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Transport of light through a dense ensemble of cold atoms in a static electric field
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We demonstrate that the transport of coherent quasiresonant light through a dense cloud of immobile two-level
atoms subjected to a static external electric field can be described by a simple diffusion process up to atomic
number densities of the order of at least 102 atoms per wavelength cubed. Transport mean-free paths well below
the wavelength of light in the free space can be reached without inducing any sign of Anderson localization of
light or of any other mechanism of breakdown of diffusion.
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I. INTRODUCTION

An ensemble of N � 1 identical, immobile two-level
atoms randomly distributed in space with a given average
number density ρ represents a convenient theoretical model
to study the multiple scattering of light [1,2]. On the one
hand, such a physical system can be created experimentally
by cooling an initially hot atomic vapor to sufficiently low
temperatures using modern laser cooling techniques [3]. The
predictions of the model can then be directly applied to
describe experiments. On the other hand, two-level atoms are
resonant point scatterers and as such can serve as a minimal
model to study resonant scattering of light by more complex
objects (small dielectric spheres or semiconductor grains,
etc.). Surprisingly enough, even such a simplified model turns
out to be difficult to treat analytically once the number of
atoms per wavelength cubed of the resonant light λ0 becomes
significant [4–6]. Numerical analysis of light scattering by
resonant point scatterers has become a powerful tool to test
analytic theories [7,8] and to explore fundamental phenomena
[9,10] in multiple scattering.

We have recently demonstrated that Anderson localization
of light cannot be achieved in a three-dimensional (3D) en-
semble of two-level atoms or, equivalently, point scatterers
[11] (a similar conclusion has been reached be Bellando et al.
[12]) unless the atoms are subjected to a strong magnetic
field [13]. Anderson localization is a wave interference phe-
nomenon consisting in a halt of wave transport through a
disordered system due to strong destructive interferences of
scattered waves [14–16]. It can take place for various types
of waves, including “Schrödinger waves” describing elec-
trons in disordered solids [14,17], matter waves realized with
cold atoms [18,19], sound [20,21], or electromagnetic waves
[22,23]. In the last case, however, no reliable experimental ob-
servation exists to date in three dimensions [24]. Our proposal
of a 3D experiment with cold atoms in a static magnetic field
[25] requires a strong field that may be difficult to realize
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in practice. We have therefore explored the possibility of
using an electric field instead, hoping that the Stark effect
might have the same impact on localization as the Zeeman
effect does [26]. It turned out, however, that a static electric
field does not induce Anderson localization of light in the
atomic medium. A question then arises: what is the nature
of optical transport in a dense ensemble of resonant atoms
under conditions when Anderson localization takes place for
scalar waves? Does the transport remain diffusive or does a
new transport regime arise? In the present paper we provide
answers to these questions by computing the spatial distri-
bution of the average excited state population in a dense 3D
atomic system illuminated by a monochromatic plane wave
that is quasiresonant with one of the atomic transitions. We
also compute the transmission coefficient of light through the
atomic system. In both cases we find results that are perfectly
compatible with the predictions of the diffusion theory in
which an anisotropy of the atomic medium induced by the
electric field is taken into account. This demonstrates that the
transport of light remains diffusive even when the scattering
is very strong and Anderson localization of light could be
expected from naive arguments.

II. THE MODEL

We consider a cylindrical atomic sample of thickness L and
radius R � L, the cylinder axis coinciding with the z axis of
the coordinate system (see the inset of Fig. 1). N � 1 identical
immobile atoms are placed at randomly chosen, uncorrelated
points {r j}, j = 1, . . . , N , inside the sample volume V =
πR2L with an average density ρ = N/V . In contrast to some
other authors who model light scattering in atomic systems
using similar approaches [8,27], we do not introduce an
“exclusion volume” around each atom, so that two atoms have
a nonvanishing probability of being arbitrarily close to each
other. Introducing an exclusion volume induces correlations
between atomic positions—an additional complication that
we wish to avoid here.

We assume that each atom has a nondegenerate ground
state |Eg, Jg = 0〉 and three degenerate excited states |Ee, Je =
1, m〉, where Eg,e and Jg,e are the energies and the total angular
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FIG. 1. Average population of excited states 〈P(z, ω)〉 for differ-
ent frequencies of a linearly polarized incident wave and an external
electric field perpendicular to its direction of propagation, for a dilute
atomic medium. Averaging is performed over 13 000 independent
atomic configurations for each curve. The inset illustrates the con-
sidered experimental geometry; k0L = 35, k0R = 70, and k0R1 = 35
for this figure. Diffusion-theory fits (dashed lines) are performed for
the data corresponding to k0z ∈ [5, 30] using Eq. (B7).

momenta of the ground and excited states, respectively, and
m = 0,±1 is the magnetic quantum number. The natural line
width of the excited states is �0. A spatially uniform, static
external electric field Eext is applied to the system. Here we
consider only Eext that is either parallel on perpendicular
to the axis of the sample. The quantization axis is always
parallel to Eext. The field shifts the energies of the ground
and excited states to new values E ′

g and E ′
e(m), respectively,

due to the Stark effect [28,29]. The degeneracy of the ex-
cited states is now partially lifted because E ′

e(0) �= E ′
e(−1) =

E ′
e(1). The precise values of Stark shifts may depend on

the magnitude of the applied field and on other parameters
that are not included in our theoretical model, but important
for us will be the energy differences E ′

e(0) − E ′
g = h̄ω0 and

E ′
e(0) − E ′

e(±1) = h̄�. The Hamiltonian of such an atomic
system interacting with the free electromagnetic field has
been given previously [26] and is reproduced by Eq. (A1)
of Appendix A. It reduces to an effective non-Hermitian
Hamiltonian G given by Eq. (A2) and already discussed in
Ref. [26] where the eigenvalues and eigenfunctions of G
have been analyzed. The response of the atomic system to an
external excitation can be expressed via the resolvent of the
matrix G:

R(ω) = [(ω − ω0)1 + (�0/2)G]−1, (1)

where 1 is a 3N × 3N identity matrix.
From here on we assume that the atomic sample is illu-

minated by a monochromatic plane wave (probe light in the
inset of Fig. 1) with a frequency ω and a wave vector kin =
(ω/c)ez: Ein(r) = uinE0 exp(ikinr), where the unit vector uin

(|uin| = 1) determines the polarization of the incident light.
Assume that �V is a small volume centered at r. Then the
population of excited states corresponding to the magnetic

quantum number m, per unit volume, is given by [30]

Pm(r, ω) = lim
�V →0

1

h̄2�V

∣∣∣∣∣∣
∑

r j∈�V

∑
n,m′

Re jmenm′

× denm′ gn · Ein(rn)

∣∣∣∣∣∣
2

, (2)

where denm′ gn = 〈E ′
e(m′), Je = 1, m′|D̂n|E ′

g, Jg = 0〉 is the ma-
trix element of the dipole moment operator.

The translational symmetry imposes that for an infinitely
wide sample (R → ∞), the average value of Pm(r, ω) would
be a function of z only: 〈Pm(r, ω)〉 = 〈Pm(z, ω)〉. Here the
angular brackets 〈· · · 〉 denote averaging over different atomic
configurations {r j}. Obviously, in a cylindrical sample of
finite radius R, 〈Pm(r, ω)〉 keeps a dependence on the trans-
verse position r⊥ = {x, y}. However, for R � L we can still
obtain a meaningful quantity that depends only on z and
approximates 〈Pm(z, ω)〉 of an infinitely wide sample by av-
eraging over the central part of our cylindrical sample:

〈Pm(z, ω)〉 = 1

πR2
1

∫
r⊥<R1<R

〈Pm(r = {r⊥, z}, ω)〉 d2r⊥. (3)

Finally, we will be interested in the total population of all
three possible excited states:

〈P(z, ω)〉 =
1∑

m=−1

〈Pm(z, ω)〉. (4)

Strictly speaking, 〈P(z, ω)〉 is not equal to the average
intensity of light in the system 〈I (z, ω)〉. However, a linear
relation between 〈P(z, ω)〉 and 〈I (z, ω)〉 turns out to be a
good approximation [31], in particular, in a dilute medium
where the diffuse behavior of 〈I (z, ω)〉 implies the diffuse
behavior of 〈P(z, ω)〉. In the next section, we will compare
our results for 〈P(z, ω)〉 with predictions of a simple diffusion
theory. We will analyze 〈P(z, ω)〉 as a function of frequency
ω and angle between kin and Eext by numerically evaluating
Eq. (2), averaging over many different atomic configurations
{r j} and over the central part of the considered cylindrical
sample according to Eq. (3), and then summing over m as
defined by Eq. (4).

III. AVERAGE POPULATION OF EXCITED STATES

In our system, the incident light that is quasiresonant with
the transition |E ′

g, Jg = 0〉 → |E ′
e(0), Je = 1, m = 0〉 (i.e., ω �

ω0), will be most efficiently scattered if it is linearly polarized
along the external electric field Eext, which, in its turn, is
perpendicular to the incident wave vector kin. We will symbol-
ically denote such a linear polarization by uin = ↑. Combin-
ing Eext ⊥ kin with ω � ω0 and uin = ↑ ensures the strongest
scattering starting from the first scattering event and hence the
fastest realization of the multiple scattering regime. On the
other hand, when Eext‖kin, the strongest scattering is reached
for the light that is quasiresonant with one of the transitions
|E ′

g, Jg = 0〉 → |E ′
e(±1), Je = 1, m = ±1〉 (i.e., ω � ω0 − �)

and circularly polarized. We will denote such a polarization by
uin = �. For convenience of comparing results corresponding
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to the two aforementioned combinations of frequencies and
polarizations, we will count the frequency detuning δ from
the resonant frequency of the corresponding transition. Thus,
in the rest of the paper, the same value δ will correspond to
ω − ω0 = δ for Eext ⊥ kin, uin = ↑ but to ω − (ω0 − �) = δ

for Eext‖kin, uin = � because the resonance frequency of the
probed transition is ω0 − � in the latter case. Needless to
say, in the absence of external fields (i.e., for � = 0), the
average excited state population 〈P(z, ω)〉 is independent of
the polarization of incident light.

We first consider a relatively dilute medium in which light
transport is expected to be diffusive [32–34]. Examples of
spatial profiles of 〈P(z, ω)〉 obtained for the linear polar-
ization of the incident wave and different detunings δ are
shown in Fig. 1. Whereas diffusion theory [32–34] predicts
a simple linear decay of 〈P(z, ω)〉 far from the boundaries
of an infinitely wide slab and for R → ∞ [see Eq. (B5) in
Appendix B], the curves of Fig. 1 exhibit weak but visible
concavity. It can be explained by taking into account the
finite radius R of the considered cylindrical sample and the
anisotropy of light transport induced by the external electric
field. We start with an anisotropic photon diffusion equation
for the average population of excited states Pdif (r) inside the
cylindrical sample depicted in the inset of Fig. 1:

−∇r · D̃ · ∇rPdif (r) = P0	
∗
z δ(z − 	∗

z )


(
r⊥
2R

)
, (5)

where the right-hand side describes the source of diffuse
waves due to the coherent incident plane wave of intensity
I0 ∝ P0 that is assumed to be converted into a diffuse one
at a distance 	∗

z from the front surface of the sample. The
factor 	∗

z δ(z − 	∗
z ) on the right-hand side replaces a more ac-

curate source function exp(−z/	∗
z ) describing the progressive

isotropization of the incident radiation as it enters into the
disordered medium. 
(x) is the normalized boxcar function
[
(x) = 1 for |x| < 1/2, 
(x) = 0 for |x| > 1/2] describing
the fact that the conversion of the incident coherent light into
diffuse radiation takes place only inside the sample (i.e., for
r⊥ < R). The diffusion tensor is D = D̃/τ ∗ with

D̃ = 1

3

⎛
⎜⎝

	∗2
⊥ 0 0

0 	∗2
⊥ 0

0 0 	∗2
z

⎞
⎟⎠ (6)

and τ ∗ the transport mean-free time. The transport mean-
free paths 	∗

⊥ and 	∗
z in the xy plane and along the z axis,

respectively, can be different because of the external electric
field that breaks the rotational symmetry and makes the atomic
system anisotropic. Strictly speaking, Eq. (6) with 	∗

z �= 	∗
⊥ =

	∗
x = 	∗

y holds when Eext‖kin‖ez, and the axes x and y are
both perpendicular to the external field. When Eext ⊥ kin
(say, Eext‖ex), we will have 	∗

x �= 	∗
y = 	∗

z and 	∗
⊥ cannot be

introduced. However, we will study only quantities that are
integrated over a sufficiently large area in the xy plane [see,
e.g., Eq. (3)], and thus accounting for 	∗

x �= 	∗
y will not be

essential for us. We will instead use an effective value 	∗
⊥ for

both 	∗
x and 	∗

y even when Eext ⊥ kin.
Anisotropic diffusion of light has been previously studied

both theoretically [35,36] and experimentally [37–39]. Our
Eq. (6) takes into account the fact that the transport mean-free
time τ ∗ in an atomic medium is mainly determined by the

lifetime 1/�0 of the atomic excited states: τ ∗ � 1/�0 [40],
and hence D = 	∗2/3τ ∗. We supplement Eq. (5) by boundary
conditions [32,34,41]:

Pdif (r = {r⊥, z}) = 0, z = −hz, L + hz, (7)

Pdif (r = {r⊥, z}) = 0, r⊥ = R + h⊥, (8)

where hz and h⊥ are the so-called extrapolation lengths in the
longitudinal and transverse directions. They account for inter-
nal reflections of multiply scattered waves at the boundaries
of the disordered sample and are typically of the order of
corresponding transport mean-free paths: hz ∼ 	∗

z , h⊥ ∼ 	∗
⊥

[41].
The solution of the anisotropic photon diffusion equation

(5) for the geometry corresponding to our numerical calcula-
tions is presented in Appendix B. The resulting Eq. (B7) for
Pdif provides very good fits to our numerical data in the central
part of the sample; see dashed lines in Fig. 1. The free parame-
ters of the fits are 	∗

z , 	∗
⊥, hz, h⊥ and a constant prefactor C in

front of Eq. (B7) to adjust the overall magnitude of intensity.
The best-fit parameters fall in reasonable ranges: k0	

∗
z = 1.4–

1.7, k0	
∗
⊥ = 1.5–2.4, hz/	

∗
z ∼ 1.4–2.2, and h⊥/	∗

⊥ ∼ 0.8–1.3.
In particular, the transport mean-free paths are comparable
with the value 	0 expected on resonance (ω = ω0) in the
absence of external fields based on the perturbation theory in
ρ/k3

0 � 1: k0	0 = k3
0/6πρ � 2.65 for ρ/k3

0 = 0.02 in Fig. 1.
However, it may be dangerous to consider these values as
reliable estimates of real physical parameters because of the
large number (five) of free parameters in our fits. Other
combinations of 	∗

z , 	∗
⊥, hz, h⊥, and C may provide fits of

comparable quality.
We now turn to dense atomic media where a breakdown

of diffuse transport may be expected. Figure 2(a) shows
that the decay of 〈P(z, ω)〉 with depth z inside the atomic
sample still remains roughly linear for different polarizations
of incident light, with or without the external electric field.
Equation (B7) resulting from the diffusion theory provides
excellent fits to the numerical data (dashed lines) similar to
the low-density case. The quality of fits remains very good
for data corresponding to different densities of the atomic
system [Fig. 2(b)], different frequencies of the incident light
[Fig. 2(c)], and different thicknesses L of the atomic sample
[Fig. 2(d)]. This establishes the validity of diffusion theory
for light transport in dense clouds of cold atoms in strong
electric fields at least up to densities of the order of 102 atoms
per wavelength cubed. Even though we do not study densities
larger than ρ/k3

0 = 0.3 (which corresponds to ρλ3
0 � 75) in

this work, we expect this conclusion to hold at higher densities
as well because no signatures of Anderson localization were
found from the analysis of quasimodes of dense atomic clouds
up to ρ/k3

0 = 1.5 [26]. We expect scattering to weaken and ho-
mogenization to take place at even higher densities for which
the atomic system should start to behave as a homogeneous
medium with some effective properties. The effective optical
properties of large atomic ensembles is a subject of intense
current research [7,42,43].

It is worthwhile to note that despite the demonstration of
the validity of diffusion theory, we are not able to provide
an analytic theory for the transport mean-free paths 	∗

z and
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FIG. 2. Average population of excited states 〈P(z, ω)〉 for different frequencies and polarizations of the incident wave and for a dense
atomic medium. (a) Comparison of results in the absence of external fields (red curve, � = 0) with those in a strong electric field (the green
and orange curves, �/�0 = 100). (b) Comparison of results obtained at different atomic number densities ρ. (c) Comparison of results obtained
at different detunings δ. (d) Comparison of results obtained for two different sample thicknesses L. k0L = 10, k0R = 20, and k0R1 = 10 for
panels (a)–(c); k0R = 25, k0R1 = 12 for panel (d). Averaging is performed over at least 40 000 independent atomic configurations for each
curve. Dashed lines in all panels show diffusion-theory fits [Eq. (B7)] to the numerical results for k0z ∈ [2, k0L − 2]. 	∗

z = 	∗
⊥ and hz = h⊥

were imposed for the fit to the data corresponding to � = 0 in panel (a) because the medium is isotropic in the absence of external fields.

	∗
⊥ for dense scattering media where perturbation theory in

ρ/k3
0 � 1 fails. Calculation of transport properties of strongly

scattering media remains a complicated theoretical problem
even in the absence of external fields [5,6].

IV. AVERAGE TRANSMISSION

Even if the spatial dependencies of the average population
of excited states or, equivalently, of the average diffuse in-
tensity inside a disordered atomic sample provide very useful
information about the optical transport inside the sample,
they are difficult to access experimentally. In a typical optical
experiment, one measures the intensity I of light transmitted
through a disordered sample and having polarization u (|u| =
1) or the transmission coefficient T . The intensity of light
transmitted through the atomic sample can be written as a

result of interference of incident and scattered waves:

I (r, u, ω) = c

4π

∣∣∣∣u∗ · Ein(r)

+ k3

h̄

∑
j,m

∑
n,m′

fe jm (r, u, ω)Re jmenm′ (ω)

× denm′ gn · Ein(rn)

∣∣∣∣
2

, (9)

where

fe jm (r, u, ω) = eik|r−r j |

k|r − r j |
{

u∗ · dg j e jm

− [u∗ · (r − r j )]
[
dg j e jm · (r − r j )

]
|r − r j |2

}
(10)

013821-4



TRANSPORT OF LIGHT THROUGH A DENSE ENSEMBLE … PHYSICAL REVIEW A 100, 013821 (2019)

−50 0 50
0

20

40

60

80

100

120

140

FIG. 3. (a) Average intensity of light transmitted through cylindrical atomic samples of radius k0R = 50 and different thicknesses k0L =
2–10, at a distance k0(z − L) = 10 from the sample and as a function of transverse position x for y = 0, in a strong external electric field
Eext. The intensity shown in panel (a) is averaged over k0r⊥ < 35 to obtain 〈T 〉 in panel (b) where symbols show the average transmission
coefficient 〈T 〉 of the cylindrical atomic sample multiplied by its thickness k0L for different frequency detunings δ and different polarizations
of the incident plane wave. Results obtained in the absence of the field (� = 0) are compared with those in a strong electric field (� = 100).
Solid lines show diffusion-theory fits [Eq. (B8) with R1 = R] to numerical data. The best-fit parameters are given in Table I.

describes the propagation of light from the atom j to a point
r, and k = ω/c.

We calculate the average intensity of transmitted light that
would be detected by a polarization-insensitive photodetector
by summing over all directions of u:

〈I (r, ω)〉 =
∫

4π

d2u〈I (r, u, ω)〉. (11)

The average intensity 〈I (r = {r⊥, z}, ω)〉 at a distance k0(z −
L) = 10 from the sample is shown in Fig. 3(a) as a function of
transverse position x for y = 0 (remember that r⊥ = {x, y}).
Figure 3(a) shows typical results for given atomic density
ρ/k3

0 = 0.15 and frequency detuning δ/�0 = 0.4, but similar
results are obtained for other values of ρ and δ. The spatial
profile of intensity exhibits an oscillatory diffraction pattern
due to the finite extent of the sample in the transverse di-
rections x, y (i.e., due to the fact that R < ∞). The depth of
the intensity drop near the sample axis (i.e., around r⊥ = 0)
provides information about the average intensity transmission
coefficient 〈T 〉:

〈T (L, ω)〉 = 1

I1πR2
1

∫
r⊥<R1<R

〈I (r = {r⊥, z}, ω)〉 d2r⊥, (12)

where I1 is the intensity obtained from Eqs. (9) and (11) in the
absence of the atomic sample.

Symbols in Fig. 3(b) show typical results for the aver-
age intensity transmission coefficient 〈T (L, ω)〉 multiplied
by the slab thickness k0L in anticipation of the dependence
〈T (L, ω)〉 ∝ 1/L expected from the diffusion theory in the
limit of R, L → ∞ [see Eq. (B9) in Appendix B]. The diffu-
sion theory fits are shown in the same figure by solid lines. To
obtain the fits we used Eq. (B8) with R1 = R, which accounts
for the fact that light originating from the entire surface of the
sample is collected when the intensity is measured at a large
distance [k0(z − L) = 10 in Fig. 3] behind the sample. The

evolution of 〈T (L, ω)〉 × k0L with increasing L turns out to be
well captured by the diffusion theory that provides very good
fits to the numerical data. This evolution is due to two reasons.
First, the thicknesses of the slab k0L � 10 accessible for our
numerical calculations would not be large enough compared
to k0	

∗
z � 1 to ensure convergence of 〈T (L, ω)〉 to a pure

1/L scaling even for a slab of infinite lateral extent R → ∞.
This yields 〈T (L, ω)〉 × k0L converging to a constant from
below as L increases and is sufficient to understand the two
upper curves in Fig. 3(b) corresponding to � = 0. Second, the
finite lateral size of the slab k0R = 50 speeds up the decrease
of 〈T (L, ω)〉 with L because of the leakage of wave energy
through the open lateral boundaries of the cylindrical sample.
This effect starts to be visible for the four lower curves in
Fig. 3(b). The best-fit parameters used for the theoretical
curves in Fig. 3(b) are summarized in Table I. Similar to the
fits in Figs. 1 and 2, the fits in Fig. 3 may not be be unique,
and combinations of fit parameters different from those given
in Table I may provide fits of comparable quality. This does
not weaken our main conclusion about the diffuse nature of
optical transport because the important aspect for us is the
possibility of obtaining fits with reasonable fit parameters,
whereas the precise values of these parameters are not crucial
for us in this work.

Analysis of best-fit parameters given in Table I allows
us to make several important observations. First, the best-fit
values of the transport mean-free paths are consistently larger
than the values of the scattering mean-free path 	z obtained
by fitting the absolute value of the average atomic polariza-
tion to an exponentially decaying function exp(−z/2	z ) (see
Ref. [45] for details). This is a usual situation for multiple
light scattering, but no direct relation can be established
between the scattering and transport mean-free paths in a
dense medium where the first-order perturbation theory in
density ρ is not expected to be valid. Second, values of
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TABLE I. Best-fit parameters for curves in Fig. 3(b). The frequency difference � and the detuning δ are in units of the natural line width
�0. 	∗

z = 	∗
⊥ and hz = h⊥ were imposed at � = 0 because the medium is isotropic in the absence of external fields. The values of the scattering

mean-free path 	z computed following Ref. [45] are also given for comparison.

Configuration Frequency difference �/�0 Detuning δ/�0 k0	z k0	
∗
z k0	

∗
⊥ hz/	

∗
z h⊥/	∗

⊥

0 0.2 0.85 1.25 2.61
0 0.4 0.73 1.10 3.02

kin‖Eext, uin = � 100 0.2 0.6 1.12 1.88 1.91 1.06
kin‖Eext, uin = � 100 0.4 0.54 0.95 1.33 2.08 1.19
kin ⊥ Eext, uin = ↑ 100 0.2 0.44 0.71 1.24 1.36 1.14
kin ⊥ Eext, uin = ↑ 100 0.4 0.45 0.65 1.07 1.15 1.09

k0	
∗
z as small as 0.65 are obtained, corresponding to 	∗

z �
0.1λ0. However, despite such a small value of the transport
mean-free path, the agreement of numerical results with the
diffusion theory remains excellent. This is quite remarkable
because a breakdown of diffusion could be expected for such
a strong scattering based on the frequently used Ioffe-Regel
criterion [33,44]. And finally, the anisotropy of the transport
mean-free path deduced from the thickness dependence of
the transmission coefficient is 	∗

⊥/	∗
z ∼ 1.5. The quantitative

understanding of this anisotropy calls for development of ana-
lytic theory of light scattering in dense atomic media subjected
to strong external electric fields, which is a formidable task
falling beyond the scope of the present work.

V. CONCLUSIONS

We performed numerical simulations of light transport
through an optically thick, three-dimensional cloud of two-
level atoms subjected to a strong static, external electric field.
Both the average population of excited atomic states inside
the cloud and the transmission coefficient of the cloud were
calculated and analyzed for different frequencies and polar-
izations of the incident wave and for different orientations of
the external field. Comparison of numerical results with an
analytic model of anisotropic photon diffusion indicates that
the transport of optical energy in the atomic cloud can be per-
fectly described by the diffusion theory at least up to atomic
number densities ρ of the order of 102 atoms per λ3

0 (where
λ0 is the wavelength of light in the free space). The electric
field induces an optical anisotropy of the atomic medium,
making the transport mean-free paths vary by roughly 50%
depending on the spatial direction. At high atomic number
densities ρ, the transport mean-free path can become as small
as 0.1λ0. And, still, diffusion holds, and no signature of
Anderson localization or any other mechanism of breakdown
of diffusion is found. It is quite remarkable that all our results
are perfectly consistent with a constant, position-independent
diffusion tensor D with no need of introducing the position
dependence of D that might account for Anderson localization
effects [46].

Knowing that transport is diffusive is an important insight,
but the lacking theoretical element remains a full theoretical
model for the transport lengths 	∗

z and 	∗
⊥. Even for dilute

atomic media we didn’t find any results for 	∗
z and 	∗

⊥ in the
presence of an external electric field in the literature despite
the fact that the expression for the atomic polarizability is
simple [47,48]. For high densities, the problem is difficult to

solve even in the absence of external fields when 	∗ has been
calculated only up to second order in ρ/k3

0 [5,6]. Numerical
methods employed in this work proved to be very useful to
guide and test analytical theories in this research field [8].
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APPENDIX A: QUANTUM-MECHANICAL MODEL
OF LIGHT SCATTERING BY TWO-LEVEL ATOMS

IN A STATIC ELECTRIC FIELD

N immobile two-level atoms (ground state |Eg, Jg = 0〉,
excited states |Ee, Je = 1, m = 0,±1〉) in a static and spatially
uniform electric field, interacting via the free electromagnetic
field, can be described by the following approximate Hamil-
tonian [26,45,47]:

Ĥ =
N∑

j=1

1∑
m=−1

h̄(ω0 − m2�)

× |E ′
e(m), Je = 1, m〉 j〈E ′

e(m), Je = 1, m| j

+
∑
ε⊥k

h̄ck

(
â†

kεâkε + 1

2

)
−

N∑
j=1

D̂ j · Ê(r j )

+ 1

2ε0

N∑
j �=n

D̂ j · D̂nδ(r j − rn), (A1)

where E ′
e(m) are the energies of excited states hav-

ing a magnetic quantum number me = m in the electric
field, ω0 is the frequency of the transition |E ′

g, Jg = 0〉 →
|E ′

e(m), Je = 1, m = 0〉, h̄� is the energy difference between
the excited states with m = 0 and m = ±1 due to Stark
shifts, â†

kε and âkε are creation and annihilation operators
corresponding to an electromagnetic mode with a wave vector
k and a polarization ε, D̂ j are atomic dipole operators, ε0Ê(r j )
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are electric displacement vectors at atomic positions r j , and
the quantization axis is chosen parallel to the external electric
field.

The Hamiltonian (A1) is quite general and can be used to
describe many physical phenomena arising from the interac-
tion of light with atoms, including nonlinear effects. Here we
restrict our consideration to the linear optics regime, which,
strictly speaking, corresponds to allowing only a single exci-
tation (photon) in the system. In reality our results will apply
when the number of excitations is much less than the number
of atoms, which implies low intensity of incident light in an
experiment. For a single excitation, Eq. (A1) reduces to an
effective non-Hermitian Hamiltonian of the atomic subsystem
[26,45,47]:

Gejmenm′ =
(

i + 2m2 �

�0

)
δe jmenm′ + 2k3

0

h̄�0

(
1 − δe jmenm′

)

×
∑
μ,ν

dμ
e jmg j

dν
gnenm′

eik0r jn

k0r jn

×
[
δμνP(ik0r jn) + rμ

jnrν
jn

r2
jn

Q(ik0r jn)

]
, (A2)

where P(x) = 1 − 1/x + 1/x2, Q(x) = −1 + 3/x − 3/x2, �0

is the natural line width of the excited states of an isolated
atom, de jmg j = 〈E ′

e(m), Je = 1, m|D̂ j |E ′
g, Jg = 0〉, and r jn =

r j − rn. The 3N × 3N matrix (A2) describes the system of N
atoms coupled via electromagnetic fields. Its non-Hermiticity
is due to the openness of the atomic system and the leakage of
energy out of it via emission of light (photons). Properties of
eigenvalues and eigenvectors of matrix G have been studied
in Ref. [26].

APPENDIX B: SOLUTION OF THE ANISOTROPIC
DIFFUSION EQUATION FOR LIGHT

IN A DISORDERED MEDIUM

In this Appendix, we present a solution of the anisotropic
diffusion equation (5) with the boundary conditions (7) and
(8) in a cylindrical sample depicted in the inset of Fig. 1.
Equation (5) can be recast as an isotropic diffusion equation

−∇2
r′ Pdif (r′) = 3P0

	∗
z

δ(z′ − 	∗
z )


(
r′
⊥

2R′

)
, (B1)

where r′ = {r′
⊥ = r⊥	∗

z /	
∗
⊥, z′ = z}. The boundary conditions

(7) and (8) preserve their form with R and h⊥ replaced by
R′ = R	∗

z /	
∗
⊥ and h′

⊥ = h⊥	∗
z /	

∗
⊥, respectively.

A solution of Eq. (B1) that remains finite for r′
⊥ → 0 can

be represented as

Pdif (r′) =
∞∑

n=1

J0(κnr′
⊥)[An sinh κnz + Bn cosh κnz], (B2)

where J0 is the zeroth-order Bessel junction. The coefficients
κn are found from the boundary condition (8): κn = βn/(R′ +
h′

⊥), where βn denotes the nth zero of the Bessel junction
J0: J0(βn) = 0. The coefficients An and Bn follow from the
boundary condition (7) and the explicit form of the source

term in Eq. (B1) with an identity




(
r′
⊥

2R′

)
= 2R′

R′ + h′
⊥

∞∑
n=1

J0(κnr′
⊥)

J1(κnR′)
J1(βn)2βn

, (B3)

where J1 denotes the first-order Bessel function.
We finally obtain

Pdif (r′) = 6P0
R′

R′ + h′
⊥

∞∑
n=1

J0(κnr′
⊥)

J1(κnR′)
J1(βn)2βn

× sinh[κn(z< + hz )] sinh[κn(L + hz − z>)]

κn	∗
z sinh[κn(L + 2hz )]

,

(B4)

where z< = min(z, 	∗
z ) and z> = max(z, 	∗

z ). For an infinitely
wide slab R′ → ∞, Eq. (B4) reduces to

Pdif (r′) = 3P0

	∗
z

× (z< + hz )(L + hz − z>)

L + 2hz
, (B5)

where we used the fact that
∞∑

n=1

1

J1(βn)βn
= 1

2
. (B6)

We see from Eq. (B5) that the solution is not sensitive to the
anisotropy of the scattering medium in an infinitely wide slab
illuminated by a plane wave.

In the main text, we analyze the z dependence of average
population of excited states averaged over a circular area of
radius R1 < R in the central part of the cylindrical sample.
This quantity readily follows from Eq. (B4):

〈Pdif (r′)〉R′
1
= 1

πR′2
1

∫
r′
⊥<R′

1

Pdif (r′)d2r′
⊥

= 6P0
R′

R′ + h′
⊥

∞∑
n=1

2J1(κnR′
1)

κnR′
1

J1(κnR′)
J1(βn)2βn

× sinh[κn(z< + hz )] sinh[κn(L + hz − z>)]

κn	∗
z sinh[κn(L + 2hz )]

.

(B7)

The average intensity transmission coefficient is obtained
by noting that in the diffusion approximation, the average
intensity in the atomic medium is expected to obey the same
diffusion equations (5) and (B1) as Pdif :

〈T (L)〉 = − 1

P0

	∗

3

∂

∂z
〈Pdif (r′)〉R′

1

∣∣∣∣
z=L

= 2R′

R′ + h′
⊥

∞∑
n=1

2J1(κnR′
1)

κnR′
1

J1(κnR′)
J1(βn)2βn

× sinh[κn(	∗
z + hz )] cosh[κnhz]

sinh[κn(L + 2hz )]
. (B8)

For R′ → ∞, this expression reduces to

〈T (L)〉 = 	∗
z + hz

L + 2hz
. (B9)

Similarly to Eq. (B5), this result is not sensitive to the
anisotropy of the medium.
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