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We examine quantum interference effects due to absorption and emission from multiple atoms coupled to
a waveguide and highlight the modifications they entail with regard to single-photon transport properties. A
prominent upshot of these interference phenomena is the resonant suppression of the reflection amplitude, which
leads to the observation of multiple Fano minima in the reflection spectrum. Such minima determine the points
at which transparency is induced in the system. By taking recourse to the real-space Hamiltonian framework,
we calculate analytically the reflectivity and transmissivity for a one-dimensional waveguide that evanescently
couples to a chain of equally spaced quantum emitters. The interemitter spacing relative to the wavelength
of the propagating photon, leading to a waveguide-mediated “phase coupling” between the atoms, is found to
fundamentally affect the existence of Fano minima. For a chain of N atoms, the number of minima can be at most
N − 1. However, suitable choices of the phase can suppress the discernibility of the full range of roots in the
reflection spectrum. A principal observation for the case of multiple emitters is the emergence of super-Gaussian
characteristics close to zero detuning and, consequently, a plateau-shaped broadband spectrum in the region of
high reflectivity. For a large chain size, the plateau gets transformed into a flat-topped quasirectangular profile in
the frequency domain.
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I. INTRODUCTION

The advent of modern nanotechnology has enabled the
realization of strong coupling between atoms and photons,
which plays a central role in optical information processing.
The subwavelength-sized mode volumes of nanocavities are
often employed for the enhancement of coupling strength
[1,2]. Recent theoretical progress [3,4] on the realizability
of strong coupling between atoms and propagating photons
in a one-dimensional (1D) waveguide has generated a lot
of interest in the study of photon scattering properties in
such systems. A number of experimental reports [5–15] have
brought to the fore the implementation of these techniques.
Reference [16] provides a comprehensive review of the sub-
ject of strongly interacting photons in cavity-free 1D systems.
In particular, the subject of photon scattering from a 1D
continuum coupled to atomic scatterers has been widely inves-
tigated from various perspectives [17–46]. Typical 1D waveg-
uides include conducting nanowires [5,6], photonic crystal
waveguides [14], and superconducting microwave transmis-
sion lines [10,11]. A system of two-level atoms coupled to a
1D continuum enables one to study a number of interesting
effects, such as single-photon superradiance [47] and superra-
diant decays [14], modification of the optical band structure
[48], and realization of Bragg mirrors [49,50]. The collective
effects have especially been noted for the two-atom system
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[44–46]. A significant amount of theoretical [21,51–57] and
experimental [49,50] progress has been made with regard to
single-photon transport in the context of these models, where
the role of spatial separation between the atoms has become
manifest. While a majority of theoretical studies have focused
on the more tractable instance of two atoms coupled to a
waveguide, the general case of an arbitrarily large chain size
has been investigated in Refs. [21], [27–29], [55], and [57].
The impact of chain size on spontaneous emission from one of
the excited atoms was treated in [27]. Single-photon transport
and collective radiance in a 1D array of two-level atoms were
studied in [29]. The propagation of nanofiber-guided light
through an array of multilevel atoms and the concomitant
effect of polarization were studied using the transfer matrix
formalism in [58]. More recently, Das et al. investigated the
scattering dynamics from a system of multilevel emitters for
arbitrary geometry [59] and subsequently applied this formal-
ism to a chain of emitters coupled to a 1D continuum [60].
Scattering dynamics from multilevel atoms for specific and
arbitrary geometries has also been studied in [61] and [62].

Since a chain of two-level emitters strongly coupled to
a waveguide scatters wave excitations, one can observe the
emergence of asymmetric Fano lineshapes [44,45]) due to
interference effects between the scattering amplitudes, a fea-
ture which is absent in the single-emitter scenario. This is an
example of the Fano interference phenomenon [63], which
has been extensively reviewed in Ref. [64] in the context of
modern nanotechnology. The possibility of quantum interfer-
ence stems from the existence of multiple quantum pathways
in the transport of single photons. This is because following

2469-9926/2019/100(1)/013812(12) 013812-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.100.013812&domain=pdf&date_stamp=2019-07-08
https://doi.org/10.1103/PhysRevA.100.013812


DEBSUVRA MUKHOPADHYAY AND GIRISH S. AGARWAL PHYSICAL REVIEW A 100, 013812 (2019)

each interaction with an atom, new pathways are created. Such
interference phenomena give rise to multiple Fano minima
depending on the relative location of atoms in the chain. The
manifestation of multiple Fano minima has been discussed in
other contexts [65,66]. The object of our study is to bring out
interesting possibilities originating from the interference of
quantum paths in relation to single-photon transport through a
waveguide coupled to an atomic array. By deriving exact ex-
pressions for the reflected and transmitted intensities, we show
the development of Fano lineshapes with multiple reflection
minima. The maximum number of minima typically allowed
for a chain size of N is (N − 1). In order to keep the physics
transparent, we ignore dipole-dipole interaction (DDI) and
radiative losses into modes beyond the 1D continuum. In the
absence of DDI, the origin of Fano coupling can be attributed
to the relative phase picked up by the propagating photon as
it traverses from one emitter to the next. An adjustment of
the emitter spacing allows us to regulate this phase coupling,
which in turn controls the existence and the locations of
Fano minima. Even though the Fano profiles are generally
asymmetric, we observe a Dicke-type superradiant effect in
the reflection when the emitter spacing equals an integral or
half-integral multiple of the resonant wavelength. Discounting
this special case, a key finding concerning the reflection
lineshapes is the appearance of flat-topped broadband spectra
in the highly reflecting domain, with the flatness as well as
the frequency bandwidth increasing with the chain size. In
yet another special scenario, when the spatial periodicity is
expressible as an integral multiple of a one-fourth wavelength,
we obtain perfectly symmetric spectra with the earmarks of
a super-Gaussian signature close to resonance. Finally, we
find that an increase in the atom-photon coupling strength
opens up the possibility of observing new Fano minima in
the reflection spectrum. The focal point of this work is the
waveguide-mediated phase coupling between the atoms. Such
coupling can occur over long distances (of the order of a
wavelength), which has been noted in the context of two
optical and microwave resonators [67,68]. Thus, the ideas
in this paper are quite generic and can be applied to other
situations like many coupled resonators on a transmission
line or quantum dots coupled to plasmonic excitations in a
nanowire.

We structure the paper in the following manner. Section II
revisits the real-space Hamiltonian formalism for single-
photon scattering from an atomic chain embedded onto a
waveguide. In Sec. III, we obtain the analytical formulas char-
acterizing the reflection and transmission profiles. Based on
these analytical expressions, we illustrate, in Sec. IV, the Fano
lineshapes and extract the points of Fano minima. Certain
features of these spectra are discussed in the light of the Fano
interference effect. In Sec. V, we elaborate how an increase
in the chain size has a direct role to play in the induction of
spectral broadening. Subsequently, in Sec. VI, we highlight
the appearance of symmetric lineshapes, with or without the
presence of Fano minima, subject to pertinent choices of
the spatial periodicity. Following this, we briefly allude to
the strong-coupling regime in Sec. VII and manifest some
nontrivial developments in the photon transport properties.
Section VIII concludes with a summary of the key results of
this paper.

FIG. 1. Chain of N identical two-level atoms side-coupled to a
1D waveguide. r j and t j represent the reflection and transmission
coefficients due to scattering from the jth atom; L is the distance of
separation.

II. SINGLE-PHOTON TRANSPORT MODEL FOR A
WAVEGUIDE COUPLED TO AN ATOMIC CHAIN

We consider a 1D array of N identical quantum emitters
spaced periodically at a distance L apart as shown in Fig. 1.
The atomic chain is strongly coupled to a waveguide. Each
emitter is idealized as a two-level atom with ground state |g〉,
excited state |e〉, and the corresponding transition frequency

ω0 = Ee − Eg

h̄
. When the transition frequency far exceeds

the cutoff frequency of the waveguide, one can linearize the
dispersion relation near ω0 as ωk ≈ vgk, where vg is the
magnitude of the group velocity [30]. Then the real-space
Hamiltonian of the system H can be envisaged as a sum of
three terms given by

HF = ih̄vg

∫
dx

(
a†

L(x)
∂aL(x)

∂x
− a†

R(x)
∂aR(x)

∂x

)
, (1)

HA = h̄ω0

N∑
i=1

σ ( j)
ee , (2)

HAF = h̄J
N∑

j=1

[{aL(x j ) + aR(x j )}σ ( j)
eg + H.c.

]
, (3)

where aL(x) [or aR(x)] describes the real-space annihilation
operator of the photon at position x and propagating to the
left [or to the right]. The real-space bosonic operators are
related to the corresponding operators in momentum (or k)
space through Fourier transforms:

aL(x) = 1√
2π

∫ 0

−∞
dkeikxaL,k, (4)

aR(x) = 1√
2π

∫ ∞

0
dkeikxaR,k . (5)

The atomic operators σ
( j)
mn are defined as |m〉 j〈n|, where the

indices m and n might pertain to the ground or excited state of
the atom and j ∈ {1, N} enumerates the particular scatterer in
this chain. HF is the real-space Hamiltonian of the waveguide
field for a continuum of modes and HA describes the atomic
chain, while HAF denotes the interaction between the atoms
and the photonic excitation. In the expression for HAF, J
denotes the coupling strength between any of the atoms and
the waveguide photon.

It is evident from Eq. (2) that the ground-state energy of
each atom Eg is taken to be 0 for simplicity, while Eq. (3)
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depicts the interaction Hamiltonian under the rotating-wave
approximation. In our model, we disregard dipole-dipole
interaction between the atoms by assuming the atomic
separation to be not much smaller than the resonance
wavelength [69]. Cheng et al. demonstrated the appearance
of non-Lorentzian lineshapes for the case of two emitters and
brought to light the enhancement of asymmetry and splitting
of the reflection spectrum as fundamental ramifications of the
DDI [45]. In addition, we neglect spontaneous emission into
modes beyond the waveguide continuum. This enables us to
work with a perfectly lossless system. The more general dis-
sipative case is sketched out briefly in the Appendix (Sec. 1).

In view of the fact that scattering occurs at the level of
a single photon, implying a single excitation in the system,
the scattering eigenstate, with an eigenvalue h̄ωk , can be
constructed as a superposition of single-photon and vacuum
states:

|Ek〉 =
∫

dx[ψkL(x)a†
L(x) + ψkR(x)a†

R(x)]|0, g〉

+
N∑

j=1

c( j)
k |0, e j〉. (6)

Here |0, g〉 refers to the state where all the atoms are in the
ground state |g〉 and the field is in vacuum; |0, e j〉, to the state
where the excitation has raised the jth scatterer to its excited
state |e〉, with the rest of the scatterers remaining in their
ground states. The scattering amplitudes ψkL(x) and ψkR(x)
correspond to fields traveling to the left and to the right,
respectively, and c( j)

k stands for the probability amplitude
associated with state |0, e j〉. Assuming that the photon is
incident from the left, the explicit forms for ψkL(x) and ψkR(x)
can be worked out, subject to appropriate continuity relations
at the boundaries:

ψkL(x) =
⎧⎨
⎩

r1e−ikx, x < 0,

r j+1e−ik(x− jL), ( j − 1)L < x < jL,

0, x > (N − 1)L,

(7)

ψkR(x) =
⎧⎨
⎩

eikx, x < 0,

t jeik(x− jL), ( j − 1)L < x < jL,

tN eik(x−NL), x > (N − 1)L.

(8)

Substituting Eqs. (6)–(8) into the Schrödinger equation (H −
h̄ωk )|Ek〉 = 0, one is led to a system of coupled equations
involving the transmission and reflection coefficients and the
probability amplitudes c( j)

k ’s,

e−ikLt j − t j−1 + iJ c( j)
k

vg
= 0, (9)

eikLr j+1 − r j − iJ c( j)
k

vg
= 0, (10)

t j−1 + r j − �kc( j)
k

J = 0, (11)

where �k = ωk − ω0 is the field-emitter detuning and the
boundary constraints t0 = 1 and rN+1 = 0 are imposed. From
phase considerations, the overall reflection and transmission
coefficients are obtained as r = r1 and t = tN e−ikNL,
respectively.

III. ANALYTICAL RESULTS FOR THE REFLECTED AND
TRANSMITTED INTENSITIES

Equations (9) through (11) can be solved exactly to yield
the coefficients t and r for the one-dimensional emitter-
waveguide system. Substituting for c( j)

k from (11) into (9) and
(10), we obtain a recursive linear matrix equation,[

r j

t j−1

]
=

[
eikL

(
1 − iδ−1

k

) −ie−ikLδ−1
k

ieikLδ−1
k e−ikL

(
1 + iδ−1

k

)
][

r j+1

t j

]
, (12)

where we have defined 	 = J 2

vg
and δk = �k

	
. From this, we

identify the inverse of the transfer matrix,

M−1 =
[

eikL
(
1 − iδ−1

k

) −ie−ikLδ−1
k

ieikLδ−1
k e−ikL

(
1 + iδ−1

k

)
]
. (13)

Upon using Eq. (12) iteratively N times in succession, we find
a simultaneous equation involving r and t :[

r
1

]
= M−N

[
0

teikNL

]
. (14)

It follows trivially that in order to extract the analytical expres-
sions for r and t , one needs to evaluate the N th power of M−1.
To this end, one can invoke a well-known and straightforward
technique as follows: first, consider the diagonal form of
M−1, say D = U −1M−1U , where U is the diagonalizing
transformation, and then raise the inverse relation to its N th
power to get M−N = UDNU −1. A simple eigenvalue analysis
yields the diagonal form of M−1 as

D =
[

e
 0
0 e−


]
, (15)

where the parameter 
 is related to δk and kL as

cosh(
) = cos(kL) + δ−1
k sin(kL) = Re{(M−1)22}. (16)

Using the above definition, it becomes convenient to work
out compact expressions for the reflection and transmission
coefficients:

r = (M−N )12

(M−N )22
= −ie−ikL

[
μN (
)

�N (δk,
)

]
, (17)

t = e−ikNL

(M−N )22
= e−ikNL

[
δk

�N (δk,
)

]
, (18)

where the functions μN and �N are defined, respectively, as

μN (
) ≡ sinh(N
)

sinh(
)
, (19)

�N (δk,
) ≡ δk cosh(N
) − iμN (
)ζ (δk, kL), (20)

with ζ (δk, kL) = δk sin(kL) − cos(kL) = −δkIm{(M−1)22}.
It is useful to note that 
, defined as a solution to Eq. (16),

can be generally complex. Since the right-hand side of (16)
happens to be real, cosh(
) would be constrained to assume
all real values between −∞ and +∞. When the value of this
function exceeds unity, 
 has a real solution. In the range
−1 � cosh(
) � 1, 
 can be described by purely imaginary
values, as changing 
 → i
 turns the function into cos(
).
For cosh(
) < −1, the solutions to 
 are neither real nor
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purely imaginary. Nevertheless, one can establish a one-to-
one correspondence between the solutions of cosh(
) < 0
and those of cosh(
) > 0. Observe that cosh(
) flips signa-
ture when we let 
 → iπ ± 
, and consequently, for any real

 = 
0 satisfying cosh(
0) > 1, we find that 
̃±

0 = iπ ±

0 satisfy cosh(
̃±

0 ) = − cosh(
0) < −1. Now essentially,
both the transformation schemes, 
 → i
 and 
 → iπ ± 
,
ensure that cosh(N
) and μN (
) continue to assume real val-
ues, provided 
 is originally chosen to be real. Furthermore,
it can be verified that ζ 2 = 1 − δ2

k sinh2(
). Considering all
these subtleties, we conclude that |�N |2 = δ2

k + μ2
N , from

which we compute, quite generically, the expressions for R =
|r|2 and T = |t |2:

R = μ2
N (
)

δ2
k + μ2

N (
)
, (21)

T = δ2
k

δ2
k + μ2

N (
)
. (22)

Equations (21) and (22) satisfy R + T = 1, which makes
perfect sense as radiative decays have been ignored in our
model (the corresponding expressions with atomic dissipa-
tions included are laid out in the Appendix, Sec. 1). It should
also be borne in mind that Eqs. (17), (18), (21), and (22) do
not showcase the explicit dependence of the amplitudes and
intensities on the dimensionless detuning parameter δk = �k

	
.

This is because 
 itself is determined by δk .

IV. EXISTENCE OF MULTIPLE FANO MINIMA

From Eq. (17) or (21), we can identify the roots or zeros in
the reflection spectrum, which would correspond to the points
of Fano minima and determine the peaks in the transmission
spectrum. The appropriate values of the detuning �k at which
the system becomes transparent are obtained by solving the
equation

μN (
) = 0. (23)

This leads to exactly (N − 1) simpler root equations, each of
which may be expected to yield a solution. Of course, it might
turn out that for certain choices of kL and/or N , some of
these equations either make no sense or do not provide finite
solutions. In what follows, we briefly review the known results
for N = 1 and N = 2 and then proceed to obtain the roots for
a general value of N .

A. Single and double emitter(s)

For a single emitter coupled to the waveguide, r reduces to
an extremely simple form, as can be seen by plugging N = 1
and kL = 0 into Eq. (17):

r (1) = − 1

1 − i�k
	

. (24)

In compliance with previously known results, this function
has no roots. In fact, the spectrum R = |r (1)|2 = 1

1+ �2
k

	2

has a

Lorentzian lineshape (Fig. 2) of width 2	 and is symmetric in
�k with a peak at �k = 0. This is quite reasonable given that
there are no interference channels for a single scatterer, which
precludes the existence of a Fano minimum.

FIG. 2. Plots of R = |r|2 vs �k
	

for N = 1 and N = 2 respec-
tively. The spectrum for N = 1 is symmetric, with no Fano min-
imum. For N = 2, the choice of kL, or equivalently L

λ
, heavily

influences the spectral characteristics, including the existence of a
Fano minimum.

The double-emitter case is more interesting, as it allows
for multiple photon transport channels, leading to the possi-
bility of destructive interference between these channels. The
reflection coefficient is now given by

r (2) = −2ieikL
[

sin(kL) + �k
	

cos(kL)
]

(
�k
	

+ i
)2 + e2ikL

. (25)

The numerator goes to 0 at �r min
k = −	 tan(kL), which is a

special case of the result obtained in Ref. [45] for symmetrical
coupling between the emitters and the field in the absence
of DDI. Thus, there exists a Fano minimum at this value of
detuning which renders the system transparent. Further, the
location of this root demonstrates the generally asymmetric
nature of the spectrum, in contrast to the single-emitter sce-
nario. Finally, it is crucial to draw attention to the fact that
not for all values of kL are we guaranteed to observe a Fano
minimum (see Fig. 2).
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B. Generalization to an arbitrary number of emitters

For arbitrary N , one would expect the possibility of multi-
ple minima in the reflection lineshape as the number of inter-
ference channels increases with the number of scatterers, since
each of them contributes to the final reflected output. Indeed,
when Eq. (23) is solved, it leads to (N − 1) simplified root
equations pertaining to any value of N . Using the definition of
hyperbolic sine function, i.e., sinh(x) = e2x−1

2ex , it is possible to
express the function μN as

μN (
) = 1

e(N−1)


N−1∏
l=1

(e2
 − e2ilπ/N ). (26)

Setting this equal to 0, one finds that the Fano minima occur
at purely imaginary values of the quantity 
,


r min
l = ilπ

N
, for l = 1, 2, . . . , N − 1, (27)

which, when combined with Eq. (16), yields

cos(kL) + 	

�k
sin(kL) = cos

(
lπ

N

)
(28)

⇒ �r min
k = − 	 tan(kL)

1 − cos
(

lπ
N

)
sec(kL)

for l = 1, 2, . . . , N − 1. (29)

Now, it can be realized that kL has a one-to-one correspon-
dence with �k . As a consequence, contingent on the strength
of their interdependence, one can possibly encounter multiple
observable roots for a given choice of l in Eq. (28) or (29).
Recall that �k = ωk − ω0 = vgk − ω0, and therefore, one has
the relation

kL = k0L

[
1 + η�k

	

]
, (30)

where k0 = ω0
vg

, η = 	
ω0

. Hence, kL depends linearly on �k ,
and a specified choice of kL ideally pins down a unique value
of �k . That said, in most practical experiments, the value of
η tends to be quite small, i.e., η � 1. Besides, since one is
concerned with waveguide frequencies in the vicinity of the
atomic transition frequency, i.e., �k

	
≈ 0, one can drop the

correction term η�k

	
from Eq. (30) altogether and examine the

spectral characteristics by treating kL essentially as a constant
(kL ≈ k0L). This assumption has been a mainstay for all the
investigations executed heretofore and is especially relevant
in the framework of the rotating-wave approximation.

For N = 1, Eq. (28) or (29) provides no roots, while for
N = 2, there is a single equation corresponding to l = 1,
which reduces to �r min

k = −	 tan(kL), in agreement with the
result obtained earlier. It makes for a relevant observation in
this context that for N = 2 and kL = nπ

2 , with odd n, �r min
k

blows up, and therefore, no finite solution exists. In fact, for
any even N , the root equation stipulated by the choice l = N

2
does not lead to a finite solution. Similarly, in the instance
where kL = nπ , there exists no finite solution for any N ,
as can be figured out from the more fundamental equation,
(28). Therefore, the spectral properties and the existence of
well-defined transmission peaks are heavily reliant on the size
of the emitter spacing relative to the resonant wavelength

FIG. 3. Spectral characteristics for N = 3 and N = 4, respec-
tively. As expected, the value of kL fundamentally impacts the nature
of the graphs and, therefore, the existence of Fano minima. For
N = 3, the number of observed roots varies from 0 to at most 2, while
for N = 4, there can be at most 3 roots. A higher number of scatterers
leads to a higher number of interference channels and, hence, to the
possibility of a greater number of roots. It can also be observed that
in the cases kL = 5π

2 and kL = 7π

3 , the lineshapes become very flat
near the origin, giving rise to broadband characteristics.

λ = 2π
k . This also explains the absence of Fano minima in

Fig. 2 for N = 2 and kL = 2π, 5π
2 .

In Fig. 3, we plot the spectra for a couple of higher values
of N (= 3, 4), each subject to three distinct choices of kL. The
plots clearly illustrate how the choice of phase plays a pivotal
role in determining the symmetric or asymmetric nature of the
spectrum. The spectra also reveal how the precise choice of kL
dictates the feasibility of observing as many Fano minima as
the number of root equations in (28) or (29). For instance, in
the case kL = 7π

3 with three emitters, a single Fano minimum
is observed, while for the choice kL = 5π

2 , two symmetric
points of minima appear.

As a direct consequence of the existence of multiple Fano
minima, one can note the emergence of multiple shorter
sidebands in the reflection spectrum. It makes for a more
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intriguing observation that some of the lineshapes correspond-
ing to N = 2, 3, and 4 (Figs. 2 and 3) are almost flat near
resonance, thereby exhibiting the characteristic feature of a
broadband spectrum. This broadband region signifies an opac-
ity window because transmission is almost entirely blocked
out. It turns out that this flatness in the highly reflecting
domain is quite a generic feature for the case of multiple
emitters, which holds as long as kL does not get too close to an
integral multiple of π . This statement is analytically justified
in Sec. V. Finally, Eq. (28) also shows that for arbitrarily
large values of N , the roots corresponding to l � N and
l ∼ N evolve into sets of continua leading to the formation
of broadband regions of high transmittance.

The root cause behind the appearance of asymmetric
lineshapes and corresponding minima in the spectra can be
attributed to the Fano effect. Fano profiles are generally
asymmetric in nature, as we have seen in many of the plots,
and stem from the interference between various scattering
amplitudes generated due to photonic interaction with the
scatterers. Compactly described, the photon in the waveguide
can be absorbed and emitted by any one of the atoms, and
as such, there exists a number of such possible channels
determined by the number of scattering agents. Since, quan-
tum mechanically, all these processes have finite probabilities,
the net effect is an interference between all these transition
amplitudes. In particular, destructive interference between the
scattering amplitudes leads to suppression of the reflected
amplitude and one can encounter a 0 (or, more generally, a
minimum) in the corresponding profile. The atomic separation
can be seen to play a vital role in giving rise to these Fano
profiles and multiple points of transparency. In Ref. [45], it
was explained how the phase factor eikL, brought about due
to the propagation of light from one emitter to the next, was
crucial in introducing asymmetry in the lineshapes. More
precisely, it was interpreted as being a key contributor to
waveguide-mediated interaction between the emitters existing
even in the absence of the actual DDI.

V. BROADBAND CHARACTER OF REFLECTION NEAR
�k
�

= 0 FOR kL �= nπ AND N � 2

In the vicinity of δk = �k
	

∼ 0, under the assumption kL =
nπ , we have the asymptotic behavior cosh(
) ∼ δ−1

k sin(kL),
sinh(
) ∼ δ−1

k sin(kL), and e
 ∼ 2δ−1
k sin(kL). On account

of these considerations, we obtain the asymptotic form of the
function μN to be

μN (
) ∼ {
2δ−1

k sin(kL)
}N−1

[
1 −

{
δk

2 sin(kL)

}2N]
. (31)

Substituting this expression into Eq. (21), one obtains the
behavior of the lineshape near zero detuning:

R(δk )|δk∼0 ≈ 1 − 4 sin2(kL)

[
δk

2 sin(kL)

]2N

+ O

[
δk

2 sin(kL)

]4N

. (32)

Hence, viewed as a Taylor series expansion in δk around the
origin, this manifests a couple of features: (i) R → 1 as δk →
0, and (ii) the leading-order nonvanishing derivative of R with
regard to δk at the origin is R(2N )(δk ). The first feature testifies
to the validity of the well-known result in the literature that the
zero-detuned case corresponds to perfect reflection with zero
transmission. This fact holds true for arbitrary chain size.

The second feature is a direct algebraic manifestation
of spectral flatness in the region near zero detuning, ap-
plicable to all N � 2. In order to exemplify this point, we
can consider the case for N = 2, where the leading-order

expansion of R(δk ) goes as 1 − δ4
k

4 sin2(kL)
≈ exp [ − δk

4

4 sin2(kL)
]

and, therefore, possesses super-Gaussian characteristics. This
is in contrast to the Lorentzian nature of the lineshape for
N = 1 [see Eq. (24)], which resembles a Gaussian distribu-
tion in the vicinity of zero detuning. In fact, whenever N
exceeds 1, the order of the lowest nonvanishing derivative at
the origin exceeds 2, since R(δk ) behaves approximately as

exp [ − δk
2N

{2 sin(kL)}2N−2 ]. The essential implication is that the

function varies rather slowly in relation to a Gaussian, leading
to the emergence of an almost-horizontal plateau top near the
origin. Consequently, lineshapes pertaining to multiple emit-
ters are significantly flatter than what is realized in the single-
emitter setting and quite generically display broadband char-
acteristics. Moreover, at the qualitative level, the existence of
this property is insensitive to the choice of kL, barring kL =
nπ when the emitter spacing is an integral or half-integral
multiple of the resonant wavelength. More interestingly, since
the super-Gaussian characteristics get progressively amplified
with the increase in N , an emitter chain of large size (N �
1) is capable of fabricating a broadband rectangular profile
over the frequency domain. One can discern its validity by
considering the graphs of e−x2N

or (1 − x2N ) for increasingly
larger values of N .

The order of the super-Gaussian distribution scales linearly
as N , and therefore, for a given kL, both the flatness and the
frequency bandwidth grow with N . In the limit N → ∞, the
bandwidth approaches 4	 sin(kL). Note also that broadband
properties become more prominent as kL moves away from
any integral multiple of π . In what follows next, we treat
the case kL = nπ and reveal how the Lorentzian symmetry
is recovered for any N . We also indicate the existence of
non-Lorentzian symmetry in the case kL = nπ

2 for odd n.

VI. SYMMETRIC LINESHAPES FOR
SPECIAL CHOICES OF PHASE

The reflection spectra plotted in Figs. 2 and 3 are endowed
with certain interesting features, some of which are quite
generic while some pertain to particular categories of choices
for kL. In this section, we analytically uphold the symmetric
nature of the output spectra, subject to suitable choices of
kL. It follows from Eqs. (21) and (22) that the reflection and
transmission spectra can be symmetric in δk if and only if the
function μN (
) is either even or odd under a parity transfor-
mation in δk . Specifically, this condition is always satisfied
when kL equals any integral or half-integral multiple of π .
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A. Dicke superradiant character of reflection for kL = nπ

This corresponds to L = nλ
2 , where n can assume both

even and odd values. It is easy to see that the Taylor series
expansion laid out in Sec. V does not hold good for this
particular choice of kL. This stems from the fact that cosh(
)
and sinh(
) are identically equal to (−1)n and 0, respectively.
Consequently, 
 equals 0 when n is even and iπ when n
is odd, making the variable independent of δk . Hence μN

remains invariant under the transformation δk → −δk . In fact,
we can plug in the values of 
 to obtain an expression for
R as an explicit function of �k

	
. To this end, we employ the

relation

μN (
) =
N∑

m→odd

(
N

m

)
coshN−m(
) sinhm−1(
), (33)

which yields

lim
kL→nπ

μN (
) = (−1)n(N−1)N (34)

and immediately determines a Lorentzian lineshape for the
reflection spectrum (see also Figs. 2 and 3):

R = 1

1 + �2
k

N2	2

. (35)

This generalization also encompasses the case N = 1. Thus,
the spectrum for kL = nπ , which pins down a real phase
eikL = (−1)n, is perfectly symmetric in the detuning and has a
Dicke-type superradiant structure. Viewed as a function of �k ,
the spectrum has a width that scales linearly as the size of the
chain and equals 2N	. It is also bereft of a Fano minimum,
which is in line with the prediction made by Eq. (28) for
kL = nπ .

B. Non-Lorentzian symmetry for the kL = nπ
2

spectral family (n → odd)

For even values of n, the spectrum possesses Lorentzian
symmetry, as we have obtained in the preceding subsection
[see Eq. (35)]. For odd n, we have cos(kL) = 0, which leads
to cosh(
) = (−1)(n−1)/2δ−1

k . Under a parity transformation
in δk , cosh(
) flips signature, which, as we saw in Sec. III, can
be embodied in the transformation scheme 
 → iπ ± 
. In
this process, μN (
) acquires a real phase given by (∓1)N−1.
Invoking these transformation properties in Eq. (21), it be-
comes apparent that R is indeed an even function of δk ,
whenever kL is chosen to be a half-integral multiple of π .
This property makes for an interesting observation, since,
even though one observes Fano minima, the lineshapes exhibit
perfect symmetry (see also Fig. 3). Note, in view of the discus-
sion in Sec. V, that for a given N , the spectrum achieves the
maximum flatness and frequency bandwidth for this choice of
phase.

VII. MODIFICATIONS TO THE SPECTRUM FOR N = 2 IN
THE STRONG-COUPLING REGIME

So far, everything has been discussed under the assumption
that kL can be treated as a constant, considering its weak vari-
ation with regard to �k

	
. However, one might wonder whether

FIG. 4. Reflection lineshapes for two quantum emitters with (i)
	 � ω0 (no correction term), (ii) 	 = 10−3ω0, (iii) 	 = 10−2ω0, and
(iv) 	 = 10−1ω0. Cases (i) and (ii) are indistinguishable, whereas
cases (iii) and (iv) reveal noticeable aberrations from case (i). Specifi-
cally, one can observe a couple of symmetric zeros in their reflection
spectra. In (iv), these zeros appear at |�r min

k | ≈ 2.2	. All of these
plots correspond to k0L = 5π

2 .

interesting prospects open up when the strength of this inter-
dependence becomes significant. In Fig. 4, we graph the exact
spectrum for N = 2 and k0L = 5π

2 by including the correction
term η�k

	
in Eq. (30) and illustrate what modification it brings

about for the following ballpark order-of-magnitude choices
of η: (i) η ∼ 0 (the approximate case, also plotted in Fig. 2),
(ii) η ∼ 10−3, (iii) η ∼ 10−2, and (iv) η ∼ 10−1. For the
sake of comparison, these plots are superimposed on top of
each other. Expectedly, case (ii) yields an almost-identical
spectrum to (i). Case (iii) reveals a slight narrowing of the
lineshape, whereas case (iv) shows considerable shrinking
in its width. Even more curiously, one happens to observe
new points of Fano minima in (iii) and (iv) which did not
exist in the approximate spectrum where kL was treated as
a constant. Although these points appear far away from the
zero-detuned value in (iii), they are fairly close to the latter
in (iv). However, the feasibility of attaining η ∼ 10−1, which
represents extremely strong photon-emitter coupling, is still
veritably doubtful, since this is far removed from the typical
values which can currently be realized in experiments. That
said, it is interesting to note that by cranking up the coupling
strength so that J becomes comparable to 0.32(ω0vg)1/2,
one can see the appearance of Fano minima quite close to
resonance. This observation serves as a testimony to the role
of photon-emitter coupling in the induction of transparency.
Moreover, even though there is only a single value of l in
Eqs. (28) and (29) for the case of two symmetrical emitters,
there happen to be two distinct values of the detuning in case
(iv) for which the reflection vanishes.

VIII. CONCLUDING REMARKS

To put things into perspective, we have analytically investi-
gated the Fano interference effect for single-photon transport
through a one-dimensional waveguide that is evanescently
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coupled to a periodic array of two-level quantum emitters. The
expression for the reflection amplitude reveals the existence of
multiple Fano minima corresponding to induced transparency
in the system. At any of the Fano minima, the atomic chain
behaves effectively like a reflectionless potential. In the ab-
sence of dipole-dipole interaction, waveguide-mediated phase
coupling between the atoms owing to their spatial separation
acts as the driving agent behind the emergence of Fano pro-
files. Typically, for a chain size of N , the reflection amplitude
can possess up to (N − 1) roots. However, appropriate choices
of the phase eikL can lead to suppression of one or more of
these roots. In fact, when kL is an integral multiple of π , the
observed spectrum happens to be a Lorentzian which is devoid
of any roots. The case where kL is a half-integral multiple of
π also stands out, in the sense that it pertains to symmetrically
located roots.

With the exception of kL ≈ nπ , one observes flat-topped
spectral lineshapes in the region of high reflectivity. Such
characteristics are a manifestation of the super-Gaussian sig-
nature, with both the flatness and the frequency bandwidth
increasing with the chain size. In the limit of N → ∞, the re-
flection spectrum resembles a rectangular profile with a width
of 4	 sin(kL). Finally, by considering the special case of
N = 2, we illustrated how an enhancement in the atom-photon
coupling strength can generate new points of Fano minima,
which remain unobservable in the standard coupling regime.

While all these results apply to the case of a well-defined
lattice periodicity, we acknowledge experimental uncertain-
ties associated with trapping atoms in exact periodic struc-
tures. We, therefore, numerically address the question of a
fluctuating lattice length in Sec. 2 of the Appendix. We also
note that certain resonators, waveguides, and photonic crystals
admit modes that allow photon transport with specific polar-
izations [70–73]. This problem of chirality could be handled
by assigning different coupling constants to the left- and right-
propagating fields in Eq. (3) and working with three-level
emitters [73]. This would be a subject for further study.

ACKNOWLEDGMENTS

D.M. is supported by the Herman F. Heep and Min-
nie Belle Heep Texas A&M University Endowed Fund
held/administered by the Texas A&M Foundation. D.M. also
acknowledges assistance from M. P. Jayakrishnan in develop-
ing the numerical plots included in Sec. 2 of the Appendix
(Fig. 6).

APPENDIX

1. Generalized analytical results with atomic
dissipations included

In our analytical treatment, we have conveniently neglected
radiative decays into all modes outside the well-defined prop-
agating modes of the 1D waveguide. However, in real exper-
iments, spontaneous emissions into these “outsider” modes
will always be present. In light of these considerations, one
could be prompted to question the relevance of our results
that neglect these losses. Hereby, we put to rest such doubts
through a reevaluation of the problem by accounting for ra-
diative decays. We demonstrate that if the waveguide channel

is much stronger than the dissipative channel (the decay rate
is low compared to 	 = J 2

vg
), the spectral nature does not

exhibit appreciable variation. The decay will be reflected in
the Hamiltonian of the atom and can be given substance
by augmenting an anti-Hermitian contribution to Eq. (2), as
follows:

H̃A = h̄(ω0 − i	0)
N∑

i=1

σ ( j)
ee . (A1)

Essentially, the presence of decay incorporates an imaginary
part to the real atomic transition frequency in the quantum
description of the transport model, i.e., ω0 → ω̃0 = ω0 − i	0.
Consequently, the quantities �k and δk will turn into complex
parameters �̃k = �k + i	0 and δ̃k = δk + iγ0, respectively,
with γ0 = 	0

	
. As can be immediately deduced, all equations

following Eq. (2) and containing �k or δk that were derived in
Secs. II and III will reflect this transformation. On account of
the modified complex nature of δ̃k , one would have to redefine
a new parameter 
̃ in place of 
 satisfying

cosh(
̃) ≡ cos(kL) + δ̃−1
k sin(kL). (A2)

It is clear that cosh(
̃) is no longer constrained to be real
and obviously no longer equals Re{(M−1)22}. Thus, the new
parameter 
̃ not only depends on the detuning but also is
sensitive to the decay rate. Hence, the analytical results have
to be generalized by letting δk → δ̃k and 
 → 
̃,

r = −ie−ikL

[
μN (
̃)

�N (δ̃k, 
̃)

]
, (A3)

t = e−ikNL

[
δ̃k

�N (δ̃k, 
̃)

]
, (A4)

where μN (
̃) = sinh(N
̃)
sinh(
̃)

and �N (δ̃k, 
̃) ≡ δ̃k cosh(N
̃) −
iμN (
̃)ζ (δ̃k, kL), with ζ (δ̃k, kL) = δ̃k sin(kL) − cos(kL). As
δ̃k is now complex, all of μN (
̃), cosh(N
̃), and ζ (δ̃k, kL)
will also be complex. Hence, the expressions for R = |r|2 and
T = |t |2 turn out to be more complicated, as

R= |μN |2
ξ
{
δ2

k + γ 2
0

} + |μN |2 + 2Im{μNζ cosh∗(N
̃)(δk −iγ0)} ,
(A5)

T = δ2
k + γ 2

0

ξ
{
δ2

k + γ 2
0

} + |μN |2 + 2Im{μNζ cosh∗(N
̃)(δk − iγ0)} ,
(A6)

where we have introduced the function ξ (
̃):

ξ (
̃) ≡ 2 − | cosh(
̃)|2 − 1

| sinh(
̃)|2 . (A7)

Note that in the limit γ0 → 0, ξ approaches unity and Eqs.
(40) and (41) go over into Eqs. (21) and (22).

From the modified expression for R, it follows that
zero-reflection points no longer exist. This is because the
root equation μN = 0 yields purely imaginary values of 
̃,
which imposes the restriction Im{cosh(
̃)} = 0, or γ0 = 0.
However, if we plot the reflection spectrum for N = 3
with the choices γ0 = 0.1 and γ0 = 0.05, we find that the
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FIG. 5. Plots of R = |r|2 vs �k
	

for N = 3 corresponding to
two distinct choices of phase. The presence of dissipation barely
changes the nature of the graphs. The Fano minima remain almost
unaltered, although the flat-banded characteristics suffer a decline as
the dissipation increases.

fundamental nature of the graphs remains fairly unaffected
(see Fig. 5). We still get Fano minima (suppression of the
reflection amplitude) in the close vicinity of the original
zero-reflection points. The flat-band nature of the spectra gets
more and more prominent as γ0 diminishes in magnitude.
Recall, from Sec. V, that broadbanded features were observed
in the proximity of zero detuning, i.e., δk ∼ 0, with γ0 = 0.
In the dissipative scenario when γ0 = 0, if we let δk → 0,
the relevant complex parameter δ̃k → iγ0, which is very
different from δk . Therefore, unless the parameter γ0 itself
is sufficiently close to 0, appreciable deviations of the
asymptotic behavior of R from the nondissipative case can be
observed in the near-resonant region.

2. Spectral characteristics with fluctuation
in the lattice parameter

There are obvious experimental challenges to fix the lattice
length (atomic separation) to an arbitrary degree of precision.
Consequently, the spatial separation between neighboring

FIG. 6. Plots of R(2) vs �k
	

for θ0 = 9π

4 and different choices
of σ . The solid line indicates the spectrum corresponding to zero
fluctuation in the atomic separation, i.e., when the Gaussian takes
the form of a Dirac-delta function.

emitters should possess an experimental uncertainty. To get
a better estimate of the reflected output, we should, therefore,
view the separation as a stochastic variable and consider an
average of the intensity over the associated probability distri-
bution in the empirical model. Let us consider the simplest
case of two atoms with separation L and define the random
variable θ ≡ kL. We can model the fluctuation by assigning a
Gaussian probability distribution with mean θ0 and standard
deviation σ , as follows:

ρ(θ ) = 1√
2πσ

exp

[
− (θ − θ0)2

2σ 2

]
. (A8)

In the absence of any fluctuation in θ , we have the following
reflection output [see Eq. (25)]:

R(2)(θ )=|r (2)(θ )|2 = 4(sin θ + δk cos θ )2

(
δ2

k − 1 + cos 2θ
)2 + (2δk + sin 2θ )2

.

(A9)

Hence, the averaged output will be obtained as

R(2)(δk ) =
∫ ∞

0
dθρ(θ )R(2)(θ ). (A10)

In Fig. 6, we plot the reflected intensity R(2)(δk ) averaged
with regard to the aforementioned Gaussian distribution with
mean θ0 = 9π

4 and standard deviations (i) σ → 0, (ii) σ =
0.01θ0, and (iii) σ = 0.05θ0. We observe that the spectrum
corresponding to (ii) closely resembles the zero-fluctuation
scenario, (i), whereas the one in (iii) shows deviation, espe-
cially over the domain where the Fano minumum appears. The
reflected intensity for case (ii) at the Fano minimum remains
quite close to 0. Note that for a wavelength of about 1 μ m,
a fluctuation of σ ∼ 0.05θ0 would correspond to a change
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in L of the order of 50 nm, which would be far above what
is achievable by modern nanofabrication techniques. This
numerical illustration, therefore, provides an insight into the

tolerable lattice length fluctuation. It is also interesting to note
that the flat-banded characteristics in the near-resonant region
clearly persist regardless of the fluctuation.
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