
PHYSICAL REVIEW A 100, 013818 (2019)

Stabilization of localized structures by inhomogeneous injection in Kerr resonators
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We consider the formation of temporal localized structures or Kerr-comb generation in a microresonator with
inhomogeneities. We show that the introduction of even a small inhomogeneity in the injected beam widens
the stability region of localized solutions. The homoclinic snaking bifurcation associated with the formation
of localized structures and clusters of them with decaying oscillatory tails is constructed. Furthermore, the
inhomogeneity allows us to not only control the position of localized solutions, but strongly affects their stability
domains. In particular, a new stability domain of a single peak localized structure appears outside of the region of
multistability between multiple peaks of localized states. We identify a regime of larger detuning, where localized
structures do not exhibit a snaking behavior. In this regime, the effect of inhomogeneities on localized solutions
is far more complex: They can act either attracting or repelling. We identify the pitchfork bifurcation responsible
for this transition. Finally, we use a potential well approach to determine the force exerted by the inhomogeneity
and summarize with a full analysis of the parameter regime, where localized structures and therefore Kerr-comb
generation exist, and analyze how this regime changes in the presence of an inhomogeneity.
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I. INTRODUCTION

The formation of localized structures (LSs) is a fascinating
pattern formation phenomenon that has been experimentally
observed and theoretically described in a wide variety of
fields ranging from fluid mechanics, optics, chemistry, to plant
ecology [1–13].

In the field of nonlinear optics, LSs have been intensively
studied theoretically and observed experimentally in both spa-
tial and temporal domains. In particular, spatial LSs have been
observed in the transverse section of broad-area semicon-
ductor microcavities injected by a coherent electromagnetic
field [14]. More recently, the question whether the concept
of LS can be extended to the time domain in the case of
optically injected cavities [6] was addressed and experimen-
tally observed. This behavior has been theoretically predicted
in an early report [15] and experimentally observed in fiber
resonators [6] as well as in microresonators [16]. A key role
for the theoretical investigation of LSs in nonlinear optics
plays the paradigmatic Lugiato-Lefever equation (LLE), a
model first proposed by Lugiato and Lefever [17] to describe
spatial pattern formation in the transversal plane of a cavity
filled with a nonlinear Kerr medium. Later on it was shown
that the LLE also applies to the formation of temporal LSs
in a ring cavity by replacing diffraction by group velocity
dispersion [18]. The investigation of temporal LSs in the LLE
has gained significant new importance in relation with the
generation of optical-frequency comb generation. Kerr combs
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consist of a multitude of equidistant coherent spectral lines
and directly link the optical and radio frequency band of the
electromagnetic spectrum [19]. The observation of broadband
optical frequency combs has been realized in high finesse
resonators filled with a Kerr medium and driven by a contin-
uous wave (CW) [20]. Frequency combs generated in passive
optical Kerr resonators are in fact nothing but the spectral
content of the temporal LS occurring in the cavity. Indeed,
the link between the LLE and the generation of optical-
frequency combs has been established in Ref. [21]. Recently,
an excellent overview by the Lugiato and Kippenberg groups
has been published in which they discuss in depth the link
between temporal LSs and optical-frequency combs [22].

It has been shown analytically and experimentally that a fo-
cusing Kerr resonator driven by an inhomogeneous Gaussian
pumping beam supports stable LSs [23]. These structures re-
sult from front interaction in a regime devoid of modulational
instability. The trajectory of the position of the LS is derived
from the LLE and its hyperbolic tangent analytical expression
perfectly fits the experimental data [23]. In that case, the CW
and the Gaussian beams are derived from the same pump laser.
We suppose that one can also derive a strong CW and the
weakly modulated beams from the same laser for the case
of temporal LSs. Indeed, a synchronously pumped passive
all-fiber Kerr cavity (modulated single pump beam) has been
realized in, e.g., Refs. [24,25]. Recently, Hendry et al. [26]
considered a Gaussian pumping in the LLE. In particular, it
was shown that LSs do not necessarily stabilize at minima or
maxima of the injection but instead are drawn toward specific
ideal values of the injection. Furthermore, recent work of
Cole et al. [27] suggests that a phase-modulated injection can
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protect single LS generation by preventing the multistability
between different LSs having different number of peaks.

In this paper, we provide a systematic analysis of the
impact of small inhomogeneities altering the amplitude of an
otherwise homogeneous injected pumping on LS dynamics.
The consideration of small inhomogeneities seems inevitable
because it is difficult to prevent them in any real experimental
setup. However, even small inhomogeneities can have dras-
tic effects on the dynamical properties of a system under
consideration because they break continuous symmetries of
the system [28]. It is therefore necessary to include these
symmetry-breaking effects in a theoretical description. Fur-
thermore, we are going to demonstrate that the addition of
inhomogeneities can also be beneficial for Kerr-comb gen-
eration. In certain scenarios, it is therefore not necessary to
minimize the inhomogeneities, but one can take advantage of
them instead.

Employing path-continuation techniques, we start in a
parameter regime where LSs arise in a homoclinic snaking
[29–31]. We are going to show how the inclusion of small
inhomogeneities alters the snaking behavior by drastically
widening the parameter regime in which stable LSs exist.
Furthermore, a parameter gap arises, in which only a single
LS positioned at the inhomogeneity is stable, thus avoiding
the multistability associated with the homoclinic snaking.
Both results suggest that small inhomogeneities can actually
be beneficial for the experimental realization of Kerr-comb
generation.

We then proceed with a similar analysis in a regime of
higher detuning, where the results from Ref. [26] come to
fruition. Since in this regime, LSs are drawn towards cer-
tain specific values of the injection, the bifurcation structure
becomes much more complex. We identify three different
stationary solutions in this regime: LSs can be (a) pinned on
the center of the inhomogeneity, (b) pinned on the side of
the inhomogeneity, or (c) completely repelled by the inho-
mogeneity. We describe all these scenarios and the transition
between them. Further, we deploy a semianalytic potential
well model that allows us to determine the position of a
single LS. Finally, we provide a full description of the region
of existence and the region of stability of a single LS in
the inhomogeneous LLE in terms of the two main control
parameters, the detuning and the injection. This result is a full
bifurcation diagram, showing where Kerr-combs generation is
theoretically possible.

II. THE MODEL

The starting point of this study is the generic dimensionless
focusing mean-field LLE with inhomogeneous injection that
reads

∂E

∂t
= Einh(ξ ) +

[
−(1 + iθ ) + i|E |2 + i

∂2

∂ξ 2

]
E . (1)

Here, the intracavity field envelope is denoted by E = E (t, ξ ),
θ is the detuning parameter. In the context of temporal LSs in
a ring cavity, ξ is the fast time in the reference frame moving
with the group velocity of the light within the cavity while
t is the slow time proportional to the round-trip time. In the
originally proposed LLE describing spatial pattern formation,

ξ is the spatial coordinate in the transversal plane of a cavity
and t is the time. All quantities are dimensionless. In that
case, an inhomogeneous injection Einh(ξ ) with the CW and
the Gaussian beams derived from the same pump laser has
been realized in a resonator with a liquid crystal as Kerr media
[23]. We suppose that one can also derive a strong CW and
the weakly modulated beams from the same laser for the case
of temporal LSs. Indeed, a synchronously pumped passive
all-fiber Kerr cavity (modulated single pump beam) has been
realized in, e.g., Refs. [24,25]. For the sake of simplicity,
we refer in both scenarios to the inhomogeneity as spatial
inhomogeneity. The inhomogeneous injected beam Einh(ξ )
reads

Einh(ξ ) = Ei + A exp(−ξ 2/B), (2)

where Ei is the homogeneous value of the injection, A and
√

B
correspond to the amplitude and the width of the Gaussian
beam, respectively. However, our results suggest that the
overall influence of inhomogeneities on LSs mainly depends
on the amplitude of the inhomogeneity A. Neither the exact
form nor the width

√
B of the inhomogeneity have an equally

important effect within a reasonable range. That is, as long as
the width of the inhomogeneity is smaller than the considered
domain size L = 100 and of comparable size as the typical
length scales in the system (e.g., the width of the LS or
the wavelength of the periodic patterns), varying B does not
change the solution structure qualitatively. Hence, we will
focus on the influence of different values of A in the following,
while leaving the width of the inhomogeneity fixed at

√
B =

2.0 and its Gaussian shape remains unaltered.
In the case of homogeneous injection (A = 0) Eq. (1) rep-

resents the original LLE as proposed by Lugiato and Lefever
[17]. The case of purely Gaussian injection (Ei = 0) has been
recently discussed by Hendry et al. [26]. We are going to
focus on the case of a homogeneous injection Ei with a small
added inhomogeneity and mainly discuss how these inho-
mogeneities alter the well-known properties of the classical
LLE with purely homogeneous injection. Nevertheless, we are
going to demonstrate in section IV that the essential result of
[26] also applies to the scenario of small inhomogeneities.

The classical LLE with homogeneous injection A = 0 has
been thoroughly studied [15,17,29,32]. Homogeneous station-
ary solutions Es of Eq. (1) are implicitly given by E2

i =
|Es|2[1 + (θ − |Es|2)2]. For θ <

√
3 (θ >

√
3), the transmit-

ted intensity |Es|2 as a function of the input intensity E2
i

is monostable (bistable) [15]. Localized solutions exist in
both regimes [31]. The homogeneous solution loses stability
in a modulational (Turing-like) instability that is subcritical
(supercritical) for θ > 41/30 (θ < 41/30). A necessary con-
dition for the existence of LSs is a bistability between a
homogeneous and a periodic solution, which is only given
in the subcritical case. In this case, the periodic solution
first branches off of the homogeneous solution at the Turing
bifurcation point and is originally unstable, and then gains
stability in a fold. Without inhomogeneities, LSs bifurcate at
the same point as the periodic solution and become stable after
a fold.

In the regime where LSs possess oscillatory tails (θ � 2),
bound states can form in a so-called homoclinic snaking
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FIG. 1. Kerr combs generated by Fourier transforming a single
LS of Eq. (1). The blue envelope indicates the absolute value of the
Fourier transform, whereas the red comblike line indicates the real
value. On the left, the Kerr comb with homogeneous injection (A =
0) is obtained for θ = 1.7 and Ei = 1.2. On the right, frequency comb
with a small inhomogeneity (A = 0.1, B = 4.0) for the same value of
θ but with a lowered value of Ei = 1.12 is shown. All quantities are
dimensionless, colored versions of all figures can be found online.

[29–32]: In a sequence of consecutive folds, the LS solu-
tion gains two peaks until the solution fills the domain and
connects to the periodic solution. Besides the branch always
containing an odd number of peaks, there also exists an even
branch starting from a bound solution of two peaks. The odd
branch in the case of homogeneous injection is depicted in
Fig. 2 (blue line). The homoclinic snaking structure in the
classical LLE has been intensively studied [29–31]; however,
it is a general phenomenon that can be found in a number of
systems possessing LS solutions [33–35] (see overviews on
this issue [36,37]). So far, however, the impact of defects or
inhomogeneities on the snaking bifurcation structure has not
been discussed yet, and we will discuss it in Sec. III.

In the regime θ � 2, LSs cannot form bound states due to
a lack of oscillatory tails, i.e., two LSs always act repulsive on
each other. Homoclinic snaking can therefore not be observed.
The origin of a single LS, however, remains unchanged and
we will discuss the influence of inhomogeneities on this
solution in Sec. IV. For even higher values of the detuning θ , a
single LS becomes unstable in an Andronov-Hopf bifurcation
and starts to oscillate [31]. We are going to consider this effect
in the last section and show how the position of the Hopf
bifurcation is affected by inhomogeneities.

III. HOMOCLINIC SNAKING IN THE PRESENCE OF
SPATIAL INHOMOGENEITIES

In this section, we are focusing on the homoclinic snaking
regime of Eq. (1) and fix the detuning value to θ = 1.7. To
demonstrate that even with small inhomogeneities, temporal
LSs of the LLE can serve as a useful source for Kerr combs,
Fig. 1 shows the frequency comb generated by a LS in the
classical LLE (left) and in the presence of a small inhomo-
geneity (A = 0.1) (right panel). This comparison shows that
one is not only able to generate Kerr combs in the presence
of inhomogeneities, but one also needs less injected energy to
create a comparable comb, since the homogeneous portion of
the injection Ei has been lowered on the right of Fig. 1. Since
the connection of comb generation with LSs of the LLE is well
established [22], we will from here on focus on the properties
of localized solutions.

FIG. 2. Top left: Bifurcation snaking diagram with and without
inhomogeneity for θ = 1.7. The blue (dark gray in gray scale)
line depicts the classical snaking without inhomogeneity(A = 0),
whereas the green (light gray in gray scale) line shows the homo-
clinic snaking in the presence of a small inhomogeneity (A = 0.1).
Black crosses show the position of three exemplary solutions, whose
real parts Er (ξ ) are depicted in the right panels. Bottom: Different
sector of the upper diagram depicting the evolution of the left fold
point with increasing inhomogeneity A (green branches) from right to
left. The red curve going through the fold points continuously marks
the position of the fold while altering A.

The LS in Fig. 1 is positioned directly on the inhomogene-
ity, i.e., in this case the inhomogeneity acts attracting on the
LS. To understand the effect of the inhomogeneities on the
bifurcation structure, we deploy numerical continuation tech-
niques provided by the Matlab continuation package pde2path
[38]. In Fig. 2, we plot the L1 norm L1 = ∫

dξ |Re(E − E )|
as a function of Ei for different solutions of the LLE. E
denotes the mean value of the electrical field E (ξ ) averaged
over the domain size. We chose this definition of a norm,
since the real part of the LS is more pronounced than the
imaginary part, which makes it easier to differentiate different
solution branches. One could, however, chose a different so-
lution measure that allows us to distinguish different solution
branches in a bifurcation diagram. The blue line shows the
odd branch of the classical homoclinic snaking in the case of
homogeneous injection (A = 0). The homogeneous solution
(L1 = 0) loses stability at the Turing point, where both the
periodic as well as the single peak localized solution bifurcate
subcritically. The same goes for the even snaking branch
initially consisting of a bound state of the LS; however, we
abstain from including this branch in Fig. 2 for the sake of
clarity. The single peak solution reaches stability in a fold
and then gains additional peaks in a sequence of folds until
the domain is filled. Solution profiles during this snaking
process at the position marked in the bifurcation diagram
are depicted in Fig. 2 on the upper-right panel. The impact
of adding extra peaks is manifested in an extra modulation
of the frequency comb and the modulation depth becomes
more pronounced with the number of the peaks as shown
numerically in Ref. [31].
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The green line in the upper left of Fig. 2 shows the
bifurcation diagram in the presence of a small inhomogeneity
of A = 0.1. Starting at the far left with a quasihomogeneous
solution (that is, a homogeneous solution with a slight de-
formation at the position of the inhomogeneity), this solution
loses stability and transforms into a single peak LS in a fold,
which then becomes stable in another fold. From there on,
the rest of the bifurcation diagram is hardly affected by the
inhomogeneity. Focusing on the region of stability of the
single peak LS, it is not surprising that the left fold demarking
the onset of stability of the LS shifts to the left compared to the
classical LLE, because this solely means that smaller amounts
of overall homogeneous injection Ei are needed when there is
an additional positive inhomogeneous injection. However, it is
more surprising that the position of the right fold, limiting the
stability of the single LS, is hardly affected by the inhomo-
geneity. This phenomenon provides valuable insights in the
formation of LSs: Whereas the injection at the peak position
seems to determine the onset of existence, the existence of the
delimiting factor going to large injection intensities seems to
be the total injection value at the sides of the LS. The shift
of the left fold position results in a drastic enlargement of the
region of stability of single LS. Furthermore, a region emerges
where solely the single LS solution is stable, avoiding the
multistability between a single LS, the homogeneous solution,
and LSs consisting of more than one peak that exist in the case
of the classical homoclinic snaking without inhomogeneity.
One can argue whether or not a single peak solution without a
stable background still can be classified as a LS; however, we
choose to do so in the following because there is no qualitative
difference in the solution profile between the region where
the LS coexists with a quasihomogeneous background and
the region where only the LS exists as a stationary solution.
Regardless of the nomenclature, experimental work in this
parameter regime can drastically simplify Kerr-comb gener-
ation because one can easily address the single peak solution,
avoiding unwanted jumps to other solutions which can occur
in regions of multistability.

Figure 2 on the bottom shows that one can increase this
favorable parameter regime by using larger inhomogeneities.
The regions of stability for single LS are depicted in shades of
green for increasing values of A, showing a growing region of
monostability. For further analysis, it is useful to calculate the
onset of single LS stability as a function of A. We therefore
deploy numerical fold-point continuation to track the position
of the left fold. To do so, we choose A as our main contin-
uation parameter and choose Ei as a free parameter which is
determined by additional conditions characterizing the fold.
The red line in Fig. 2 depicts the result of this fold-point
continuation, showing that one can further increase the region
of monostability. In fact, choosing an inhomogeneity of A =
0.5, one can increase the region of stability by more than order
of magnitude compared to the case of homogeneous injection.

To demonstrate how different amplitudes of inhomo-
geneities affect the stable and unstable solutions of the system
in question, we also perform numerical continuation with
A as the main continuation parameter. Results are depicted
in Fig. 3. As already discussed above, for positive A the
inhomogeneity acts attracting on LSs and therefore a stable

FIG. 3. Bifurcation diagram for θ = 1.7 and Ei = 2.0, with A as
the main continuation parameter. The blue (dark gray in gray scale)
line corresponds to a LS pinned on the center of the inhomogeneity,
which is stable for positive values of A and interchanges stability with
a solution pinned on the side of the inhomogeneity (green line, light
gray in gray scale) at A = 0.0. The insets depict the solution profiles
of Re(E ) at the marked positions.

solution pinned on the center (blue line) exists. At A = 0.0,
this solution interchanges stability in a transcritical bifurca-
tion with a solution pinned on the side of the inhomogeneity
(green line). Note that although the solutions are situated
at different positions at all times, we can still identify this
transition as a transcritical bifurcation since in the case of
A = 0.0, both solutions are mathematically identical due to
the translational symmetry realized by periodic boundaries
we are assuming for the numerical continuation. The effects
of the inhomogeneities shown in Fig. 3 are fairly intuitive.
In the next section, we are going to use similar techniques,
demonstrating, however, that the influence of inhomogeneities
in regions of higher values of the detuning θ can be much
more complex.

IV. THE NONSNAKING REGIME

In this section, we are going to focus on larger values of
the detuning θ . In Ref. [31], by applying a linear stability
analysis it was shown that even for large values of θ , LSs
possess oscillatory tails, although they are less pronounced
than in the case of lower detuning. Oscillatory tails represent a
necessary condition for the stability of bound states and there-
fore represent a necessary condition for the occurrence of ho-
moclinic snaking. However, one can see that for θ > 2.0, the
oscillatory tail becomes less and less pronounced. As shown
in Fig. 4, the stable single LS for θ = 2.0 (left) possesses one
side-minimum and a small side-maximum, which, however,
vanishes for θ = 2.1 (right). The LS solution still has an os-
cillatory tail, the latter, however, gets nonlinearly suppressed
so only one side-extremum (the minimum) remains. Yet the
vanishing maximum is necessary for the formation of bound
states and therefore the snaking structure vanishes at θcrit ≈
2.085. For larger values of θ , two LSs always act repelling,
however, the repelling effect is rather weak and therefore hard
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FIG. 4. Solution profile of a LS for θ = 2.0 (left) and θ = 2.1
(right) at the right fold delimiting the stability regime of the LS.
The grey horizontal line and the logarithmic scale emphasize the
transition from a localized solution with an additional maximum on
each side to a localized solution where these maxima have vanished.
In the regime θ > 2.085 where these maxima are absent, a bound
state between two LSs is not possible, the two LSs act repelling.

to detect in, e.g., direct numerical simulations of Eq. (1).
Above the value of θcrit, the emergence of a single LS remains
qualitatively the same as in Fig. 2; however, after the single LS
loses stability, additional peaks do not form at the side of the
existing LS. Instead, an additional peak arises at the maximum
possible distance to the existing LS. Branches consisting of
several solutions can exist, depending on the domain size and
the precision of the used continuation algorithm, yet they are
not connected to the branches with lower LS numbers.

When considering the influence of inhomogeneities in
this parameter regime, one also has to take into account the
recent results of Hendry et al. [26], who have shown that for
larger values of θ a LS is not necessarily drawn toward the
maximum of the injection field, but that there exists a certain
ideal value of injection depending on θ , that act attracting on
LS. In contrast to Ref. [26], we are going to consider small
inhomogeneities; however, we are going to demonstrate that
the described effect is also important for the present paper.

Figure 5 (upper left) depicts the emergence of a single
LS for θ = 3 with a small inhomogeneity of A = 0.1. As
in the previous case, a LS bifurcates from the homogeneous
solution and gains stability in a fold at Ei ≈ 1.475. The LS
positioned at the center of the inhomogeneity (see Fig. 5,
left inset) becomes unstable in a pitchfork bifurcation taking
place at Ei ≈ 1.657, where two different stable solutions that
are positioned on the side of the inhomogeneity (Fig. 5, right
inset) emerge. On the lower left, the same bifurcation diagram
using the center of mass position of the LS instead of the L1-
norm is shown, thus underlining the pitchfork character of the
bifurcation by showing that indeed two new stable solutions
(one on the left, one on the right of the inhomogeneity) branch
off. Since both solutions are identical except for their position,
they are indistinguishable in the upper-left representation.

This result is rather striking since it shows that a given
inhomogeneity of A = 0.1 can act either attracting or repelling
depending on the homogeneous injection Ei; however, it can
be explained by considering the results of Ref. [26]: At the

FIG. 5. Upper left: Bifurcation diagram in (Ei, L1) plane show-
ing the emergence of LS for θ = 3.0 and A = 0.1. A LS gains
stability after two consecutive folds (blue line, dark gray in gray
scale). However, the stable solution pinned on the center (left inset)
of the inhomogeneity loses its stability in a pitchfork bifurcation at
Ei ≈ 1.66 giving rise to a new stable solution that is pinned on the
side of the inhomogeneity (right inset, green line, light gray in gray
scale). Lower left: Same bifurcation scenario with the position of the
center of mass on the y axis, clearly showing the transition from a
stable solution pinned on the center to two different stable solutions
pinned on either side of the inhomogeneity in a pitchfork bifurcation.
Right: Bifurcation diagram in (A, Ei) plane showing the region of the
stability of a single LS. The blue (dark gray in gray scale, left) line
corresponds to the position of the left fold, the orange (light gray
in gray scale) line shows the position of the pitchfork bifurcation
and the green (dark gray in gray scale, right) line marks the right
fold in which solutions pinned on the side lose stability. Stable LSs
pinned on the center are located between the blue and the orange
lines, whereas stable LSs pinned on the side can be found between
the orange and the green lines, respectively.

bifurcation, the overall injection at the center of the inhomo-
geneity Einh. = Ei + A reaches the ideal value (in this case,
Eideal ≈ 1.75). For larger values of Ei, the solution therefore
is pulled toward the position, where the ideal value is present,
leading to a shift of the stable structure with increasing Ei, as
can be seen in the lower left of Fig. 5. This drift in parameter
space comes to a halt when the homogeneous portion of the
injection Ei reaches the ideal value, in that case the LS pins on
the side of the inhomogeneity (i.e., with its first minimum on
the center of the inhomogeneity).

On the right panel of Fig. 5 we show how the positions
of the stability-delimiting folds and the pitchfork bifurcation
change with increasing A. In contrast to the results in the
previous section, where the parameter regime of stable LS
drastically widened with increasing A, in this case the range
of stability of LS (pinned on the center or on the side) shifts
drastically to the left and broadens only slightly.

As in the previous section, we are now going to sys-
tematically analyze the influence of the amplitude A of the
inhomogeneity on LSs. As suggested by Fig. 5, there are
two fundamentally different regimes to perform this analysis:
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FIG. 6. Bifurcation diagram for θ = 3.0, Ei = 1.6, and varying
A with the L1-norm (top) and the center of mass position (bottom)
as a measure. For small positive values of A where Ei + A is still
below Eideal, LSs pinned on the center of the inhomogeneity are
stable (blue line, dark gray in gray scale), i.e., LSs are drawn towards
the maximum value of injection. At the ideal value, two stable LSs
pinned on either side of the inhomogeneity (green line, lower light
gray line in grayscale) emerges in a pitchfork bifurcation. At A = 0,
the solution pinned on the center loses stability in a transcritical
bifurcation interchanging stability with a solution positioned at the
maximum possible distance to the inhomogeneity (gray, upper gray
line in gray scale).

Figure 6 shows the bifurcation diagram of the system with
A as a main control parameter in the case where the homo-
geneous portion of the injection Ei = 1.6 is still below the
ideal value Eideal, whereas Fig. 7 provides the same analysis
in the case of Ei = 2.0, where the homogeneous portion of
the injection alone exceeds Eideal. In both cases, the region
of stability of the LS on the center of the inhomogeneity is
delimited by two bifurcations: A transcritical bifurcation at
A = 0.0 and a pitchfork bifurcation where the ideal value of
injection at the center of the inhomogeneity is reached, i.e.,
where Ei + A = Eideal.

In the case of Ei = 1.6 at A = 0.0 (cf. Fig. 6) the system is
still below the ideal value Eideal, i.e., negative values of A act
repelling and the system only possesses a stable solution at the
maximum distance to the inhomogeneity (gray line). The de-
picted stability change of this solution at A = 0 is not obtained
by numerical continuation techniques since the distance to
the inhomogeneity of this solution is too large to detect the
stabilizing or destabilizing influence of the inhomogeneity
numerically. However, one can estimate the asymptotically
vanishing influence of the inhomogeneity by analyzing the
dynamics in direct numerical simulations or by applying the
potential well model described in the next section. Note that
no solutions pinned on the side of the inhomogeneity exist in
this regime, since the tail of the LS in this case cannot pin to
the inhomogeneity with its first minimum.

Small positive values of A act attracting on the LS, as long
as the total injection Ei + A at the center of the inhomogeneity
is still below the ideal value Eideal. If the total injection exceeds

FIG. 7. Bifurcation diagram for θ = 3.0, Ei = 2.0, and varying A
with the L1-norm (top) and the center-of-mass position (bottom) as a
measure. The solution pinned on the center (blue line, dark gray line
in gray scale) is stable for small negative values of A until the overall
injection at the center Ei + A falls below the ideal value of injection
Eideal. At this point, a stable solution pinned on the side (green line,
light gray line in gray scale) branches off before losing stability in
a fold. It is this solution that gains stability again in the transcritical
bifurcation at A = 0.0, where the solution pinned on the center loses
its stability.

this value, the LS gets repelled from the center and is pinned
at the position with the ideal injection, thus moving further
away from the center of the inhomogeneity with increasing A,
which can be seen in the lower panel of Fig. 6.

For Ei = 2.0, the situation is quite similar (cf. Fig. 7): The
centered solution is again stable between the ideal value of
the injection and A = 0.0, with the only difference being that
the ideal value is now reached at a negative value of A. In
other words: As long as the injection is above the ideal value
in the whole domain, the LS moves toward the minimum of
the injection at the center of the inhomogeneity. When the
injection at the center falls below the ideal value, the pitchfork
bifurcation sets in and the LS move toward the ideal value. In
contrast to the case depicted in Fig. 6, the solution pinned on
the side undergoes a saddle-node bifurcation at large negative
values of A and then coexists as an unstable solution with
the stable solution pinned on the center. At A = 0.0, it is this
solution pinned on the side that interchanges stability with the
solution pinned on the center in a transcritical bifurcation. The
transcritical bifurcation is clearly visible in the upper repre-
sentation of Fig. 7 at A = 0.0. The lower representation, using
the center of mass position as a measure, can be mislead-
ing, since the two lines interchanging stability do not cross.
However, due to the translational symmetry, which is restored
at A = 0.0, both solutions are mathematically identical even
though they differ in the center-of-mass position.

V. POTENTIAL WELL MODEL

As established in the previous section, a given inho-
mogeneity of fixed A can act either attracting or repelling
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FIG. 8. Potential V (R) defined by Eq. (3) and calculated for
θ = 3.0, a constant inhomogeneity of A = 0.1 and two different
values of the injection. In accordance with the results from Fig. 5,
the inhomogeneity acts attracting for Ei = 1.6 (left) and repelling
for Ei = 2.0. The orange lines (light gray in gray scale) mark the
maximum position of stable LSs found for the given parameters
obtained by direct numerical simulations, showing that the solutions
pin to the minima of the potential.

depending on the amount of overall injection. To further
analyze the transition from an attracting to a repelling inho-
mogeneity, we deploy a semianalytical method that consists of
considering the LS in the vicinity of the inhomogeneity as an
overdamped particle in a potential well. To calculate the force
exerted by the inhomogeneity (at position R = 0) on a particle
at position R we basically convolute the inhomogeneity with
the spatial derivative of the solution profile in the absence of
an inhomogeneity. This method has been successfully applied
in the case of LSs in the delayed Swift-Hohenbrg equation
[28]. For a detailed derivation we refer the reader to Ref. [28].
The potential reads

C∂RV (R) =
∫

{Re[∂ξ Ehs(ξ )] Ae−(ξ+R)2/B}dξ, (3)

where Ehs(ξ ) refers to the stationary LS in the homogeneous
case (A = 0) and the dissipative constant C = ∫

∂ξ Ehs(ξ ) ·
∂ξ Einhs(ξ )dξ . In this case, Einhs is the stationary LS solution
on the center of the inhomogeneity (stable or unstable) written
as a vector function with the real and imaginary part as
separate components. Ehs(ξ ) again is the solution without
inhomogeneity, also written in vector form. The potentials
for the two solutions shown as insets in Fig. 5 are depicted
in Fig. 8 for θ = 3, a constant inhomogeneity of A = 0.1
and two different values of Ei = 1.6 (left) and Ei = 2.0
(right). The potential model not only qualitatively describes
the transition from an attracting to a repelling potential, it
also provides numerically exact predictions of the position of
stable solutions (orange lines). This may seem trivial in the
case of an attracting inhomogeneity, since the stable solution
in the center is explicitly regarded in Eq. (3). However,
in the case of a repelling inhomogeneity pinning solutions on
the side, the model also proves useful for a prediction of
the position, although the calculation of the potential is only
based on the unstable solution on the center Einhs and the
solution without inhomogeneity Ehs(ξ ). The potential well
model defined by Eq. (3) therefore provides an easy way to
estimate the effect of an inhomogeneity and the position of
resulting stable solutions in the LLE; however, it is restricted
to the limit of small values of A, i.e., it does only reproduce
the transition from an attracting to a repelling inhomogeneity

FIG. 9. Left: Stability domain of a single LS (grey) in the (Ei, θ )
plane without an inhomogeneity. The stability regime is delimited
by the position of the left (blue) and the right (green) fold of
the homoclinic snaking diagram. For larger θ , an Andronov-Hopf
bifurcation (red) sets in, in which localized solutions lose their
stability and start to oscillate. Right: Same diagram in the case of
an inhomogeneity A = 0.1. The results for A = 0.0 are depicted
in the background (grey). The left fold (blue) moves drastically to
lower values of Ei compared to the case A = 0. For low values of
θ , this effect is relatively large compared to the overall region of
stability which is depicted in the inset. The position of the right
fold (green) is hardly affected by the inhomogeneity. The orange line
marks the position of the pitchfork bifurcation, inducing a transition
from stable solutions pinned on the center to solution pinned on the
side of the inhomogeneity. I.e. on the right side of the orange line,
solutions pinned on the side are stable up to the light green line. The
position of the Andronov-Hopf bifurcation is hardly affected by the
inhomogeneity. A colored version can be found online.

at A = 0 in a transcritical bifurcation and not the transition
at finite values of A in a pitchfork bifurcation. However, it
still provides a good understanding of the effect of small
inhomogeneities and therefore it seems promising to apply
this method to other systems.

VI. EXPLORATION OF PARAMETER SPACE

So far, we have discussed the behavior of localized solu-
tions in the LLE with and without inhomogeneity for fixed
values of the detuning θ . As suggested in Fig. 2 (bottom) and
Fig. 5 (right panel), it is also possible to deploy numerical
continuation techniques to track bifurcations or fold points
in parameter space. Instead of altering a single continuation
parameter (e.g., Ei in the above examples) and approximating
solutions of Eq. (1), we now need an additional condition
that defines the bifurcation (or fold) point. We then use θ as
a primary continuation parameter and Ei as a free parame-
ter that is chosen accordingly to fulfill the aforementioned
auxiliary condition. Results of this approach are shown in
Fig. 9. On the left panel of Fig. 9, fold and bifurcation
point continuations have been performed for the case A = 0.
Similar results obtained by means of numerical linear stability
analysis have been obtained in Ref. [31]. By following the
left (blue) and right (green) fold of the single LS solution,
we can determine the region of stability for θ = 2. At larger
values of the detuning, an Andronov-Hopf bifurcation leads
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to oscillations of LSs which result in a modulation of optical
combs and is therefore undesirable. Tracking this bifurcation
point in the θ -Ei space (red) provides the complete systematic
description of the parameter space (grey shaded region) in
which a stable single LS exists in the LLE. Figure 9 (right
panel) provides the same analysis for the case of a small
inhomogeneity A = 0.1. The results for A = 0 are depicted
in grey there to provide a comparison. As shown in Fig. 2,
even for small values of θ , the left fold point (blue) marking
the onset of stability of localized solutions shifts drastically
to smaller values of Ei, thus increasing the region of stable
localized solutions. The shift remains approximately the same
for all values of detuning. Therefore, the relative growth of
the region of stability due to the inhomogeneity is largest for
small values of detuning in the snaking regime of the LLE
(see inset). As already mentioned, the position of the right
fold (dark and light green lines) remains almost unaltered
by the inhomogeneity. The transition from a solution pinned
on the center to a solution pinned on the side in a pitchfork
bifurcation was already depicted for the case of θ = 3 in
Fig. 5. The orange line now marks this bifurcation position
in the parameter space, i.e., solutions pinned on the center
(side) are stable on the left (right) of the orange line. Note that
the position of this line marks the position where the overall
injection at the center reaches the ideal value as described in
Ref. [26]. Finally, the onset of the Andronov-Hopf instability
is hardly altered by the inhomogeneity (red line).

VII. SUMMARY

To summarize, the influence of the inhomogeneities on the
stability of LSs in a mean-field LLE model for fiber resonators
was studied. We have shown that the inhomogeneities not only
allow for the control of the position of LSs, but also alter
strongly their stability and bifurcation properties. We have
constructed the bifurcation diagram associated with decaying
oscillatory tails and showed that the stability regime of LSs
significantly widens. Furthermore, in the parameter regime
where the homoclinic snaking structure is lost, the effect of a
given inhomogeneity is more complex, acting either attracting
or repelling. To analyze the effect of the inhomogeneity and to
calculate the position of stable solutions without much com-
putational effort, we proposed to treat LSs in the vicinity of an
inhomogeneity as an overdamped particle in a potential well.
Finally, we have provided a full description of the stability
region of LSs in the LLE with and without inhomogeneity in
terms of both detuning and injection.
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