Floquet Hamiltonian for p = 2, δ = 0, �z = ωz = 40κ, φ = π/2, and r = 1.

013823-6



ROLE OF GENERALIZED PARITY IN THE SYMMETRY OF … PHYSICAL REVIEW A 100, 013823 (2019)

FIG. 6. Weights of emission lines at 	 = ±ωz versus driving
strength �x , calculated from the semianalytical method and the FL
method, for p = 2, δ = 0, �z = ωz = 40κ, r = 1, and two values
of φ. “Semiana.” denotes the semianalytical result.

results from the Van Vleck perturbation theory, we analyti-
cally derive the identities for the transition matrix elements
in the case of vanishing detuning and even p. The derivation
is given in Appendix C. When p is even, δ = 0, and φ =
(1/2 + n)π (n = 0,±1,±2, . . .), we find that the following
relations hold for arbitrary integer l:

x(+)
++,−l = (−1)l x(+)

++,l , (23)

x(+)
−+,−l = −(−1)l e−i2θ0 x(+)

+−,l , (24)

where θ0 is a phase defined in Eq. (C5). Although the relations
(23) and (24) are derived based on the perturbation theory, it is
straightforward to show that they hold in the nonperturbative
regimes. In Fig. 5 we calculate x(+)

++,l (l = ±1,±2) with the
variation of �x by using the analytical and ND methods. We
see that the deviation between the analytical and numerical
results becomes larger and larger as �x increases, which is due
to the breakdown of the perturbation calculation. Neverthe-
less, x(+)

++,l obtained by the ND method still satisfies Eq. (23).
This suggests that the relations (23) and (24) are not limited
to the perturbative regimes. More importantly, it follows from
the identities (23) and (24) that |x(+)

αβ,l | = |x(+)
βα,−l |, which leads

to the symmetry of the formal spectrum (15), i.e., without the
generalized parity of the Floquet states, the relation (20) can
also be established from other kinds of the identities for the
transition matrix elements instead of the generalized-parity-
induced identity (19) under certain conditions.

The discrepancy in the symmetry predicted by the analyt-
ical and numerical methods shown in Fig. 3(b) indicates that
the relations (23) and (24) cannot guarantee the symmetry of
the spectrum without the secular approximation. To further
verify this, in Fig. 6 we use semianalytical and FL numerical
methods to calculate the weights of the emission lines at
	 = ±ωz with the increasing of �x for p = 2, δ = 0, and two
values of φ. It is evident that the weights calculated from the
semianalytical method (solid and dashed lines) are the same,
while the weights from the numerical method (dot-dashed and
dotted lines) are unequal, indicating that the semianalytical
spectrum is symmetric but the numerical spectrum is not
symmetric. The present results illustrate that that provided the
relation (20) is established in the absence of the generalized
parity, the secular approximation can induce artifact symme-
try that vanishes if such an approximation is not invoked.

Apart from the biharmonic modulation, we find that the
conditions for the symmetry and asymmetry of the spec-
trum, which are derived based on the generalized parity, are
applicable to the simple harmonic and multiharmonic mod-
ulation cases. For the simple harmonic modulation f (t ) =
�z cos(ωzt ), f (t ) = − f (t + T/2) is met. Therefore, the sym-
metry and asymmetry of the spectrum are uniquely controlled
by the detuning δ, which simply interprets the detuning-
dependent symmetry of the spectrum. Specifically, the spec-
trum is expected to be symmetric when δ = 0 and asymmetric
when δ 	= 0. This is consistent with the findings of previous
studies [26,27,37]. For the multiharmonic modulation f (t ) =∑N

p=1 �z,p cos(pωzt + φp)], where �z,p and φp are the ampli-
tude and phase of the pth harmonic, respectively, either f (t ) =
− f (t + T/2) or f (t ) 	= − f (t + T/2) can be met, similarly to
the biharmonic case. We have calculated the spectrum with
the FL and semianalytical methods for the cases of N =
3, N = 4, and N = 5. The results (not shown here) further
confirm that the symmetry and asymmetry of the spectrum
fundamentally originate from the presence and absence of the
generalized parity of the Floquet states, respectively.

IV. CONCLUSIONS

In summary, we have studied the fundamental origin of the
symmetry of the resonance fluorescence from the two-level
system subjected to a periodic frequency modulation and a
near-resonant high-frequency monochromatic excitation by
using both analytical and numerical methods based on Floquet
theory. In such a driven two-level system, we have found that
the generalized parity of Floquet states plays a fundamental
role in the symmetry of the spectrum. Specifically, the gener-
alized parity guarantees the symmetry of the spectrum. On
the other hand, when the generalized parity is broken, the
spectrum becomes asymmetric. This has been illustrated in
the context of the biharmonic modulation, the parameters of
which can be tuned to induce or break the generalized parity.
For the biharmonic modulation, we find that when δ = 0
and f (t ) = − f (t + T/2), the generalized parity exists and
the spectrum is symmetric. When δ + f (t ) 	= −[δ + f (t +
T/2)], the generalized parity is broken and the spectrum
is found to be asymmetric. Interestingly, we can obtain a
pronouncedly asymmetric spectrum by requiring the mod-
ulation f (t ) 	= − f (t + T/2) even though δ = 0. Moreover,
these conditions for the symmetry and asymmetry of the spec-
trum are found to be applicable to the simple harmonic and
multiharmonic modulation cases. In addition, we illustrated
that the secular approximation may induce artifact symmetry
that vanishes if the secular approximation is avoided under
certain conditions. The present study gives a deep insight into
the origin of the symmetry of the spectrum and reveals a
simple relation between the symmetry of the spectrum and
the generalized parity of the Floquet states.
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APPENDIX A: DERIVATION OF SYMMETRY OF THE
SPECTRUM WITHOUT THE SECULAR APPROXIMATION

The master equation can be rewritten in a matrix form:

d

dt
�̃ρ(t ) = L(t ) �̃ρ(t ). (A1)

Here the vector is defined as

�̃ρ(t ) = (〈σ̃+(t )〉, 〈σ̃−(t )〉, 〈π̃+(t )〉, 〈π̃−(t )〉)T, (A2)

where π± = (1 ± σz )/2 and 〈 ˜̂o(t )〉 ≡ Tr[ôρ̃(t )]. The superop-
erator L(t ) in the Liouville space spanned by the matrix bases
{σ±, π±} is given by

L(t ) =

⎛
⎜⎜⎜⎝

i[δ + f (t )] − κ
2 0 − i�x

2
i�x
2

0 −i[δ + f (t )] − κ
2

i�x
2

−i�x
2

−i�x
2

i�x
2 −κ 0

i�x
2

−i�x
2 κ 0

⎞
⎟⎟⎟⎠.

(A3)

If δ + f (t ) = −[δ + f (t + T/2)], in which case the
Hamiltonian is invariant under the generalized parity trans-
formation, one readily finds that

T L(t + T/2)T = L(t ), (A4)

where the transformation matrix is given by

T =

⎛
⎜⎜⎜⎝

0 1 0 0

1 0 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎠, (A5)

and T 2 = I with I being the identity matrix. Similarly to
the Hamiltonian, the matrix L(t ) is invariant under the trans-
formation defined in Eq. (A4), which can be regarded as
the generalized parity transformation in the Liouville space,
similarly to that defined in Eq. (16).

Let us derive the specific property of the steady state in
the long-time limit [as det L(t ) = 0, there exists a nontrivial
steady state]. It follows from Eq. (A1) that

d

dt
�̃ρ(t + T/2) = L(t + T/2) �̃ρ(t + T/2), (A6)

which leads to
d

dt
T �̃ρ(t + T/2) = T L(t + T/2)T T �̃ρ(t + T/2)

= L(t )T �̃ρ(t + T/2), (A7)

which means that T �̃ρ(t + T/2) = c �̃ρ(t ), owing to the unique-
ness of solutions of the differential equation. On using the fact
that �̃ρ(t ) = �̃ρ(t + T ) as t → ∞ because of L(t ) = L(t + T ),
we find that c may be either +1 or −1. It is easy to prove
by contradiction that c = −1. Suppose that c = 1, yield-
ing 〈π̃+(t + T/2)〉 = −〈π̃+(t )〉. However, if one considers
δ + f (t ) = 0 in which case L(t ) is time independent while
Eq. (A4) still holds, the steady state becomes time indepen-
dent and one gets 〈π̃+(t )〉 = 〈π̃+(t + T/2)〉. By contradiction,
one finds that c = −1. Consequently, in the steady-state limit,
we have

T �̃ρ(t + T/2) = −�̃ρ(t ) (t → ∞). (A8)

Next, let us derive the property of the principal matrix
solution �(t, t ′) of the master equation, which solves the
differential equation

d

dt
�(t, t ′) = L(t )�(t, t ′), (A9)

with the initial condition �(t ′, t ′) = I . It is straightforward to
show that

d

dt
T �(t + T/2, t ′ + T/2)T

= T L(t + T/2)T T � × (t + T/2, t ′ + T/2)T
= L(t )T �(t + T/2, t ′ + T/2)T , (A10)

namely, T �(t + T/2, t ′ + T/2)T satisfies the same differen-
tial equation and the same initial condition as �(t, t ′). As a
result, we simply have

T �(t + T/2, t ′ + T/2)T = �(t, t ′). (A11)

According to the quantum regression theory [1], the two-
time correlation functions

�̃g(t, t ′) = (〈σ̃+(t )σ̃−(t ′)〉, 〈σ̃−(t )σ̃−(t ′)〉, 〈π̃+(t )σ̃−(t ′)〉,
×〈π̃−(t )σ̃−(t ′)〉)T (A12)

satisfy the same equation as �̃ρ(t ), however, with a different
initial condition

�̃g(t ′, t ′) = (〈π̃+(t ′)〉, 0, 0, 〈σ̃−(t ′)〉)T. (A13)

Similarly, another set of two-time correlation functions

�̃G(t, t ′) = (〈σ̃+(t ′)σ̃+(t )〉, 〈σ̃+(t ′)σ̃−(t )〉, 〈σ̃+(t ′)π̃+(t )〉,
×〈σ̃+(t ′)π̃−(t )〉)T (A14)

also satisfy the same differential equation as �̃g(t, t ′) but with
the initial condition

�̃G(t ′, t ′) = (0, 〈π̃+(t ′)〉, 0, 〈σ̃+(t ′)〉)T. (A15)

Using Eq. (A8), we have

T �̃g(t ′, t ′) =

⎛
⎜⎜⎜⎝

0

〈π̃+(t ′)〉
0

−〈σ̃−(t ′)〉

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0

〈π̃+(t ′ + T/2)〉
0

〈σ̃+(t ′ + T/2)〉

⎞
⎟⎟⎟⎠

= �̃G
(

t ′ + T

2
, t ′ + T

2

)
(t ′ → ∞). (A16)

In the steady-state limit, the correlation functions are found to
have the following relation:

�̃g(t, t ′) = �(t, t ′)�̃g(t ′, t ′)

= T �

(
t + T

2
, t ′ + T

2

)
T �̃g(t ′, t ′)

= T �

(
t + T

2
, t ′ + T

2

)
�̃G
(

t ′ + T

2
, t ′ + T

2

)

= T �̃G
(

t + T

2
, t ′ + T

2

)
(t ′ → ∞). (A17)

013823-8



ROLE OF GENERALIZED PARITY IN THE SYMMETRY OF … PHYSICAL REVIEW A 100, 013823 (2019)

It follows that as t ′ → ∞,

〈σ̃+(t )σ̃−(t ′)〉 = 〈σ̃+(t ′ + T/2)σ̃−(t + T/2)〉
= 〈σ̃+(t + T/2)σ̃−(t ′ + T/2)〉∗. (A18)

In the steady-state limit, the first-order correlation function
depends explicitly on time t ′; however, the t ′ dependence can
be eliminated by setting t = τ + t ′ and integrating over t ′ (be-
cause the contributions of t ′-dependent terms are negligible to
a long-time observation), yielding the τ -dependent first-order
correlation function:

¯̃g1(τ ) ≡ 1

T

∫ T

0
lim

t ′→∞
〈σ̃+(τ + t ′)σ̃−(t ′)〉 dt ′

= 1

T

∫ T

0
lim

t ′→∞
〈σ̃+(τ + t ′ + T/2)σ̃−(t ′ + T/2)〉∗ dt ′

= 1

T

∫ T +T/2

T/2
lim

t ′→∞
〈σ̃+(τ + t ′)σ̃−(t ′)〉∗ dt ′

= 1

T

∫ T

0
lim

t ′→∞
〈σ̃+(τ + t ′)σ̃−(t ′)〉∗ dt ′

= ¯̃g∗
1(τ ), (A19)

where we used relation (A18) and the fact that 〈σ̃+(τ +
t ′ + T )σ̃−(t ′ + T )〉∗ = 〈σ̃+(τ + t ′)σ̃−(t ′)〉∗ as t ′ → ∞. This
means that the generalized parity guarantees that the corre-
lation function is a real-valued function of τ in the rotating
frame and thus results in the symmetry of the spectrum when
δ + f (t ) = −[δ + f (t + T/2)]. This is consistent with the
prediction from the spectrum (15).

In general, it is a formidable task to show that the spectrum
is asymmetric when δ + f (t ) 	= −[δ + f (t + T/2)] with or
without the secular approximation. Nevertheless, from the
above derivation, one readily notes that the generalized par-
ity plays an important role in determining the symmetry
of the spectrum. Consequently, if such parity breaks, it is
not difficult to imagine that the symmetry of the spectrum
also breaks trivially if there is no other symmetry-inducing
mechanism.

APPENDIX B: ANALYTICAL CALCULATION
OF QUASIENERGIES AND TRANSITION MATRIX

ELEMENTS IN THE BIHARMONIC MODULATION CASE

We use the Van Vleck perturbation theory [3,55] to an-
alytically calculate the quasienergies and transition matrix
elements x(+)

αβ,l for the biharmonic modulation, which leads to
the analytical fluorescence spectrum. Since we are interested
in the regime of �z, ωz � �x, which is accessible in the
experiment [38], we use �x as the perturbation parameter. We
first transform Eq. (6) with the unitary transformation

eS(t )[H̃ (t ) − i∂t ]e
−S(t )eS(t )|ũα (t )〉 = ε̃αeS(t )|ũα (t )〉, (B1)

where

S(t ) = i
�z

2ωz

{
sin(ωzt ) + r

p
[sin(pωzt + φ) − sin φ]

}
σz.

(B2)

We can define the transformed Floquet states and transformed
Hamiltonian as follows:

|u′
α (t )〉 = eS(t )|ũα (t )〉, (B3)

H ′(t ) = eS(t )[H̃ (t ) − i∂t ]e
−S(t )

= 1

2
δσz + 1

2

∑
l

( flσ+ + f ∗
−lσ−)eilωzt , (B4)

where

fl = �xFl , (B5)

and

Fl = 1

T

∫ T

0
ei �z

ωz
{sin(ωzt )+ r

p [sin(pωzt+φ)−sin φ]}−ilωzt dt

= e−i�
∑

k

Jk

(
r�z

pωz

)
Jl−kp

(
�z

ωz

)
eikφ, (B6)

with � = r�z

pωz
sin φ and Jk (z) being the Bessel function of the

first kind. To proceed, we introduce an extended Hilbert space
in which the time-dependent Floquet Hamiltonian H ′(t ) −
i∂t becomes time independent [52]. One readily introduces
the Fourier basis |l〉 ≡ exp(ilωzt ) and inner product 〈l|n〉 ≡
1
T

∫ T
0 exp[i(n − l )ωzt] dt = δl,n, where δl,n is the Kronecker

delta function. Denoting |↑〉 and |↓〉 as the eigenstates for
σz with the eigenvalues +1 and −1, respectively, one gets
the composite bases |↑(↓), l〉 = |↑(↓)〉 ⊗ |l〉. In the extended
Hilbert space spanned by such bases, we can obtain the
explicit form of the Floquet Hamiltonian, which is written as

H ′
F = H ′(t ) − i∂t

= 1

2
δσz +

∑
n

nωz|n〉〈n| + 1

2

∑
n,l

( flσ+ + f ∗
−lσ−)

⊗ |n + l〉〈n|. (B7)

The Floquet Hamiltonian has an infinite size and is difficult
to be diagonalized exactly in analytical calculation. To carry
out the perturbation calculation, we transform the Floquet
Hamiltonian with a further unitary transformation with the
Hermitian generator K , leading to

H ′′
F = eiK H ′

Fe−iK

= H ′
F + [iK, H ′

F ] + 1

2!
[iK, [iK, H ′

F ]] + · · · , (B8)

where the explicit form of K is to be determined by requiring
H ′′
F to be block diagonal. The generator is expanded as

K = K (1) + K (2) + K (3) + · · · , (B9)

where the superscripts indicate the orders in the perturbation.
We use H0 = 1

2δσz +∑n nωz|n〉〈n| and V = 1
2

∑
n,l ( flσ+ +

f ∗
−lσ−) ⊗ |n + l〉〈n| as the dominant and perturbation compo-

nents, respectively. Up to the second order in �x, we have

H ′′
F � H0 + V + [iK (1), H0] + [iK (1),V ] + [iK (2), H0]

+ 1
2 [iK (1), [iK (1), H0]]. (B10)

Next, we discuss under which condition the transformed
Hamiltonian may reasonably be block diagonal. For the
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dominant component H0, we simply have H0 |↑(↓), n〉 =
[+(−)δ/2 + nωz] |↑(↓), n〉 ≡ ε̃

(0)
+(−),n |↑(↓), n〉. Provided that

ε̃
(0)
+,n − ε̃

(0)
−,n+m = δ − mωz ≈ 0, we have a subspace spanned

by two almost degenerate unperturbed states |↑, n〉 and
|↓, n + m〉, where n is an arbitrary integer and m is the
integer nearest to δ/ωz. The projection onto such a subspace
is realized by the operator:

�n = |↑, n〉〈↑, n | + |↓, n + m〉〈↓, n + m|. (B11)

The eigenvalues of the dominant component H0 in the nth sub-
space are well separated from those in the (n + l )th subspace
as long as |lωz| � |δ − mωz| for any l 	= 0. Moreover, if we
assume that

|〈↑, n|V |↓, n + l + m〉| � ∣∣ε̃(0)
+,n − ε̃

(0)
−,n+l+m

∣∣, (B12)

which is simply | f−l−m/2| � |lωz|, the transitions between
the states in the different subspaces can be neglected up to

a certain order in the perturbation [3], yielding the following
condition:

�nH ′′
F�l = 0, (B13)

for n 	= l . Therefore, H ′′
F is block diagonal. The second condi-

tion that K cannot have matrix elements inside each subspace
of two almost degenerate states is also assumed:

�nK�n = 0. (B14)

The generator can now be fully determined via Eqs. (B13)
and (B14). The nonvanishing elements of K (1) and K (2) are
given by

〈↑, n|iK (1) |↓, l〉 = 1

2

fn−l

δ + (n − l )ωz
, (B15)

〈↓, l|iK (1) |↑, n〉 = −1

2

f ∗
n−l

δ + (n − l )ωz
, (B16)

for n − l 	= −m, and

〈↑, n|iK (2)|↑, l〉 = 1

4(n − l )ωz

⎧⎨
⎩

∑
k 	=n+m,l+m

fn−k f ∗
l−k

2

[
1

δ + (n − k)ωz
+ 1

δ + (l − k)ωz

]

+ f ∗
l−n−m f−m

δ + (l − n − m)ωz
+ fn−l−m f ∗

−m

δ + (n − l − m)ωz

}
, (B17)

〈↓, n|iK (2)| ↓, l〉 = − 1

4(n − l )ωz

⎧⎨
⎩

∑
k 	=l−m,n−m

f ∗
k−n fk−l

2

[
1

δ + (k − n)ωz
+ 1

δ + (k − l )ωz

]

+ f ∗
l−n−m f−m

δ + (l − n − m)ωz
+ fn−l−m f ∗

−m

δ + (n − l − m)ωz

}
, (B18)

for n 	= l . The rest of the elements of K (1) and K (2) are vanishing.
The transformed Hamiltonian has the 2 × 2 submatrix H ′′(n)

F in the diagonal, which reads [3]

H ′′(n)
F = H0�n + �nV �n + 1

2
�n[iK (1),V ]�n =

⎛
⎝ δ

2 + nωz +∑ j 	=−m
| f j |2

4(δ+ jωz )
f−m

2
f ∗
−m

2 − δ
2 + (n + m)ωz −∑ j 	=−m

| f j |2
4(δ+ jωz )

⎞
⎠. (B19)

One can diagonalize the submatrix H ′′(n)
F analytically. Its eigenvalues (quasienergies) are

ε̃±,n = 1
2 (mωz ± �m) + nωz, (B20)

where

�m =

√√√√√
⎡
⎣δ − mωz +

∑
j 	=−m

| f j |2
2(δ + jωz )

⎤
⎦

2

+ | f−m|2. (B21)

The eigenvectors are given by

|� ′′
+,n〉 = u |↑, n〉 + v |↓, n + m〉, (B22)

|� ′′
−,n〉 = v |↑, n〉 − u∗ |↓, n + m〉, (B23)

with

u = f−m

| f−m|

√√√√√1

2

⎧⎨
⎩1 + 1

�m

⎡
⎣δ − mωz +

∑
j 	=−m

| f j |2
2(δ + jωz )

⎤
⎦
⎫⎬
⎭, (B24)

v =

√√√√√1

2

⎧⎨
⎩1 − 1

�m

⎡
⎣δ − mωz +

∑
j 	=−m

| f j |2
2(δ + jωz )

⎤
⎦
⎫⎬
⎭. (B25)
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The eigenvectors for H ′
F can be derived as follows:

|� ′
±,n〉 = e−iK |� ′′

±,n〉 �
(

1 − iK (1) − iK (2) + 1

2!
iK (1)iK (1)

)
|� ′′

±,n〉. (B26)

It is straightforward to derive the explicit form of the eigenvectors, which reads

|� ′
+,n〉 = 1

N

⎧⎨
⎩uB |↑, n〉 −

∑
j 	=0

Pj |↑, n + j〉 + vB |↓, n + m〉 +
∑
j 	=0

Qj |↓, n + m + j〉
⎫⎬
⎭, (B27)

|� ′
−,n〉 = 1

N

⎧⎨
⎩vB |↑, n〉 +

∑
j 	=0

Q∗
− j |↑, n + j〉 − u∗B |↓, n + m〉 +

∑
j 	=0

P∗
− j |↓, n + m + j〉

⎫⎬
⎭, (B28)

where

B = 1 − 1

8

∑
l 	=−m

| fl |2
(δ + lωz )2

, (B29)

Pj = f j−m

2[δ + ( j − m)ωz]

(
v + u f ∗

−m

2 jωz

)
+ u

4 jωz

∑
k 	=−m

fk+ j f ∗
k

δ + kωz
, (B30)

Qj = f ∗
− j−m

2[δ − ( j + m)ωz]

(
u + v f−m

2 jωz

)
+ v

4 jωz

∑
k 	=−m

f ∗
k− j fk

δ + kωz
, (B31)

and N =
√

B2 +∑ j 	=0(|Pj |2 + |Qj |2) is the normalization factor. The Floquet states |u′
α,n(t )〉 with the quasienergy ε̃α,n can be

derived from |� ′
α,n〉 by replacing |n〉 with einωzt .

With the above results at hand, we can analytically calculate the transition matrix element

x(+)
αβ,l = 1

T

∫ T

0
〈ũα (t )|σ±|ũβ (t )〉e−ilωzt dt = 1

T

∫ T

0
〈u′

α (t )|eS(t )σ+e−S(t )|u′
β (t )〉e−ilωzt dt

=
∑

n

1

T

∫ T

0
Fn〈u′

α (t )|σ+|u′
β (t )〉ei(n−l )ωzt dt =

∑
n

Fn+l〈� ′
α,0|σ+|� ′

β,n〉, (B32)

and

〈� ′
+,0|σ+|� ′

+,n〉 = 1

N 2

⎧⎨
⎩u∗vB2δn,−m −

∑
j 	=0,n+m

P∗
j Q j−n−m + (u∗Q−n−m − vP∗

n+m)B(1 − δn,−m)

⎫⎬
⎭, (B33)

〈� ′
+,0|σ+|� ′

−,n〉 = 1

N 2

⎧⎨
⎩−(u∗)2B2δn,−m −

∑
j 	=0,n+m

P∗
j P∗

n+m− j + 2u∗P∗
n+mB(1 − δn,−m)

⎫⎬
⎭, (B34)

〈� ′
−,0|σ+|� ′

+,n〉 = 1

N 2

⎧⎨
⎩v2B2δn,−m +

∑
j 	=0,n+m

Q− jQ j−n−m + 2vQ−n−mB(1 − δn,−m)

⎫⎬
⎭, (B35)

〈� ′
−,0|σ+|� ′

−,n〉 = 1

N 2

⎧⎨
⎩−u∗vB2δn,−m +

∑
j 	=0,n+m

P∗
j Q j−n−m + (vP∗

n+m − u∗Q−n−m)B(1 − δn,−m)

⎫⎬
⎭, (B36)

where (1 − δn,−m) indicates that the term vanishes for n =
−m. Clearly, the validity of the perturbation theory is limited
to the condition (B12). For δ ≈ 0, roughly speaking, the above
results can be justified when r ∼ 1 and ωz ∼ �z � �x.

APPENDIX C: EQUALITIES FOR TRANSITION MATRIX
ELEMENTS IN THE VANISHING DETUNING CASE

For the biharmonic modulation, we show the equalities
that the transition matrix elements satisfy under the vanishing
detuning condition (δ = 0) using the above analytical results,

which helps us to understand the symmetry of the spectrum in
the main text. It follows from Eq. (B6) that

F−l = e−i�
∑

k

Jk

(
r�z

pωz

)
J−l−kp

(
�z

ωz

)
eikφ

= (−1)l e−i�
∑

k

Jk

(
r�z

pωz

)
(−1)k(p+1)

× Jl−kp

(
�z

ωz

)
e−ikφ, (C1)

013823-11



YAN, LÜ, LUO, AND ZHENG PHYSICAL REVIEW A 100, 013823 (2019)

where we used the relation J−n(z) = (−1)nJn(z). It is evi-
dent that when p is an odd number, p + 1 is even and thus
(−1)k(p+1) = 1, leading to

F−l = (−1)l e−i2�F ∗
l . (C2)

When p is an even number, (−1)k(p+1) = (−1)k may be either
+1 or −1. Nevertheless, we can obtain a simple relation
between Fl and F−l by setting

(−1)ke−ikφ = eikφ, (C3)

which yields that φ = (1/2 + n)π (n = 0,±1,±2, . . .). With
an even p and such values of phase, we have

Fl = (−1)lF−l . (C4)

We should emphasize that Eqs. (C2) and (C4) hold under
different conditions. The former is available when p is odd
and regardless of φ, while the latter is established when p is
even and φ = (1/2 + n)π .

Provided that δ = 0, we get m = δ/ωz = 0. We define the
phase of F0 via

F0 = e−iθ0 |F0|. (C5)

Together with Eqs. (B24) and (B25), we simply have

v = ueiθ0 (C6)

with the aid of Eq. (C2) or (C4). Such an equality between
u and v is valid only for δ = 0 and in the valid regime of
Eq. (C2) or (C4).

1. Odd p

We consider that p is an odd number. It follows from
Eq. (B6) that θ0 = �. Using δ = 0 and Eqs. (C2) and (C6),
one readily gets from Eqs. (B30) and (B31) that

Qj = − f ∗
− j

2 jωz

(
u + v f0

2 jωz

)
+ v

4 jωz

∑
k 	=0

f ∗
k− j fk

kωz

= (−1) j+1ei2� f j

2 jωz

(
u + v f ∗

0 e−i2�

2 jωz

)
+ v

4 jωz

∑
k 	=0

f ∗
−k− j f−k

−kωz

= (−1) j+1ei� f j

2 jωz

(
v + u f ∗

0

2 jωz

)
+ ei�u

4 jωz

∑
k 	=0

(−1) j+1 fk+ j f ∗
k

kωz

= (−1) j+1ei�Pj . (C7)

From this relation and Eqs. (B32)–(B35), it is straightforward to show that

[
x(+)
−+,−l

]∗
=
∑

n

F ∗
n−l

N 2

⎧⎨
⎩v2B2δn,0 +

∑
j 	=0,n

Q∗
− jQ

∗
j−n + 2vBQ∗

−n(1 − δn,0)

⎫⎬
⎭

=
∑

n

F ∗
−n−l

N 2

⎧⎨
⎩v2B2δn,0 +

∑
j 	=0,−n

Q∗
− jQ

∗
j+n + 2vBQ∗

n(1 − δn,0)

⎫⎬
⎭

=
∑

n

(−1)n+lFn+l ei2�

N 2

⎧⎨
⎩v2B2δn,0 +

∑
j 	=0,n

Q∗
j Q

∗
n− j + 2vBQ∗

n(1 − δn,0)

⎫⎬
⎭

=
∑

n

(−1)n+lFn+l ei2�

N 2

⎧⎨
⎩v2B2δn,0 +

∑
j 	=0,n

(−1)ne−i2�P∗
j P∗

n− j + 2vB(−1)n+1e−i�P∗
n (1 − δn,0)

⎫⎬
⎭

= (−1)l
∑

n

Fn+l

N 2

⎧⎨
⎩(u∗)2B2δn,0 +

∑
j 	=0,n

P∗
j P∗

n− j − 2u∗BP∗
n (1 − δn,0)

⎫⎬
⎭

= −(−1)l x(+)
+−,l . (C8)

Similarly, we find that [x(+)
++,−l ]

∗ = (−1)l x(+)
++,l . Not surprisingly, due to the generalized parity of the Floquet states, the transition

matrix elements satisfy Eq. (19) as long as δ + f (t ) = −[δ + f (t + T/2)]. For the biharmonic modulation, such equalities are
established when p is odd and δ = 0.

2. Even p

We move to consider that p is an even number. In such a case, the generalized parity of the Floquet states is broken even if
δ = 0. Thus, we cannot expect that the transition matrix elements satisfy Eq. (19). However, we have another type of equality.
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With Eqs. (C4) and (C6), one gets

Qj = f ∗
− j

−2 jωz

(
u + v f0

2 jωz

)
+ v

4 jωz

∑
k 	=0

f ∗
k− j fk

kωz

= (−1) j+1 f ∗
j

2 jωz

(
u + v f0

2 jωz

)
+ v

4 jωz

∑
k 	=0

(−1) j+1 f ∗
j−k f−k

−kωz

= (−1) j+1e−iθ0 f ∗
j

2 jωz

(
v + u∗ f0

2 jωz

)
+ e−iθ0 u∗

4 jωz

∑
k 	=0

(−1) j+1 f ∗
j+k fk

kωz

= (−1) j+1e−iθ0 P∗
j . (C9)

It is straightforward to derive Eqs. (23) and (24) via Eqs. (B32)–(B35) and (C9). We stress that the conditions for establishing
such relations require that p is even, φ = (1/2 + n)π , and δ = 0.
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