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Quantum enhancement of sensitivity achieved by photon-number-resolving detection in the
dark port of a two-path interferometer operating at high intensities
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It is shown that the maximal phase sensitivity of a two-path interferometer with high-intensity coherent light
and squeezed vacuum in the input ports can be achieved by photon-number-resolving detection of only a small
number of photons in a dark output port. It is then possible to achieve the quantum Cramér-Rao bound of the
two-path interferometer using only the field displacement dependence of the photon number statistics in the
single mode output of the dark port represented by a field-displaced squeezed vacuum state. We find that, at
small field displacements, it is not sufficient to use the average photon number as the estimator, indicating that
an optimal phase estimation depends critically on measurements of the precise photon number. We therefore
analyze the effect of detection efficiency on the Fisher information and show that there is a transition from low
robustness against photon losses associated with quantum interference effects at low field displacements to high
robustness against photon losses at high field displacements. The transition between the two regimes occurs at
field shifts proportional to the third power of the squeezing factor, indicating that squeezing greatly enhances
the phase interval in which quantum effects are relevant in optimal phase estimations using photon resolving
detectors. The case under study could thus be understood as a “missing link” between genuine multiphoton
interference and the straightforward suppression of noise usually associated with squeezed light.
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I. INTRODUCTION

Two-path interferometers are highly sensitive to small
phase shifts as demonstrated, e.g., by their application to
gravitational wave detection in the Laser Interferometer
Gravitational-Wave Observatory (LIGO) [1–3]. A quantum
enhancement of this high phase sensitivity can be achieved
by feeding a coherent light field into one of the input ports
and a squeezed vacuum state into the other [4–10]. In this
case, the phase shift is proportional to the change in the
photon number difference in the outputs, and the squeezing
reduces the photon number fluctuations of this difference,
increasing the signal-to-noise ratio for the phase estimate.
It therefore seems to be unnecessary to apply the complete
theoretical analysis that is usually needed to achieve the
quantum Cramér-Rao (QCR) bound of a nonclassical input
state [11]. However, as we will show in the following, the
average photon number difference between the two output
ports is not the optimal estimator in the situation where
almost all of the photons exit the interferometer in only one
of the two output ports, leaving the other port dark. This
situation is similar to the optimal phase estimation procedure
for combinations of squeezed vacuum with comparably weak
coherent light, which can result in photon statistics dominated
by genuine multiphoton coherences [12–14]. In the present
case, the few photons left in the dark port exhibit the highly
nonclassical photon statistics of a field-displaced squeezed
vacuum state, requiring an optimal estimator that is based on
precise photon counting in the dark port output only. It has
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already been pointed out previously that the optimal estimator
for a combination of coherent state and squeezed vacuum in
the output ports is the parity of odd and even photon numbers
[15]. In the case of sufficiently high intensity in the coherent
field, we can describe the effect of finite phase shifts by a
field displacement of the squeezed vacuum and characterize
the gradual change of the optimal estimation strategy from
parity to average photon number.

It is interesting to observe that the full sensitivity of the
high photon number in the bright output port can be obtained
from a precise measurement of the few photons in the dark
port, without detecting any of the photons in the bright output
port. However, the need to resolve the precise photon number
of the dark port requires special photon-number-resolving
detectors (PNRDs) [16–20] operating at high detection ef-
ficiency. Any photon losses in the PNRDs will result in a
significant reduction of the sensitivity from the QCR bound.
In the regime where the average photon number is the optimal
estimator, photon losses will have less effect on the sensitivity.
The fragility of the quantum sensitivity enhancement in the
presence of photon losses is therefore a characteristic quan-
tum property that distinguishes the suppression of noise by
squeezing from the multiphoton interferences that can only
be accessed by the precise photon statistics obtained from
PNRDs. It may thus be of interest to take a closer look at
the photon counting statistics of the dark port output and
its relation with the robustness of sensitivity against photon
losses.

The rest of the paper is organized as follows. In Sec. II,
we introduce the description of the phase dependent photon
number statistics in the dark port regime and compare the
performance of the optimal phase estimators with the average
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FIG. 1. Illustration of the field displacement of a low-intensity
input state |σ0〉 in a two-path interferometer using a high-intensity
coherent state |α〉. For a small phase shift ϕ � 1, a small part
αϕ/2 of the coherent amplitude is transferred to the output mode
of the low-intensity input state, resulting in a unitary displacement
operation acting on the input state |σ0〉.

photon number as a function of the phase bias of the inter-
ferometer. In Sec. III, we analyze the precise photon statistics
of the displaced squeezed states and identify the characteristic
quantum interference effects on their photon number statis-
tics. In Sec. IV, we identify a critical quadrature displacement
value and show that the quantum interference effects become
minor effects for displacement greater than this critical value.
In Sec. V, photon losses in the PNRDs are introduced, and
the reduction of phase sensitivity caused by these losses is
analyzed. It is shown that the robustness against photon losses
increases as the optimal estimator changes from a complicated
photon number dependence at low bias phases to the average
photon number at higher bias phases. Section VI concludes
the paper.

II. PHASE ESTIMATION IN THE DARK PORT REGIME

Figure 1 shows a schematic representation of a two-path
Mach-Zehnder interferometer commonly used in optical
quantum metrology. The phase difference between the two
internal paths is ϕ. The input modes â1,2 are transformed into
the output modes by a unitary operator Û (ϕ) that transforms
the modes according to

Û

(
â1

â2

)
Û † =

(
cos( ϕ

2 ) − sin( ϕ

2 )

sin( ϕ

2 ) cos( ϕ

2 )

)(
â1

â2

)
. (1)

A squeezed vacuum state |σ0〉 is input in mode 1, and a
high-intensity coherent state |α〉 is input in mode 2. In the
following, we will define the single mode phases so that α is
a real number and is phase locked to the squeezed quadrature
of |σ0〉. It is then possible to express the two-mode input state
using a two-mode displacement operator D̂(0, α) acting on the
product of vacuum and squeezed vacuum,

|σ0〉 ⊗ |α〉 = D̂(0, α) |σ0; vac.〉. (2)

The interference of the input states can now be expressed by
separate transformations of the displacement and the partially
squeezed two-mode vacuum,

Û (ϕ)|σ0; α〉 = Û (ϕ)D̂(0, α)Û †(ϕ) Û (ϕ)|σ0; vac.〉. (3)

The transformation of the displacement operator changes the
amplitude of the displacement according to the transformation

of the modes given by Eq. (1),

Û (ϕ)D̂(0, α)Û †(ϕ) = D̂

(
sin

(
ϕ

2

)
α, cos

(
ϕ

2

)
α

)
. (4)

For small phases ϕ � 1, the field displacement of mode 1
is approximately (αϕ/2), while the displacement of mode
2 is nearly unchanged. The transformation of the partially
squeezed vacuum |σ0; vac.〉 describes photon transfers from
the squeezed vacuum |σ0〉 to the true vacuum |vac.〉. However,
the low photon number of the squeezed vacuum makes such
a transfer highly unlikely at small phases ϕ � 1, so the
unitary transformation leaves the partially squeezed vacuum
approximately unchanged:

Û (ϕ)|σ0; vac.〉 ≈ |σ0; vac.〉 (5)

Since we can neglect the entanglement generated by the
transformation at small phases, the output is a product state
of a squeezed vacuum state displaced by a field quadrature of
x = αϕ/2 and a coherent state of amplitude α. The coherent
state in the bright output port is nearly unchanged by the
small phase ϕ and therefore carries no phase information
whatsoever. It is therefore possible to completely discard the
intense light in the bright output port and obtain an optimal
phase estimate from photon detection in the dark output port
only.

The output state in the dark port is given by a quadrature-
displaced squeezed vacuum,

|σ (x)〉 = D̂(x)|σ0〉, (6)

where the field displacement is proportional to the phase ϕ

with a proportionality factor given by half the amplitude of
the high-intensity coherent field,

x = α

2
ϕ. (7)

It is therefore possible to obtain an estimate of a small shift
of the phase ϕ by estimating the value of a small variation of
the field displacement x of the quadrature-displaced squeezed
vacuum. The proportionality in Eq. (7) determines the rela-
tion between the phase sensitivity 1/�ϕ2 and the quadrature
sensitivity 1/�x2,

1

�ϕ2
= α2

4

1

�x2
, (8)

where �ϕ2 and �x2 describe the variances of the estimates
obtained from the measurement results. In the following, we
will thus focus on the estimation of small variations in the field
displacement x parametrizing the single mode output state in
the dark port.

The information on small variations in the quadrature
displacement x is contained in the conditional photon number
statistics pn(x) = |{n|σ (x)|2. As shown in [13], it is possible
to achieve the QCR bound with these probabilities by choos-
ing an optimized estimator. The QCR bound is given by the
quantum Fisher information HF (x) of the displaced squeezed
vacuum state |σ (x)〉,

1/�x2 � HF (x). (9)

For a parametrized unitary transformation, the quantum Fisher
information is given by the uncertainty of the generator of the
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PNRD

FIG. 2. Comparison of estimation strategies for small variations
in the x-quadrature displacement. The sensitivity is equal to the
Fisher information of the quantum state HF for a PNRD mea-
surement resolving the complete distribution of photon numbers n.
Alternatively, it is possible to average the photon numbers over a
large number of measurements, as shown in the lower part of the
figure. From the measured average photon number n̄(x), one can
estimate the value of x with a resolution equal to Iavg., which is
generally lower than the quantum Fisher information HF as shown
in Eq. (13).

unitary. In the case of a displacement of the quadrature X̂ , this
is the uncertainty of the conjugated quadrature Ŷ ,

HF = 16�Y 2, (10)

where �Y 2 = 〈Ŷ 2〉 − 〈Ŷ 2〉. Since this bound can be achieved
using photon number measurements [13], the QCR bound is
given by the classical Fisher information of the probability
distribution pn(x), ∑

n

(∂x pn)2

pn
= 16�Y 2. (11)

This means that, even though the probability distribution
pn(x) depends on the displacement x, the optimal phase
sensitivity always achieves the same value given by the dis-
placement independent QCR bound of the squeezed vacuum.
On the practical side, the problem is that the optimal phase
estimator depends on the details of pn(x) and may be very
sensitive to changes in the precise distribution caused by
photon losses or similar detection errors. To get an idea of
how robust the sensitivity is against photon losses, it may
be helpful to compare the QCR bound with the sensitivity
achieved by using the average photon number as an estimator,
as shown in Fig. 2. In this case, the sensitivity is given by the
ratio of the squared x derivative of the average photon number
n̄ and the photon number uncertainty �n2 = 〈n̂2〉 − 〈n̂2〉,

Iavg.(x) = (∂xn̄)2

�n2
. (12)

For the displaced squeezed vacuum state |σ (x)〉, the sensitiv-
ity is given by the quantum Fisher information multiplied with
a sigmoid function,

Iavg.(x) = HF
x2

x2 + χ2
c

, (13)

where the critical displacement χc defines the width of the
sigmoid function. At the displacement x = χc, the sensitivity
Iavg. achieves half of the quantum Fisher information HF . For
displacements much larger than χc the sensitivity approaches
the QCR bound, indicating that the average photon number
is the optimal estimator. It should be noted that this estimate
corresponds to homodyne detection of the squeezed vacuum,

where the large amplitude displacement acts as a local os-
cillator field, converting the field quadrature fluctuation into
photon number fluctuations in the outputs. The critical
displacement χc therefore marks the transition from a photon-
number-sensitive detection to a detection of interference
effects of the quadrature component in phase with the dis-
placement field. The critical displacement χc can be deter-
mined from the quantum statistics of the squeezed vacuum.
Specifically, χc depends on the photon number uncertainty
�n0 and the X̂ -quadrature uncertainty �X0 of the undisplaced
squeezed vacuum |σ0〉,

χc = �n0

2�X0
. (14)

For an squeezed vacuum input |σ0〉 with a squeezing factor r,
the critical displacement χc is given by

χc = 1

2
√

2
(e3r − e−r ), (15)

which is a third-order function of the squeezing factor er . The
critical displacement corresponds to a critical phase ϕc in the
two-path interferometer, which depends on the amplitude α of
the coherent light in the bright input port:

ϕc = 1√
2

e3r − e−r

α
. (16)

This relation shows that the amount of squeezing together
with the intensity of the coherent input determine the range of
bias phases [−ϕc, ϕc] for which the average photon number is
not a very good estimator. Since the coherent input is much
stronger than the squeezed vacuum input, the critical phase
is typically very small. However, the increase with the third
power of the squeezing factor indicates that the range of bias
phases [−ϕc, ϕc] can be significantly enlarged by stronger
squeezing at a fixed coherent amplitude.

The reason why the sensitivity of the average photon
number estimate is lower than the optimal estimate is the
nonclassical statistics of photon numbers n in the dark port.
Therefore ϕc provides a condition for the range of bias phases
with highly nonclassical photon number statistics in the dark
output port. We will hence take a closer look in the next
section at the precise distributions of photon number as a
function of the x displacement resulting from bias phases ϕ.

III. NONCLASSICAL PHOTON NUMBER STATISTICS
IN THE DARK PORT OF THE INTERFEROMETER

In this section, we characterize the photon statistics of the
x-displaced squeezed state |σ (x)〉 and show that the oscil-
lations observed in the photon number distributions can be
explained as an effect of quantum interference between two
different phases of the single mode oscillation.

The photon statistics pn(x) = |〈n|σ (x)〉|2 of a displaced
squeezed state can be obtained from the inner products of
photon number states |n〉 and the displaced squeezed state
|σ (x)〉,

〈n|σ (x)〉 =
(√

1 − γ 2
γ n

n!

) 1
2

Hn(2ζx)e− 2γ

1+γ
(ζx)2

, (17)
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FIG. 3. Illustration of the displacement dependence of the photon statistics observed using PNRDs in the dark port of the two-path
interferometer for a squeezing parameter of r = 1. The displacement of the phase space distribution is shown on the upper left-hand side
of the figure. The displacement dependence of the detection probabilities is shown on the lower left. An offset proportional to (n + 1/2) is
used to distinguish the different photon numbers. The parabola shows the value of x2 in units of the offset, indicating that probability rapidly
drops to zero for displacement larger than

√
n + 1/2. The zero points of the distributions are marked with xn,k as explained in the text. The

right-hand side of the figure shows the photon number distributions for x = x4,1 ≈ 1.16 and x = x6,1 ≈ 1.65, where the lowest minima of the
photon number distribution are found at n = 4 and n = 6, respectively.

where Hn is the probabilists’ Hermite polynomial, and γ and
ζ are functions of the squeezing parameter r given by

γ = tanh(r) and ζ = 1√
1 − e−4r

. (18)

Figure 3 illustrates the photon statistics of a displaced
squeezed state with a squeezing parameter of r = 1. On
the lower left, the dependence of detection probabilities on
displacements is shown for photon numbers from 0 to 6. The
Gauss-Hermite functions given by Eq. (17) describes oscilla-
tion of the probability amplitudes that result in displacement
values xn,k where the probability pn drops to zero. As shown
in the figure, we define xn,k as the displacement of the kth zero
point for pn(x) counted from large displacements to the center.
The zero point displacements xn,k can be related to the zero
point arguments zn,k of the probabilists’ Hermite polynomials
Hn(z) by

xn,k = 1
2

√
1 − e−4rzn,k . (19)

This relation illustrates the rapid transition from r = 0 where
the only zero points are found at x = 0 to a situation where
the zero points are close to zn,k/2 observed for X̂ -quadrature
eigenstates.

When considering the displacement dependence of the
whole photon number distribution, the locations of the minima
nmin. in the probability distribution pn appear to move to
higher photon numbers as the displacement increases. This
is illustrated on the right-hand side of Fig. 3, where the zero
point at n = 4 observed at a displacement of x4,1 seems to
move to n = 6 as the displacement increases to x6,1. In gen-
eral, at a displacement of the value x = xn,1, the corresponding

photon number distribution pn has the first probability mini-
mum n(1)

min. = n following the first peak. By considering the
n dependence at a fixed displacement of x, the multiphoton
interference fringes given by pn(x) appear as interference
fringes in photon number n following the first minimum.
These interference fringes are a series of oscillations with
decreasing periodicity approaching a period of 2 photons for
high n, which corresponds to the periodicity observed for
quantum states with a specific photon number parity such as
the squeezed vacuum without displacement or a NOON state
superposition.

It is possible to explain this interference pattern in the
photon number distributions as a superposition of two quan-
tum state components separated by a unitary single mode
phase shift of �τ (n) in phase space [21]. Figure 4 shows a
phase space illustration of the photon number dependence of
this single mode phase shift. For sufficiently high squeezing
parameters, the displaced squeezed state can be characterized
by the displacement x, which is related to two phase values
τ1,2(n) satisfying x = √

n + 1/2 cos τ1,2(n) for each photon
number n. As explained in [21], the separation �ν between
two consecutive minima in pn can be derived from the phase
difference �τ (n) = τ1(n) − τ2(n) using the following rela-
tion:

�ν ≈ 2π

�τ (n)
. (20)

As shown in Fig. 4, the phase difference �τ (n) has its
smallest value at the minimum with lowest photon number
n(1)

min. and gradually increases with increasing photon number.
According to Eq. (20), this means that the separation �ν
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FIG. 4. Explanation of the origin of multiphoton interference
fringes in the photon number distribution pn(x) for a quadrature
displacement of x = x4,1 ≈ 1.14 and a squeezing parameter of r =
0.8. The quantum state |σ (x)〉 is indicated by a straight line parallel to
the y axis at the displacement x. The actual phase space extent of the
Gaussian Wigner function of |σ (x)〉 is illustrated by the blue-shaded
region. The dotted arcs indicate single mode phase shifts, with �τ (n)
describing the phase difference between the two phases τ1(n) and
τ2(n) that intersect the central quadrature value x along a circle of
photon number n. The solid circles show the positions of minima
caused by destructive interferences in the photon number distribution
pn. Note that these minima are not necessarily at integer photon
numbers. As shown in Eq. (20), the product of the arc �τ (n) and
the photon number difference �ν between two consecutive circles
is approximately equal to 2π . Since �τ (n) gradually increases from
an initial value of about 2π/3 to a final value of π , the separation
�ν between consecutive minima decreases from about 3 to an
asymptotic limit of 2 as photon number increases.

has the largest value between the first and second minima
and decreases as photon numbers increase. For an extremely
large photon number, the phase difference �τ is approxi-
mately π , so that the separations between minima turn into
a constant periodicity of two photons. The photon number
distribution pn therefore exhibits a series of quantum inter-
ference fringes with a clear periodic pattern explained by
the phase differences �τ (n) between the intersections of
the quantum state |σ (x)〉 with states of photon number n in
phase space.

Of particular interest is the location of the first minimum
n(1)

min.. This minimum marks the high photon number end of
the first and highest peak in the photon number distribution
pn. Interference effects only become relevant when this first
minimum is located well within the overall photon number
distribution. If the separation between the first minimum and
the average photon number is much larger than the photon
number uncertainty, the photon number distribution will ap-
pear as a single peak that can be approximated by a Gaussian
distribution. It is therefore possible to distinguish two separate
regimes based on a comparison between the separation of the
first minimum and the average photon number and the photon
number uncertainty of the quantum state. In the following, we
will show that this transition is identical to the transition at
which the average photon number becomes a good estimator
for the phase estimate.

IV. TRANSITION FROM QUANTUM INTERFERENCE
TO SINGLE PEAK STATISTICS

The exact photon number distribution pn in the dark port
for a given displacement x is given by the absolute squares
of the probability amplitudes 〈n|σ (x)〉 shown in Eq. (17).
This inner product can be expressed by appropriately modified
Gauss-Hermite functions. It is well-known that these Gauss-
Hermite functions can be approximated by a product of an
envelope function and a modulation with a phase of S, e.g., by
using the Wentzel-Kramers-Brillouin approximation to find
the solution of the harmonic oscillator eigenstates. Using this
approximation, we can write the photon number distribution
for n + 1/2 > x2 as follows:

pn(x) ≈ 2ρ(n, ζx) cos2

(
S(n, ζx) − π

4

)
, (21)

where the coarse grained probability distribution is given by

ρ(n, x) = 1√
2π (n + 1

2 − x2)�Y 2
e− n+ 1

2 −x2

2�Y 2 (22)

and the quantum phase S(n, ζx) in the interference term is
given by the intersecting area between the circle of photon
number n and the straight line representing an X -quadrature
eigenstate |ζx〉 as illustrated in Fig. 4. If the optical phase τ is
not too large, this area can be approximated by

S(n(y), ζx) = S(y, ζx) ≈ 2y3

3ζx
, (23)

where y is the Y quadrature of the phase space point defined
by a photon number n and an X quadrature of ζx,

y =
√

n + 1

2
− (ζx)2. (24)

S(y, ζx) describes the quantum phase responsible for the
interference pattern in pn(x) as shown in Eq. (21). The first
destructive quantum interference occurs at S(y, ζx) = 3π/4,
with further minima occurring after each increase by π . It
is therefore possible to evaluate the number k of destructive
quantum interferences that occur up to a photon number
corresponding to a Y -quadrature value of y by

k =
⌊

1

π
S(y, ζx) + 1

4

⌋
. (25)

As x increases, the number k of destructive quantum interfer-
ences below the value of y decreases, until ζx = (8y3/9π ),
where the first destructive interference is located at y. In gen-
eral, the Y -quadrature value of the kth minimum is determined
by

y(k)
min. =

(
(4k − 1)

3π

8
ζx

) 1
3

. (26)

This relation indicates that the locations of the minima of the
photon number distribution pn are monotonically increasing
with the field displacement x.

The statistics of the coarse grained distribution ρ(n, x) is
easier to understand if it is transformed into a distribution of y
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values given by Eq. (24),

ρ(n, x)
dn

dy
= 2√

2π�Y 2
e− y2

2�Y 2 , (27)

where the factor of 2 indicates that there are two y values for
each value of n. We can therefore use the Gaussian statistics
of y to estimate the probability of finding photon numbers
below or above the first occurrence of destructive quantum
interference. This estimate can tell us how important quantum
interferences are in the photon number distribution.

For y = �Y , the approximate probability of finding photon
numbers with higher y values is 32%. If y = �Y is the Y -
quadrature value of the first minimum, 68% of the detected
photon numbers will be lower than the first minimum and will
therefore be found within a single peak in the probability dis-
tribution pn. This condition is satisfied when the displacement
is x = χ

�Y with

χ
�Y = 8�Y 3

9πζ
. (28)

Since the critical displacement χc given in Eq. (15) is also
proportional to the �Y 3, the displacement χ

�Y can be directly
related to this critical displacement. The relation obtained by
comparing Eqs. (28) and (15) is

χ
�Y = 2

√
2

9π
ζχc. (29)

For ζ ≈ 1, the ratio is approximately given by χc ≈ 10χ
�Y .

This means that the transition of the sensitivity for average
photon number estimate is closely related to the increase in
probability of photon numbers belonging to the first peak of
the photon number distribution.

Figure 5 shows the positions of minima in the photon num-
ber distribution in the form of a contour plot of (S/π + 1/4) as
given by Eq. (25). At x = χ

�Y , the first minimum of the photon
number distribution is found at y = �Y , corresponding to a
probability of approximately 68% of photon number outputs
being found in the first peak. As displacements x increase, the
position of the first minimum then moves to higher values of
y, so that the total probability of photon number outputs being
found in the first peak increases. This tendency is the reason
for the increase of sensitivity for average photon number
estimate given by Eq. (13). At the critical displacement x =
χc, the value of y for the first minimum is

y(1)
min. = 3

√
9π

2
√

2ζ
�Y ≈ 2.154�Y. (30)

This means that about 95% of the photon number distribution
is in the first peak.

At displacements larger than χc, most of the photon num-
ber distribution is well below the first minimum, and the shape
of the distribution is approximately a Gaussian. It is therefore
possible to evaluate the distance between average photon
number and the first minimum in terms of the photon number
uncertainty �n to get a clear idea of how well the photon
number distribution approximates a Gaussian. For x = χc, the
photon fluctuation is given by

�n = 2�Y 2, (31)

FIG. 5. The number of destructive quantum interferences at Y -
quadratures smaller than a value of y for an x-displaced squeezed
state |σ (x)〉 with a large squeezing factor, as indicated by a contour
plot of S/π + 1/4. The lower scale gives the displacement x in units
of χ

�Y marking the occurrence of the first minimum at y = �Y ,
and the upper scale gives x in units of the critical displacement χc

describing the sensitivity of average photon estimates.

while the average photon number is

n̄ = χ2
c + �Y 2 − 1

2 . (32)

The first minimum is determined to be

n(1)
min. = (ζχc)2 + (

y(1)
min.

)2 − 1
2 ≈ n̄ + 2.07�n. (33)

This means that for all displacements x � χc, the first mini-
mum is separated from the average photon number by a dis-
tance of more than 2�n. In this regime, quantum interferences
only modulate the probability pn of photon numbers n that are
larger than n̄ + 2�n, which is only a minor modification of
the low-probability higher-photon-number tail of the Gaussian
distribution. It is then possible to approximate the total photon
number distribution with a single peak statistics given by the
Gaussian distribution

pn(x) ≈ 1√
2π�n

e− (n−n̄)2

2�n2 , (34)

which explains why the average photon number estimate
achieves the QCR bound.

Figure 6 illustrates the photon number statistics of dis-
placed squeezed states for a squeezing parameter of r = 0.8
at different displacements. In the upper part of the figure,
we show the relation between the first minimum n(1)

min. (green
circle) and the photon numbers [0, n̄ + 2�n] (red shading
inside the red dash-dotted line) in phase space. The corre-
sponding probability distribution pn is shown in the lower
part of the figure. One can observe that for a small displace-
ment value x = x4,1 ≈ 1.14, the quantum interferences have
significant effects on the photon number statistics. As the
displacement increases, the quantum interference fringes shift
to higher photon numbers. This shift is faster than the com-
bined increase of average photon number and photon number
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(a) (b) (c)

24.9

FIG. 6. Explanation of quantum interference fringes in photon number distributions of displaced squeezed states with a squeezing
parameter of r = 0.8. In the upper part, the first minimum n(1)

min. (green circle) and the regime [0, n̄ + 2�n] (red shading inside the red
dash-dotted line) for different quadrature displacements are shown in phase space. The dashed line represents the ζx quadrature. In the lower
part, the actual probability distributions pn of displaced squeezed states obtained from Eq. (17) are plotted as histograms. The approximate
quantum interference fringes given by Eq. (21) are plotted with orange squares, which are obtained from the orange dashed envelop function
2ρ(n, ζx) modulated by a squared cosine function with a phase of S(n, ζx) − π/4. The approximate Gaussian distribution for n̄ and �n given
by Eq. (34) are plotted using blue circles. Panel (a) shows the photon statistics for a small displacement of x = x4,1 ≈ 1.14. The photon number
distribution is well approximated by Eq. (21), but is quite different from the Gaussian distribution. Panel (b) shows the photon statistics for
an intermediate displacement of x = x6,1 ≈ 1.62. The probabilities for photon numbers greater than 4 are well approximated by Eq. (21). The
probabilities of photon number from 0 to 3 are roughly given by the Gaussian, with a maximal deviation at 3 photons. Panel (c) shows the photon
statistics for a large displacement of x = χc ≈ 3.74. In this limit, the approximation of Eq. (21) converges on the Gaussian approximation of
Eq. (34). Only a slight deviation from the Gaussian exists around n = 20.

uncertainty given by n̄ + 2�n. For a quadrature at the critical
displacement χc, the whole photon number statistics can be
well approximated by the single peak Gaussian function given
in Eq. (34) with only a small modification by the interference
fringes around the photon number n = 20.

Figure 7 illustrates the transition between quantum inter-
ference and Gaussian statistics by a contour plot of pn(x) for
a squeezing parameter of r = 0.8. The contour plot makes it
easy to see the shift of quantum interference fringes to higher
photon numbers as the displacement x increases. The average
photon number and the photon number uncertainty are indi-
cated by the red lines. It is easy to see that the interference
fringes shift to higher photon numbers faster than the sums
of average photon number and photon number uncertainty
given by n̄ + �n and n̄ + 2�n. For x � χc, the quantum
interference fringes are all found above photon numbers of
n̄ + 2�n.

The results of this section confirm that the reason for the
transition in the sensitivity of the average photon number
estimate discussed in Sec. II is the transition from quantum
interference in the photon number distribution to a single-

peaked Gaussian distribution. The average photon number
becomes an inefficient estimator for x < χc as quantum in-
terference effects modify the x gradients of the probability
distribution pn(x). Efficient estimators then require precise
detection of photon numbers, since the value of the estimator
may be quite different for neighboring photon numbers. It is
therefore necessary to use PNRDs to achieve the QCR bound,
and the actual phase resolution that can be achieved will be
very sensitive to photon losses in the detection process. We
will therefore quantify the effects of photon losses that limit
the detection efficiencies of PNRDs on the Fisher information
that can be extracted by photon detection in the dark output
port of the two-path interferometer.

V. REDUCTION OF FISHER INFORMATION
BY PHOTON LOSSES IN PNRDs

In a realistic PNRD measurement, photon losses in the
detection process modify the photon statistics and reduce
the visibility of quantum interferences in the photon number
distribution. The Fisher information contributed by quantum
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FIG. 7. Transition from quantum interference to Gaussian dis-
tribution. The contour plot shows the photon number distribution
pn(x) of squeezed states with r = 0.8, where the photon number
dependence is mathematically interpolated between discrete photon
numbers to give a more intuitive image of the photon number
dependence. The red solid line indicates the average photon number
n̄. The magnitude of photon number uncertainty �n is illustrated
by the dashed and dotted lines, showing n̄ + �n and n̄ + 2�n,
respectively. The region between n̄ and n̄ + 2�n is highlighted in
red. The white circles mark the zero points xn,k of pn(x). The green
line marks the interpolation of the lowest photon number zero points
associated with xn,1, indicating the photon number at which quantum
interference starts to occur. As the displacement x increases, the zero
points shift out of the regime between n̄ and n̄ + 2�n and the photon
statistics approaches a Gaussian as given by Eq. (34).

interferences is therefore sensitive to photon losses, especially
at the displacements x = xn,k , where the photon number n
has zero probability in a perfect PNRD measurement. A
similar phenomenon has been observed in the experiments
of phase sensing using NOON states and Holland-Burnett
states [22,23]. On the other hand, the estimation resolution in
average photon number estimation is relatively robust against
photon losses. In this section, we show that even small photon
losses can remove the contributions of destructive quantum
interferences from the Fisher information obtained in PNRD
measurements. We will employ this result to develop a theory
of quantification of contributions of destructive quantum in-
terferences in the quantum Fisher information, which can be
used to describe the effects of losses in PNRD measurements.
In a lossy PNRD measurement, the efficiency (1 − ε) of a
PRND is characterized by the rate of photon losses ε, which
is the probability of a single photon being lost in the detector.
The model of photon losses in a PNRD can be described by
a beam splitter with the reflection coefficient ε (see Fig. 8).
The photon number distribution Pn resolved in a lossy PNRD
measurement is given by the sum of the probabilities of the

FIG. 8. A lossy PNRD measurement of x-displaced squeezed
states |σ (x)〉 with the detector efficiency (1 − ε) (the upper part).
The model of photon losses is described by a beam splitter with
the reflection coefficient ε. The input pure state |σ (x)〉 undergoing
photon losses becomes a mixed state ρ̂ε (x). The resolved photon
number distribution Pn(x) given in Eq. (35) is associated with the
mixed state ρ̂ε (x). The lossy PNRD measurement in the upper
part is equivalent to the lower part, in which the initial squeezed
vacuum state |σ (0)〉 first passes through the lossy channel (the beam
splitter), then is displaced by the displacement operator D̂(xeff. ) with
an effective displacement xeff. = √

1 − ε x. In the end, the final state
ρε (x) [see Eq. (41)] is resolved by a perfect PNRD.

(n + k)-photon number inputs losing k photons in the outputs,

Pn(ε, x) = (1 − ε)n
∑

k

(
n + k

k

)
εk pn+k (x), (35)

where pn+k (x) = |〈n + k|σ (x)〉|2 is the photon number dis-
tribution of the pure state inputs. The Fisher information
obtained in such a lossy PNRD measurement is determined by
the logarithmic derivatives ∂x(ln Pn) where the contribution In

of each outcome n is given by

In(ε, x) = [∂xPn(ε, x)]2

Pn(ε, x)
. (36)

The total Fisher information IF is then given by the sum of the
contributions In from all the n-photon outputs:

IF (ε, x) =
∑

n

In(ε, x). (37)

The amount of change in the Fisher information by photon
losses depends critically on both the magnitudes of the prob-
abilities and their derivatives. Specifically, the derivatives will
be zero at maxima and minima of the x dependence of the
probability Pn(ε, x). Equation (36) indicates that the Fisher
information In contributed by these results will then go to zero
unless the probability itself also goes to zero. In the presence
of small losses, the minimal probabilities at xn,k will be greater
than zero [Pn(ε, xn,k ) > 0], so that the contributions to the
Fisher information for these minima are exactly zero,

In(ε > 0, xn,k ) = 0. (38)

However, the original probabilities of the pure state minima
are all zero [pn(xn,k ) = 0]. This means that they contribute
a finite amount of Fisher information, given by the second
derivative of the pure state probability,

In(ε = 0, xn,k ) = 2∂2
x pn(xn,k ). (39)

It should be noted that this contribution to the Fisher informa-
tion is essential for achieving the QCR bound in the presence

013814-8



QUANTUM ENHANCEMENT OF SENSITIVITY ACHIEVED … PHYSICAL REVIEW A 100, 013814 (2019)

of quantum interferences. Even a small rate of photon losses
ε � 1 will immediately reduce the Fisher information at the
minimum to zero. However, the precise x dependence of this
loss of Fisher information requires a more detailed analysis of
the relation between the pure state probabilities |〈n|σ (x)〉|2
and the detection probabilities Pn(ε, x) in the presence of
losses.

The detection probabilities Pn(ε, x) for a lossy PNRD
can be described by applying a linear optics loss rate of ε

to the squeezed vacuum state before applying displacement
operation D̂(xeff. ), in which the effective displacement xeff. =√

1 − εx has also been modified by the losses (see Fig. 8). The
detection probabilities of the lossy PNRD are then described
by the photon number distribution Pn of a mixed state ρε (x),

Pn(ε, x) = 〈n|ρ̂ε (x)|n〉, (40)

where the effects of losses have been included in the ε

dependence of the mixed state. It is possible to separate the
displacement from the main effect of the losses using

ρ̂ε (x) = D̂(xeff. )ρ̂ε (0)D̂†(xeff. ). (41)

Here, ρ̂ε (0) is the squeezed thermal state that results when
photon losses are applied to a squeezed vacuum [14,24–28],

ρ̂ε (0) = (1 − λ)
∑

m

λm|�m〉〈�m|, (42)

where the |�m〉 are squeezed photon number states and the
thermal coefficient λ is given by

λ =
√

1 + 4(1 − ε)ε sinh2(r) − 1√
1 + 4(1 − ε)ε sinh2(r) + 1

. (43)

The squeezed photon number states can be described by a
unitary squeezing operator acting on an m-photon state

|�m〉 = Ŝ(reff. )|m〉, (44)

where the effective squeezing parameter reff. is a function of
the original squeezing parameter r and the loss rate ε,

reff. = 1

4
ln

(
(1 − ε)e2r + ε

(1 − ε)e−2r + ε

)
. (45)

For small photon losses ε � 1, the thermal coefficient λ is
approximately equal to ε sinh2(r) � 1 and the mixed state
ρε (0) can be approximated by a mixture of squeezed vacuum
and squeezed single photon state,

ρ̂ε (0) ≈ [1 − ε sinh2(r)]|�0〉〈�0| + ε sinh2(r)|�1〉〈�1|.
(46)

The contribution of the displaced squeezed vacuum
|�0(xeff. )〉 = D̂(xeff. )|�0〉 corresponds to the probability
distribution pn(xeff. ) of the pure state input |σ (xeff. )〉 with a
squeezing parameter of reff.. Therefore the probability Pn(ε, x)
is very close to pn(xeff. ) for a squeezing parameter of reff..

To estimate the effect of small losses, we can now focus
on the zero points in the distribution pn(xeff. ) defined by the
xeff.-displaced reff.-squeezed vacuum contribution in Eq. (46),

xeff. = xn,k . (47)

Around these points, the contribution of the squeezed single
photon state should be added to the probability, resulting in a

modified Fisher information of

In(ε, xeff. ) ≈ [∂xeff. pn(xeff. )]2

pn(xeff. ) + ε sinh2(r)|〈n|�1(xeff. )〉|2
, (48)

where |�1(xeff. )〉 is the reff.-squeezed single photon state
displaced by xeff.. Since we can assume that the probability
contributed by this state varies very little with x, it is possible
to replace it with its value at xeff. = xn,k . Using the Taylor
expansion of pn(xeff. ), it is possible to relate the Fisher infor-
mation in Eq. (48) to the Fisher information In(xeff. ) obtained
with perfect photon detection for a squeezing parameter reff.

and a displacement of xeff.. The result can expressed by a
reduction factor δn defined as

δn = 1 − In

In
with In = [∂xeff. pn(xeff. )]2

pn(xeff. )
. (49)

The displacement dependence of the reduction factor in the
vicinity of a single zero point xn,k is given by

1 − δn(ε, xeff. ) = (xeff. − xn,k )2

(xeff. − xn,k )2 + εβn,k
, (50)

where the sharpness coefficient βn,k is given by

βn,k = sinh2(r)
|〈n|�1(z)〉|2

∂2
z pn(z)

∣∣∣∣
z=xn,k

. (51)

It is possible to solve this equation using the photon number
distributions of the displaced squeezed number states |�0〉
and |�1〉. The result does not depend on the location of the
minimum given by (n, k). It is instead described by a constant
value determined by the squeezing parameters r and reff.,

βn,k = β = sinh2(r)e−2reff. . (52)

Since the sigmoid function in Eq. (50) may have a nontrivial
overlap with functions obtained from neighboring minima,
it is useful to interpolate the reduction factor between the
minima by a product,

1 − δn(ε, xeff. ) =
∏

k

(xeff. − xn,k )2

(xeff. − xn,k )2 + εβ
. (53)

It is therefore possible to describe the reduction of Fisher
information by small photon losses using reduction factors
determined mostly by the locations xn,k of destructive interfer-
ences in the photon number distribution of displaced squeezed
vacuum states.

Summing up all the n-photon contributions In in Eq. (48),
the total Fisher information is approximately given by the
quantum Fisher information HF (ε) of the pure state |�0(xeff. )〉
minus a reduction term �Q(ε, xeff. ),

IF (ε, x) ≈ (1 − ε)[HF (ε) − �Q(ε, xeff. )]. (54)

The global reduction factor of (1 − ε) is a result of the re-
scaling of the displacement from xeff. to x. The quantum Fisher
information HF (ε) does not depend on displacement x and is
given by

HF (ε) = 4

√
(1 − ε)e2r + ε

(1 − ε)e−2r + ε
. (55)
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FIG. 9. Fisher information IF of the x estimation of the displaced squeezed state |σ (x)〉 in lossy PNRD measurements with photon losses
ε and a squeezing parameter of r = 1. The approximated Fisher information is given in Eq. (54). Panel (a) shows the x and ε dependence of
the approximated Fisher information IF . Panel (b) shows the xeff. dependence of the Fisher information IF for a small photon loss ε = 0.002.
The green dashed line (1 − ε)HF is the asymptotic limit of the approximated Fisher information IF (the blue solid line) for x → ∞. The
approximated Fisher information is very close to the value obtained from the precise photon number distributions (the orange dot-dashed
line). The green highlighted area between the asymptotic limit and the approximated Fisher information is the reduction function �Q given
in Eq. (56). The white circles are the estimation sensitivity 1/(Nδ2x) obtained from a numerical simulation of a lossy PNRD estimation
using N = 2000 samples. Panel (c) shows the xeff. dependence of the Fisher information for photon losses of ε = 0.01. As the photon losses
increase, the approximation becomes less accurate, and the structure of the dips is broadened. Panel (d) shows the xeff. dependence of the
Fisher information for photon losses of ε = 0.05. The main dips now appear as a small modulation of a nearly homogeneous reduction of
Fisher information.

The complete reduction term is a sum of the reductions in
Fisher information for each photon number n,

�Q(ε, xeff. ) =
∑

n

In(ε, xeff. )δn(ε, xeff. ). (56)

The reduction function �Q is a characteristic function of
destructive quantum interferences in 〈n|�0(x)〉. If no photon
is lost in the PNRD measurement, �Q(0, x) is zero and HF (0)
is the quantum Fisher information of the original x-displaced
r-squeezed state |σ (x)〉 given in Eq. (6). The reduction in
Fisher information caused by photon losses are described by
the sigmoid function given in Eqs. (50) and (53). The sharp-
ness of the dips described by these functions is determined
by the product of the sharpness coefficient and the photon
loss rate ε. For very small photon losses, the reduction term
�Q describes a series of well separated sharp dips in Fisher

information at the zero points xn,k of the input pure state. The
precise displacement of the dips is given by x = xn,k/

√
1 − ε.

The depth of the dips is given by

�Q(ε, xn,k ) = In(ε, xn,k ). (57)

As displacement increases, the values In(ε, xn,k ) decrease
because the zero points xn,k occur outside of main peak of
the probability distribution. As a result, the reduction function
asymptotically converges to zero as x increases, and IF (ε, x)
has an asymptotical limit of

IF (ε, x → ∞) = (1 − ε)HF (ε). (58)

The smaller the photon loss is, the sharper the reduction
dips are, and hence the structure of destructive quantum
interferences can be observed directly in the Fisher infor-
mation extracted from the photon statistics. Interestingly, the
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FIG. 10. Comparison of Fisher information IF of lossy PNRD estimation with the sensitivity Iavg. of average photon number estimates. The
orange lines show photon losses of ε = 0.002 and the blue lines show photon losses of ε = 0.05. The asymptotic limits (1 − ε)HF are shown
by the orange dashed line and the blue dotted line, respectively. The sensitivity of the average photon number estimate Iavg. are shown by the
orange dash-dotted line and the blue dash–double-dotted line, respectively. Photon losses reduce the Fisher information to a value between
the asymptotic limit for x → ∞ and the sensitivity for the average photon number estimate. Panel (a) shows the Fisher information for an
input state with a squeezing parameter of r = 0.5. The critical displacement χc ≈ 1.37 is above the zero point x5,1. One can observe significant
contributions of destructive quantum interferences at xn,1 for n � 5. Panel (b) shows the Fisher information for an input state with a squeezing
parameter of r = 0.21. The critical displacement χc ≈ 0.38 is significantly lower. There are no additional dips between x1,1 = 0 and x2,1 = χc.

transition to a perfect PRND given ε → 0 leaves the depth of
the dips constant, making them disappear at ε = 0 only as a
consequence of their sharpness. As long as the photon losses
are nonzero, the positions of the zero points xn,k/

√
1 − ε

are clearly visible in the displacement dependence of Fisher
information.

Figure 9 shows the dependence of Fisher information on
the displacement for various photon loss rate ε. For the small
photon loss of ε = 0.002 shown in Fig. 9(b), the approximated
value of IF obtained from Eq. (54) is sufficiently accurate.
The Fisher information is reduced from the asymptotic limit
HF with a series of main dips at the zero points xn,1 given in
Eq. (19). Since the photon loss is small, the reduction dips
are sufficiently sharp to observe several subdips belonging
to other zero points, such as xn,2. At x = 0, where all prob-
abilities are either at a minimum or a maximum, the Fisher
information is reduced to zero by the losses. At a larger photon
loss of ε = 0.01 shown in Fig. 9(c), the maximal Fisher
information obtained between the dips is significantly lower
than the asymptotical limit of Fisher information at x → ∞.
The reason is that the reduction dips overlap significantly. As
a result, the subdips disappear and the remaining structure
of the displacement dependence is mostly associated with
the position of the minima xn,1. For an even larger photon
loss of ε = 0.05 shown in Fig. 9(d), the distinct dips have
nearly disappeared, leaving a slightly modulated reduction
of Fisher information to about half of the asymptotic value.
These results implicate that the bias phase ϕ in two-path
interferometers should be set between two neighboring zero
points (2xn,1/α) and (2xn+1,1/α) for achieving high sensitivity
in lossy PNRD estimation.

The reduction dips show that the Fisher information ob-
tained from the complete photon number distribution resolved
in PNRDs is very sensitive to photon losses. Here, we want
to compare the fragility of the Fisher information IF (ε, x)
under photon losses with the estimation sensitivity Iavg. of

average number estimates. The explicit sensitivity Iavg. can
be determined by Eq. (12) and is approximately given by the
following equation for small photon losses:

Iavg.(ε, x) ≈
ε�1

(1 − ε)Iavg.(0, x), (59)

where Iavg.(0, x) is the sensitivity of the average number
estimation of the x-displaced r-squeezed state |σ (x)〉 given
in Eq. (13). Since the estimation using a complete photon
number distribution Pn(x) should always be better than the av-
erage photon number estimation, the reduction of Fisher infor-
mation induced by photon losses should always be bounded
by the sensitivity Iavg.(ε, x) obtained in the average photon
number estimation,

Iavg.(ε, x) � IF (ε, x). (60)

According to Eq. (13), the average photon number resolution
exhibits a transition approaching the quantum Fisher informa-
tion at high displacements. This should also put a limit on the
depth of reduction dips as displacement increases.

Figure 10 shows the Fisher information for squeezing
parameters of r = 0.5 and r = 0.21. For r = 0.5, one can
observe significant reductions of Fisher information at the
first five zero-probability points xn,1, which quantify the con-
tributions of the destructive quantum interferences in IF at
these points. The depth of the reduction dips decrease with
increasing displacement, in parallel to the transition of the
sensitivity Iavg. of the average photon number estimation. A
similar behavior is observed at r = 0.21, where the first dip
after x = 0 occurs at the critical displacement χc = x2,1. The
depth of the dip is clearly limited by the sensitivity of the
average photon number estimation.

VI. CONCLUSION

In this paper, we have shown that photon-number-resolving
detections (PNRDs) can be employed in the dark output
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port of a two-path interferometer operating at high intensity
to extract the quantum Fisher information of a small phase
shift. In such interferometric settings, the phase estimation
is approximately equivalent to the x-quadrature displacement
estimation on the displaced states in the dark output port. For
displaced squeezed states, there is a transition point χc for the
x-quadrature displacement, upon which the average photon
number estimate approaches the QCR bound. The underlying
reason for such a transition has been shown to be the transition
of photon statistics of displaced squeezed states from quantum
interferences to a single-peaked Gaussian distribution. For
the x-quadrature displacement below the critical point, the
quantum Fisher information is significantly contributed by
quantum interference in photon number statistics, which is
sensitive to photon losses in PNRDs.

The dark port regime, which is defined by the critical phase
corresponding to χc, is characterized by quantum interference
patterns that are quite similar to the multiphoton interferences
which are usually observed in highly non classical states such
as NOON or Holland-Burnett states. It is interesting that the
same characteristic can also be observed in high-intensity
two-path interferometers when the quantum enhancement is
achieved by squeezing the vacuum in the dark input port. The
complete phase sensitivity of the undetected photons in the
bright output port can then be transferred to very few photons

exhibiting genuine multiphoton interference patterns in the
dark output port. As we have demonstrated here, it is possible
to access the Fisher information in the dark output port by
photon-number-resolving detection of the few photons in that
port, if the detection losses are sufficiently small. The pattern
of Fisher information reduction caused by small photon losses
is highly characteristic of the quantum interference fringes
that characterize nonclassical light. It is therefore possible
to identify a genuine quantum advantage in the dark port
detection of the interference between squeezed vacuum and
high-intensity coherence light. It seems to be remarkable that
this advantage allows us to effectively compress the Fisher
information of a huge photon number into the Fisher informa-
tion obtained from a precise detection of very few photons.
We think that, aside from the possible practical advantages,
this result has interesting implications for the relation between
the suppression of quantum fluctuations by squeezing and the
multiphoton interference fringes observed in NOON states or
other highly nonclassical superposition states.
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