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Modification of a plasmonic nanoparticle lifetime by coupled quantum dots
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In this study, the interaction between a plasmonic nanoparticle and coupled quantum dots is investigated to
identify how the coupled particles can manipulate the plasmonic nanoparticle decay rate. This subject is very
important, because most applications of the plasmonic system are restricted due to the nanoparticle decay rate
and the related losses. Therefore, in the present work, we try to find out how and by which method the plasmonic
nanoparticle decay rate can be manipulated. For this purpose, a plasmonic system containing a nanoparticle
coupled to some small quantum dots is designed. The system dynamics of motions are analyzed with Heisenberg-
Langevin equations. These equations are analyzed to study the effect of the plasmonic nanoparticles on the
quantum dots’ decay rate. In the following, as an interesting point, the quantum dot coupling influence on the
nanoparticle’s decay rate is theoretically analyzed in the transient and steady-state conditions. Additionally, a
theoretical formula is derived by which one can explicitly find the dependency of the modified decay rate of the
plasmonic nanoparticle on the number of the coupled quantum dots and the coupling strength. The simulation
results show that it is possible to effectively control the nanoparticles’ decay rate with regard to the application
for which they are utilized.
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I. INTRODUCTION

Recently, the plasmonic effect has been widely utilized in
different applications such as highly sensitive sensors [1,2],
quantum imaging [3], imaging filters [4,5], imaging resolution
enhancing [6], sensitive plasmonic-photonic nanosensors [7],
and Raman signal enhancing [8]. In general, plasmonic prop-
erty refers to harmonious oscillating of the surface charges
of noble metal interacting with the incident wave [9–11]. By
interaction of an incident wave with a metal, an intense field
is generated close to the surface where the interaction took
place. This field is known as the plasmonic field and, in most
applications, is utilized as same role as the radio-frequency
antenna to amplify the incident wave [12,13]. It has been
reported that the plasmonic field is efficiently coupled to any
small particles such as quantum dots (QDs) embedded at
the region’s so-called hot spot [9,10]. The coupling of the
plasmonic nanoparticle (NP) to QDs has been applied because
of the above-mentioned advantages, which suggest that the
optical properties of the system (NP-QDs) are changed by
considering the coupling effects. This alteration due to the
coupling effect is a critical case in numerous applications such
as in sensory applications [4–8]. Due to the important role of
the plasmonic field, several studies have been conducted on
plasmonic field engineering using nanotechnology to convert
the plasmonic field to the lattice plasmonic field [5,14]. In
this case, the plasmonic field operates as a laser with a high-
intensity field and very narrow bandwidth.

However, in this article, we focus on the interaction of the
plasmonic NP with QDs, and it is shown how the coupled sys-
tem’s optical properties can be manipulated. Accordingly, it
is found that some intrinsic properties of the coupled particles
such as NP’s decay rates are altered. The NP’s plasmonic field
effect on the QDs’ decay rate (i.e., the Purcell factor) has been

studied in recently published works [9,10]. It has been proved
that the NP-QDs’ interdistance changing manipulates the
coupling strength between the NP and the QDs, then, leading
to dramatic changing in the QDs’ decay rates. Additionally,
in some interesting works, the NPs coupling to the QDs’
spacer has been theoretically and experimentally investigated
[15–17]. In [15], the authors proposed a way to excite the local
field using plasmon resonance through spacer radiation. This
radiation has a unique ability, in contrast to photons, such
that it can be localized on the nanoscale. Therefore, it can
be imagined as the plasmon resonance squeezed state. The
latter important property has been deeply investigated [18],
indicating that the plasmonic mode can be squeezed into a
volume far below the diffraction limit. Another interesting
work studied the spacer as a nanoscale quantum amplifier in
which the spacer can be function as an ultrafast nanoamplifier
[16]. The main problem of the spacer, which is the inherent
feedback, is the quantum generation of localized surface plas-
mon and eliminating the net gain. This issue has contributed
to the plasmonic field effect on the QDs’ transition rates.

However, all the similar studies in the case of the spacer
have investigated either the effect of the NPs’ plasmonic field
on the QDs’ optical properties or the QDs’ effect on the local-
ized field close to the NPs. Meanwhile, it seems that it should
be necessary to study the effect of the QDs’ coupling strength
on the NP decay rate. The most interesting point of this study
is that the decrease of the NP’s decay rate strongly enhances
the plasmonic applications; for instance, plasmon resonance
mode entanglement [4,18,19] can be largely improved due
to the plasmonic mode lifetime increasing. Therefore, in this
article, it is theoretically shown that the QDs attached can
dramatically modify the NP’s decay rate. Notably, we just
focus on the hot-spot region where the QDs are embedded.
This region is the area where the plasmonic field is maximized
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FIG. 1. (a) Illustration of the system schematic, plasmonic NP surrounded by the embedded QDs; r shows the position of the QDs,
(ωp, ε) indicate the plasmonic NP optical properties, ε1 = 2.1 and ε2 stand for SiO2 and host medium dielectric constants, ωQD indicates QDs
resonance frequency, and incoming wave is incident with frequency ω in the z direction with x coordinate polarization. (b) The effect of the
SiO2 shell thickness on the extinction efficiency of the core-shell NP vs incident wavelength (nm).

and then the maximum amount of the energy is transferred to
the coupled particles [20,21]. In the following, the theory and
background of the system are introduced and then the results
of the simulations are presented.

II. THEORY AND BACKGROUND

A. System description and the Hamiltonian

The designed system is schematically illustrated in
Fig. 1(a). It shows a core-shell NP with some coupled QDs
at the shell region. In this design, we considered the Au NP
with a radius around 25 nm. Also, it is assumed that the QDs’
radius is 2–3 nm and all of the QDs are randomly embedded
into the dielectric shell like SiO2 with a thickness between
12 and 20 nm. In fact, it is selected based on the effect of
the SiO2 shell thickness on the plasmon resonance of the
core-shell NPs. For better understanding, the effect of the
SiO2 shell thickness is investigated on the core-shell NP’s
extinction efficiency [Fig. 1(b)]. It is shown that by increasing
the shell thickness, the contributed profile has a blueshift,
and also the related amplitude is decreased. For example,
when the shell thickness is 15 nm, the plasmon resonance
wavelength is around 540 nm. This means that the incident
wave frequency should be tuned around a frequency that has
a maximum overlap with the extinction efficiency profile to
transfer the energy efficiently to the system. Additionally,
it is supposed that the incoming wave is excited in the z
direction. It should be noted that we just trace the QDs that
are embedded in the hot-spot area of the NP; this means
that the NP-QDs’ coupling strength is much stronger than the
QD-QD interaction strength. Moreover, it is supposed that the
considered QDs have a two-level energy.

The NP’s plasmonic field is semiclassically defined in the
radial direction as ENPs(r, θ ) = E0{0.5ω0/(ω − ω0 − i0.5κ0)}
[(−RNPs/r)32 cos(θ )] [10] where E0, κ0, ω, RNPs, and r are
the incidence electric field amplitude, plasmon frequency, the
NP decay rate, incident frequency, the NP radius, and QDs’
position, respectively. Also, ω0 = ωp/

√
(2ε1 + 1) where ωp

and ε1 are the NP’s plasmon frequency and the host medium
dielectric constant (SiO2), respectively. From ENPs(r, θ ), it is

understandable that at θ = 0◦, the maximum amplification
occurs which is marked with the yellow-dashed circle in
Fig. 1(a). Also, it is easy to show that either by increasing
the QDs’ distance from the NP (r) or when θ > 80◦, the field
intensity dramatically declines [20,21]; this is indicated by
the red-dashed circle on the figure. Therefore, at the hot-spot
region a more intense localized plasmon field can be found
which is the main factor for effective coupling between the
NP and the embedded QDs. After a short description about
the system and the related plasmonic field distribution, we
start with the system dynamics of motion (one NP coupling
to one QD) derived by the master equation [10]. Then, we can
expand the theory for N coupled QDs to one NP. Accordingly,
the present system’s Hamiltonians are introduced as

H0 = Egσgg + Eeσee + h̄ωpa†a,

HI,eff = h̄g(r)(a†σ− + aσ+), σ− = σeg,

Hdrive = ih̄
√

κ0[a†εe−iωt − aε∗eiωt ]

+ ih̄[σ+�e−iωt − σ−�∗eiωt ], (1)

where H0, HI,eff , and Hdrive are the unperturbed Hamiltonian,
interaction Hamiltonian between plasmonic NP and QD, and
the driving Hamiltonian which is the direct interaction of the
incoming wave with NP-QD, respectively. Notably, we con-
sider the direct interaction of the incoming light with QDs as
the driving Hamiltonian (through factor �). It means that only
the QD-QD interaction Hamiltonian (HQD−QD) is ignored.
It is because, for simplicity, we just study the interaction
between the NP and QDs at the hot-spot region where the
plasmonic field interaction with the QDs is much stronger
than the QD-QD interaction strength. Another reason is that
one can easily linearize the dynamics equations of the system
around the fix point at which the maximum amount of the
plasmonic field is produced [19,22] and coupled between
NP and QDs. In other words, the many-body effects due to
coupling between the quantum dots can be ignored at the
hot-spot region. Accordingly, the latter assumption is valid
just for the hot-spot region, not for everywhere around the
NPs.
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FIG. 2. NP’s plasmonic field effect on the QDs’ decay rates; (a) spontaneous emission vs QDs’ position around the NP and detuning
frequency, (b) dephasing rate vs QDs’ position around the NP and detuning frequency.

In Eq. (1), σii, Ei, ωp, ε, �, and a, a† are the atomic
transition operator, level energy, plasmon frequency, NP’s and
QDs’ driving field [10,11], and the plasmonic field opera-
tors, respectively. It should be noted that the NP’s Ohmic
loss and the loss due to the scattering into free space are
issued because of the NP’s decay rate [10]. Also, the NP-QD
coupling strength g(r) = (−2μ/h̄)(RNPs/r)3√(h̄ω0/(2ε0Vm))
[9,10], where μ, Vm, ε0, and h̄ are the dipole momentum of
the transition, the considered volume, free space dielectric
constant, and Planck’s constant, respectively. Finally, � =
iE0μ/2h̄ [10] is the classical Rabi frequency for the external
field direct-driving the QD. Other Hamiltonians which should
be considered are the reservoir mode Hamiltonian and the
system-reservoir modes interaction Hamiltonian [9,10]. These
Hamiltonians basically interpret the interaction of the system
with environment and noise effect. The effect of the Hamilto-
nians mentioned above will be considered when we derive the
master equation for the deigned system.

B. System dynamics of motions using Heisenberg-Langevin
equations

The system equations of motions using master equations
dA/dt = [A, Ht ]/ih̄ − κ0{2aAa† − a†aA − Aa†a} + γz0{2σ−
Aσ+ − σ+σ−A − Aσ+σ−}/2 + γs0{2σ+σ−Aσ+σ− − σ+σ−A−
Aσ+σ−} [10] are presented as

ȧ = −(iωp + κ0/2)a − ig(r)σ− + √
κ0εe−iωt ,

σ̇− = −(iωQD + γs0)σ− + ig(r)aσz − �σz,

σ̇z = −γz0(σz − σ0) + i2g(r)[a+σ− − σ+a] + 2�[σ− + σ+],

(2)

where γz0, γs0, σ−, σ+, σz = σee − σgg, and ωQD are the
QDs’ unmodified spontaneous emission rate, dephasing tran-
sition rate, QD’s lowering operator, QD’s raising operator,
population difference, and QD dipole resonance frequency,
respectively.

By neglecting the fast oscillating terms which are per-
formed using the rotating frame approximation [10] in Eq. (2)
at ±ω, with substituting a = ae−iωt and σ− = σ−e−iωt , the
system dynamics of motions is rewritten as

ȧ = −(i	 + κ0/2)a − ig(r)σ− + √
κ0ε,

σ̇− = −(i	e + γs0)σ− + ig(r)aσz − �σz,

σ̇z = −γz0(σz − σ0) + i2g(r)[a†σ− − σ+a] + 2�[σ− + σ+],

(3)

where 	 = ωp − ω and 	e = ω − ωQD are the incident wave
detuning parameters for the plasmon field and the QDs’
transition frequency, respectively. With regard to Eq. (3),
one can theoretically derive the effect of the NP’s plasmonic
field on the QDs’ transition rate and dephasing rate in the
steady-state condition. For evaluating, it should substitute the
steady-state solution of the plasmonic mode which is a =
[ε

√
κ0 − ig(r)σ−]/(i	 + 0.5κ0) into dσz/dt and dσ−/dt of

Eq. (3), which leads to

σ̇− = −(i	e + γs)σ− − �tσz,

σ̇z = −γz(σz − σ0) + 2(�t
∗σ− + �tσ+), (4)

where γz = γz0 + [4g(r)2κ0]/(	2 + κ0
2) and γs = γs0 +

[σzg(r)2]/(i	 + 0.5κ0) are the modified spontaneous
and dephasing rates, respectively. Also, in this equation,
the modified QD’s driving field is defined as �t =
� − [ig(r)ε

√
κ0]/(i	 + 0.5κ0). Consequently, these are the

rates (γz and γs) by which the system’s quantum mechanical
states alter from one state and transfer to another either as a
pure state or with different phases. Herein, it is theoretically
shown that the QD’s transition and dephasing rates are
strongly affected by the NP-QD coupling strength, so that, the
QD’s basic parameters are easily influenced by the plasmon
field effect. To study the effect of the NP plasmonic field
on the QD’s decay rates such as spontaneous emission and
dephasing rate, some simulations are carried out (Fig. 2).
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From Fig. 2, it is observable that the spontaneous emission
rate is more efficiently affected rather than the dephasing
rate, which is understood through the γz and γs formulas.
Moreover, it is shown that in the vicinity of the NP, the
QD’s decay rates are dramatically changed. Such a change
is contributed to the NP-QD coupling strength, which
indicates that by increasing the NP and QD interdistance, the
strength factor is declined. The results illustrated in Fig. 2
are comparable with the results in published articles [9,10].
Additionally, from Eq. (4), it is understandable that the
amplitude of the modified decay rates is strongly increased
with a decrease in detuning frequency (	 ∼ 0).

The interesting point that we analyzed in this study is
the QD’s coupling effect on the NP’s decay rate. For this
purpose, using Eq. (3), we substitute the steady-state solution
of σ− = [ig(r)aσz − �σz]/(i	e + γs0) in da/dt , which leads
to κm = 0.5κ0 − σzg(r)2/(i	e + γs0). This is the modified
plasmonic NP decay rate, which is strongly affected by the
NP-QD coupling strength. More importantly, the sign of QD’s
population difference (σz ) is a critical factor.

Therefore, in this study, we attain a degree of freedom to
manipulate the plasmonic system properties. For instance, by
decreasing the NP’s decay rate, the induced dispersion rate
due to the plasmonic system is dramatically decreased. This
point is very important for the case of the plasmonic sensor
designing. However, for a complete investigation of the QDs’
effect on the NP modified decay rate, one has to know about
the QDs’ population difference behavior. In the steady-state
condition, it can be derived from Eq. (3) as

σz = γzσ0

γz0 + 4g(r)2a†aγs0

γs0
2+	e

2

Np=a†a−−−−→= γzσ0

γz0 + 4g(r)2Npγs0

γs0
2+	e

2

, (5)

where Np is the plasmonic field photons’ number and σ0

is the QDs’ initial population difference in the equilibrium
condition. It should be noted that in Eq. (5), for the sake of
simplicity and clarity, the effect of the QDs’ driving field is
ignored.

In the following, the effect of the QDs on the NP decay
rates is simulated (Fig. 3). In this simulation, it is supposed
that σ0 = −1; however, it seems to be a logical assumption
in a two-level system. In Fig. 3(a), the alteration of the
population difference σz as a function of the QDs’ location
and the detuning frequency 	 is considered. From Eq. (5),
it is clearly perceptible that σz is strongly affected by the
NP-QDs coupling factor. So, at locations where the coupling
factor is negligible, σz tends to have the same amplitude of
σ0. However, when the detuning frequency 	 tends to be very
small, the amplitude of the population difference is declined.
This means that σ11 becomes close to σ22. The interesting
point in this regard is that by increasing the coupling factor
(which means decreasing r), σz decreases in the broad area of
the detuning frequency. Here, it is important to understand the
behavior of the population difference, because it is a key factor
to manipulate the NP’s decay rate. Finally, to investigate the
effect of the QDs on the NP decay rate, another simulation is
carried out [Fig. 3(b)]. It is shown that the modified decay rate
κm is strongly affected by the QDs’ coupling strength when-
ever 	 ∼ 0. As shown in Fig. 3(a), in the vicinity of the NP,

FIG. 3. (a) Population difference vs detuning frequency 	/ω and
QDs locations, (b) NP’s modified decay rate as a function of detuning
frequency 	/ω and QD locations, (c) NP’s modified lifetime as a
function of detuning frequency 	/ω and QD locations.
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TABLE I. NP-QD coupled system assumed data.

κ0 1013 1/s
γz0 109 1/s
γs0 5 × 109 1/s
RNPs 25 nm
RQDs 3 nm
E0 106 V/m
λinc 532 nm
σ0 Variable
λQDs 532 nm

the population difference is changed. Therefore, at this area,
the modified decay rate variation becomes great. This issue
contributes to the coupling factor and population differences
variation. To better estimate the effect of the QDs on the NP
decay rate, another quantity known as NP lifetime τm = 1/κm

is defined. The modified lifetime τm can tangibly illustrate
the effect of the QDs coupled on NP. The normalized NP
lifetime is calculated as τm/τ0, where τ0 = 1/κ0 [Fig. 3(c)].
It is readily seen that a QD coupling to the NP slightly alters
the normalized NP lifetime just whenever 	 ∼ 0. That means
that at other places where 	 �= 0, there is no alteration in the
normalized NP lifetime, so τm/τ0 ∼ 2.

From the results illustrated in Fig. 3, it is predictable that
the modified decay rate can be strongly altered by increasing
the number of the coupled QDs to NP. This issue is the main
goal followed in the present article. See Table I.

C. System with N QDs coupled to one plasmonic NP

Considering the schematic illustrated in Fig. 1, it is shown
that the QDs are embedded at the shell region of the plasmonic
NP, so, similarly, the system dynamics of motions (N QDs
coupled to one NP) can be rewritten as

ȧ = −(i	 + κ0/2)a − i
N∑

j=1

g j (r)σ− j + √
κ0ε,

(6)
σ̇− j = −(i	e j + γs0)σ− j + ig j (r)aσz j − �σz j,

where N indicates the total number of QDs that are attached
to the NP surface, and subscript j is the number of the present
QDs. Therefore, we can rewrite the NP’s modified decay rate
when N QDs are embedded on the NP’s surface as

κm = κ0/2 −
N∑

j=1

g j (r)2σz j

/
(i	e j + γs0). (7)

This equation indicates that by adding N QDs in the steady-
state condition, the NP decay rate is strongly manipulated,
which means that the induced dispersion losses by the plas-
monic NPs are controllable.

After investigation of the effect of one QD on the NP’s
decay rate, we are now ready to study the effect of the N
coupled QDs. Accordingly, the effect of the N QDs embedded
at the hot-spot area on the NP’s decay rate is investigated
(Fig. 4) for six different numbers of the coupled QDs when

σ0 = −1. Moreover, for the sake of simplicity, it is supposed
that all the coupled QDs have the same physical and optical
characteristics, and are randomly distributed around the NP.
In this figure, it is observed that at the points where |	| � 0,
the modified decay rate [Fig. 4(a)] and lifetime [Fig. 4(b)]
are unchanged either in the vicinity or far away from the NP.
In contrast, at 	 ∼ 0, the modified lifetime in Fig. 4(b) is
dramatically changed by increasing the coupled QD numbers.
For instance, N = 40 coupled QDs leads to a strong increase
in the modified decay rate up to 7 times bigger than the
initial amplitude. Also, in Fig. 4(b), it is observed that when
the number of coupled QDs reaches N = 40, the modified
lifetime declines and tends to zero. To illustrate clearly, the
important sections of Figs. 4(a) and 4(b) are exaggerated and
presented as the inset figures in Fig. 4. In the inset figures, one
can exactly find how much the coupled QDs can manipulate
the NP’s lifetime. As a brief conclusion, it is shown that the
plasmonic NP’s decay rate is severely manipulated which, in
essence, is the main reason to introduce the Ohmic losses in
the plasmonic systems [18,19].

However, from Eq. (7), it is seen that changing the sign
of σz leads to an increase in the lifetime of the plasmonic
NP. This result is an important achievement to realize the
fact that the loss introduced by the plasmonic NPs can be
strongly restricted. For this reason, we supposed σ0 = +0.1
and carried out some related simulations (Fig. 5). In this
figure, it is observed that by increasing the coupled QDs
on the NP’s surface, the amplitude of the plasmonic NP’s
lifetime is strongly increased. Therefore, it suggests that in
the coupling system, the plasmonic NP’s decay rate depends
on the coupling factor and more importantly on the QDs’
population difference.

An achievement of this study is that one can design
such core-shell NP-QDs to dramatically decrease the NP’s
dispersion losses. This effect can significantly improve the
plasmonic applications in which the NP’s induced thermal
photons (having a disrupting effect on sensory applications
[1,2,6]) are strongly restricted.

However, a more important question that can be asked
about Eq. (7) is whether it is possible to have κm ∼ 0 or
κm < 0. To answer this question, we focus on the practical
point of view. With regard to that point, κm cannot be zero. It
is because a limited number of QDs can be attached on NP’s
surface, and more importantly, just a few of the attached QDs
can be located in the hot-spot region. This means that all of
the QDs attached on the NP’s surface cannot be effectively
coupled to the plasmonic field. In other words, in the experi-
mental applications, it is impossible to have either κm = 0 or
κm < 0.

In the following, one of the important features of this work
is presented. It is notable that Eq. (7) is calculated in the
steady-state condition in which the steady-state calculation
of σ− j from the second equation (dσ− j/dt ) of Eq. (6) is
substituted in the first one (da/dt ). However, to completely
analyzing the system, Eq. (6) must be solved in the transient
condition. For the sake of simplicity, we analytically solved
a simplified version of Eq. (6) in which it is assumed that all
QDs (N QDs) are embedded at the same location around the
NP (not random). The time-dependent plasmonic mode a(t )
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FIG. 4. QDs’ coupling effect on (a) the NP’s normalized modified decay rate (κm/κ0 ) for σz = −1; (b) the NP’s normalized lifetime (τm/τ0 )
in the steady-state condition. To better illustrate, close-ups are shown in the lower row indicated by the red solid arrows.

is given by

a(t ) = − i

g(r)σz

[
(i	e + γs0) − κs1

2

]{
C2e[−0.5tκs1] − i

(M1
κs1

− 2i�σz
)

2M2

}

− i

g(r)σz

[
(i	e + γs0) − κs2

2

]{
C1e[−0.5tκs2] + i

(M1
κs2

− 2i�σz
)

2M2

}
, (8)

where κs1 = (i	 + 0.5κ0) + (i	e + γs0) + M2 and κs2 = (i	 + 0.5κ0) + (i	e + γs0) − M2 which are the plas-
monic mode decay rates after coupling in the transient condition. In other words, κs1 manifests the effect
of the plasmonic particles on the decay rate; κs2 contributes to the QDs’ influence. In these relations, M2 =√

{(i	 + 0.5κ0)2 + (i	e + γs0)2 − 4(i	 + 0.5κ0)(i	e + γs0)+4Nσzg(r)2}. This quantity, which directly affects κs1 and
κs2, shows the simultaneous effect of the NP-QDs’ coupling factor, the QDs’ population inversion, and the number of QDs
coupled to the NP. The other factor is M1 = 2i�σzκ0 + 4σzg(r)ε

√
κ0, and also C1 = a(0) and C2 = σ−(0) which are the

plasmonic mode and population inversion initial value. Equation (8) suggests that the NP-QDs system decays with two decay
rates constant. For example, if the system has no coupling effect between the NP and the QDs, M2 ∼ 0.5κ0, which means that
κs1 = 0.5κ0 and κs2 = γs0. This fact shows that by changing the system parameters such as the NP-QDs’ coupling strength and
the number of QDs, one can manipulate the decay rates. It is satisfied with the contributed simulations in Figs. 4 and 5.
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FIG. 5. QDs’ coupling effect on (a) the NP’s normalized modified decay rate (κm/κ0 ) for σz = 0.1; (b) the NP’s normalized lifetime (τm/τ0 )
in the steady-state condition. To better illustrate, close-ups are shown in the lower row indicated by the red solid arrows.

Consequently, it is found that by coupling the small QDs
embedded on the NP’s surface, the decay rate of the plasmonic
NP, which is the main reason to introduce the Ohmic losses,
is effectively controlled. This suggests that, for instance, in
quantum sensors [1,2,4,6,19,22], the generated thermal pho-
ton due to the plasmonic NP’s decay effect can be strongly
decreased. This is the important achievement of this study.

III. CONCLUSION

In this paper, the effect of N coupled QDs was investigated
on the NP’s decay rate in the steady-state and transient condi-
tions. The dynamics of motion was studied by the Heisenberg-
Langevin equations, followed by theoretically examining the
influence of the coupled QDs on the NP’s decay rate. As
the most interesting conclusion of this study, it was theoret-
ically shown how the coupled QDs on the NP’s surface can
modify the plasmonic mode decay rate. The results revealed

that by coupling N = 40 QDs on a plasmonic NP surface
in the steady-state condition, the contributed decay rate was
strongly decreased. Of course, it was attained when the QDs’
population difference is fixed to σz = 0.1. Accordingly, we
showed that the NP’s normalized lifetime (τm) was severely
increased up to 50 times more than the initial value (τ0).
Moreover, we analyzed the effect of the QDs coupled on the
NP’s decay rate in the transient condition. For this purpose,
we analytically solved the coupled equations and found that
the plasmonic mode decays with two different rates when the
coupling was established between the NP and the QDs. One of
the decay rates, κs1, relates to the plasmonic particle effect and
the other, κs2, contributes to the QDs’ effect on the coupling
system. Consequently, it was illustrated that the NP’s decay
rate can be decreased, and the amount of the decline can be
controlled through the QDs’ populations difference, NP-QDs’
coupling strength, and the number of QDs embedded on the
NP’s surface.
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