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Generation and dynamics of solitonic pulses due to pump amplitude modulation at normal
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Valery E. Lobanov,1,* Nikita M. Kondratiev,1 Artem E. Shitikov,1,2 Ramzil R. Galiev,1,2 and Igor A. Bilenko1,2

1Russian Quantum Center, Skolkovo 143025, Russia
2Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia

(Received 19 April 2019; published 3 July 2019)

We studied the generation and dynamics of solitonic pulses, platicons, in microresonators at normal group
velocity dispersion due to the pump amplitude modulation. We proposed that, if the required frequency of
amplitude modulation is too large for available modulators, it is possible to use subharmonic phase modulation
for platicon generation. It was also demonstrated that it is possible to control the repetition rate of platicons
by tuning the modulation frequency. The tuning range for platicons was found to be much wider than for
bright solitons. We also studied the influence of high-order dispersion on platicon properties. It was shown that
both third-order dispersion and pump modulation govern platicon dynamics, making it quite different from the
dynamics of dissipative Kerr solitons. Third-order dispersion was also shown to significantly affect the optimal
conditions for the platicon generation and repetition rate tuning range.
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I. INTRODUCTION

In recent years, soliton Kerr frequency combs [1,2] gen-
erated in high-quality-factor (high-Q) microresonators have
proven to be unique tools for various fields of science and
technology, including spectroscopy [3–5], astrophysical mea-
surements [6,7], systems of light identification, detection and
ranging (LIDARs) [8], low-noise microwave generation [9],
and telecommunication systems [10,11]. However, the area
of application of Kerr frequency combs is often limited by
the spectral ranges characterized by anomalous group velocity
dispersion (GVD) since achieving modulation instability for
comb initiation at normal GVD is a challenging task [12,13].
At the same time, the material GVD of microresonators is
usually normal in visible or telecommunication frequency
range. One may achieve anomalous GVD even in such spec-
tral ranges by engineering the resonator dispersion via the
resonator geometry [14–16]; however, such a process may
be rather tricky. Nevertheless, mode-locked Kerr frequency
combs in the normal dispersion regime were experimentally
demonstrated in different settings [17,18]. It was shown nu-
merically that in some cases such experimental results may
be explained using a specific type of solitonic pulses called
“platicons,” flat-topped bright pulses that can be softly excited
and stably exist in microresonators with normal dispersion un-
der the condition of local dispersion perturbation, e.g., pump
mode shift [19]. In real microresonators, this condition can be
fulfilled due to the normal mode coupling between different
mode families [20,21] or, presumably, due to the self-injection
locking effect [17,22]. Platicons may be interpreted as bound
states of opposing switching waves in a microresonator that
connect upper and lower branches of bistable nonlinear reso-
nance to satisfy periodic boundary conditions [23,24]. Taking
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the spatiotemporal analogy into account one may notice that
a similar scenario of the formation of positive and negative
autosolitons due to the diffractive coupling of the switching
waves was demonstrated in wide-aperture driven nonlinear
cavities [25]. Further, it was shown for platicons that one may
control their duration in a wide range varying the pump de-
tuning. Generation of platicons was found to be significantly
more efficient than the generation of bright soliton trains
in microresonators in terms of conversion of the cw pump
power into the power of the comb [26]. Conversion efficiency
exceeding 30% was demonstrated experimentally in the fiber
telecom band by employing dark pulse mode locking in the
normal dispersion range while the conversion efficiency of
bright solitons is generally limited to a few percent [27,28].
In [29], it was demonstrated numerically that the dynamics
of platicons in the presence of the third-order dispersion is
quite peculiar and drastically different from bright solitons
dynamics [30]. In [31], a possibility of stable coexistence of
dark and bright solitons in the case of nonzero third-order
dispersion was revealed. In [32] it was shown that Raman
scattering may induce instability of the platicon pulses re-
sulting in branching of platicons and complex spatiotemporal
dynamics. Interestingly, platicon generation is also possible
in the absence of the local dispersion perturbation when a
bichromatic or an amplitude-modulated pump is used [33].
This method is efficient if the pump modulation frequency
or the frequency difference between the two pump waves is
equal to a free spectral range (FSR) of the microresonator
(equal to the inverted round-trip time of light in it). The feasi-
bility of this method was confirmed experimentally [34]. Such
an approach seems to be the most simple for the experimental
realization.

In this work, we report results of numerical analysis of
the process of platicon generation via an amplitude-modulated
(AM) pump and demonstrate original features of platicon gen-
eration and nontrivial platicon dynamics that are important for
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FIG. 1. (Left panel) ε vs εeff and (right panel) Kp vs εeff for different subharmonic numbers p.

understanding of complex dynamics of localized dissipative
structures and useful for future experiments. We propose the
possibility of application of the pump phase modulation (PM)
at lower frequencies. We also estimate the platicon repetition
rate tuning range in comparison with the tuning range of
bright solitons and show that it may be significantly wider.
It is revealed that platicon dynamics is governed by both
amplitude modulation and third-order dispersion (TOD) and
it may be quite different from the dynamics of dissipative
Kerr solitons at anomalous GVD and dynamics of platicons
generated due to pump mode shift. TOD is also shown to
affect optimal generation conditions leading to a change of
the required modulation frequency.

II. SUBHARMONIC MODULATION

Using an amplitude-modulated pump for platicon genera-
tion one may encounter the problem that the microresonator
FSR (from tens of GHz to THz) may substantially exceed
the maximum modulation frequency of the available ampli-
tude modulators (usually less than 20 GHz). In recent works
studying different ways to generate a single soliton [35,36],
a method to solve this problem by using phase modulation
at fractional frequencies (subharmonics of the FSR) was pro-
posed. Note that resonant phase modulation with modulation
frequency equal to microresonator FSR does not provide plati-
con generation [33]. However, one may use strong PM at even
subharmonics of microresonator FSR to obtain effective am-
plitude modulation at FSR. Using the well-known expansion
eiε sin �t = ∑

m Jm(ε)eim�t , where ε is PM depth and Jm(ε) is
the Bessel function of the order m, and taking into account that
J−m(ε) = (−1)mJm(ε), it may be shown that at modulation
frequency � equal to FSR/p PM mimics AM for resonant
spectral modulation components, if p = 2k (p is a subhar-
monic number; k is an integer). Thus, one may obtain a simple
formula for the effective AM depth: εeff = 2Jp(ε)/J0(ε) (see
Fig. 1). Using this expression one may show that to obtain
AM of 0.3 that is quite enough for platicon generation one
may use phase modulation at the second subharmonic (p = 2)
with the modulation depth of 1.0 (ε = 1.12 for εeff = 0.4).
However, since the growth of PM depth leads to a decrease
of primary mode pump power, the pump power should be
increased by the factor Kp = [1/J0(ε)]2; that is, K2 = 1.71
for ε = 1.0 and K2 = 1.98 for ε = 1.12. The feasibility of
this method was checked numerically using the coupled mode

approach described in [33,35,37]. We also checked that in
most cases under such conditions it is enough to consider first
resonant sidebands in the modulation spectrum leaving only
three terms in the modulation function expansion since other
resonant spectral components are negligible and do not affect
platicon generation process.

The proposed approach allows one to generate coherent
frequency combs or platicons in high-Q crystalline microres-
onators at normal GVD using accessible commercial phase
modulators.

III. THIRD-ORDER DISPERSION

We also checked numerically the influence of the third-
order dispersion on platicon generation using both the coupled
mode approach [33,35] and the Lugiato-Lefever equation
(LLE) [29,38,39]. The influence of TOD is well studied for
generation of dissipative Kerr solitons at anomalous GVD
[30,40–45] but insufficiently for dark solitons and platicons.
Dispersive wave emission from dark solitons was studied in
[46]. Also, it was found that platicons may be generated in the
case of the pumped mode shift even if the TOD dispersion
is present [29]. Platicon generation and existence domains
depend weakly on the TOD coefficient value. Also, due to
the influence of TOD, the platicons obtain drift velocity
depending both on dispersion and on detuning value.

Nonlinear coupled mode equations were modified to take
the pump modulation f (t ) = F (1 + ε cos �t ) into account
[33,35]:

∂aμ

∂τ
= −(1 + iζμ)aμ + i

∑
μ′�μ′′

(2 − δμ′μ′′ )aμ′aμ′′

× a∗
μ′+μ′′−μ + fμ exp(iμ�τ ). (1)

We consider Taylor expansion of the dispersion law, ωμ =
ω0 + D1μ − 1

2 D2μ
2 + 1

6 D3μ
3, where ωμ are microresonator

eigenfrequencies, ω0 corresponds to the pumped mode, D1 =
2π/TR is the FSR of the microresonator, TR is the round-
trip time, and D2 and D3 are GVD and TOD coefficients,
correspondingly. All mode numbers μ are defined relative
to the pumped mode μ = m − m0 with the initial azimuthal
number m0 ≈ 2πRn0/λ, where λ = 2πc/ω0 is the wave-
length. Note that there is a minus before the quadratic term
since GVD is normal (we assume that D2 > 0). Here ζμ =
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FIG. 2. Field distribution evolution upon frequency scan (ζ0 = ζ0 + ατ , α = 0.002) in the temporal representation at AM depth ε = 0.4
and β2 = 0.005 for different values of the TOD coefficient: (a) β3 = 0, (b) β3/3β2 = 0.004, (c) β3/3β2 = 0.012, and (d) β3/3β2 = 0.02.

2(ωμ − ωp − μD1)/κ is the normalized detuning, ωp is the
pump frequency, aμ is the slowly varying amplitude of the
comb modes for the mode frequency ωμ, τ = κt/2 denotes
the normalized time, κ = ω0/Q denotes the cavity decay rate,
and Q is the total quality factor. f−1,0,1 = F {ε/2, 1, ε/2},
F =

√
8gηP0

κ2 h̄ω0
stands for the dimensionless pump amplitude, P0

is the unmodulated pump power, g = h̄ω2
0cn2

n2
0Veff

is the nonlinear
coupling coefficient, Veff is the effective mode volume, n2 is
the nonlinear refractive index, and η is the coupling efficiency
(η = 1/2 for the critical coupling). For the amplitude modula-
tion, ε is the modulation depth, � = 2(D1 − �)/κ is the nor-
malized modulation frequency mismatch. The corresponding
LLE was the following [29]:

∂ψ

∂τ
= −i

β2

2

∂2ψ

∂ϕ2
+ β3

6

∂3ψ

∂ϕ3
+ i|ψ |2ψ

− (1 + iζ0)ψ + F [1 + ε cos(ϕ + �τ )], (2)

where ϕ ∈ [−π ; π ] is an azimuthal angle in a coordinate
system rotating with the angular frequency equal to D1,
ψ (ϕ) = ∑

μ aμ exp(iμϕ) is the slowly varying waveform de-
scribing field azimuthal distribution inside the microresonator,
β2 = 2D2/κ , and β3 = 2D3/κ .

At first, we studied numerically the generation of plati-
cons from a noiselike input by the frequency scan [ζ0 =
ζ0(0) + ατ ] for different values of the third-order dispersion
coefficient β3. Equation (2) was solved numerically using a
standard split-step Fourier routine with 1024 points in the az-
imuthal direction. To check simulation results, сoupled mode
equations (1) for 1024 modes were numerically propagated
in time using the adaptive Runge-Kutta integrator. Nonlinear
terms were calculated using a fast method proposed in [47].
We also checked that results do not change with the increase
of number of modes. Results obtained by two methods were
found to be in good agreement.

We set � = 0, F = 4, β2 = 0.005, and α = 0.002, and
studied field distribution evolution upon frequency scan (see
Fig. 2). It should be noted that qualitatively similar results
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FIG. 3. Platicon propagation at ζ0 = 13, β2 = 0.005, and ε = 0.5 for different values of the TOD: (a) β3/3β2 = 0.0, (b) β3/3β2 = 0.004,
(c) β3/3β2 = 0.006, (d) β3/3β2 = 0.008, (e) β3/3β2 = 0.0084, and (f) β3/3β2 = 0.0092.

were also obtained for different values of these parame-
ters. First, we observed platicon generation from the noise-
like input in the absence of the third-order dispersion. In
Fig. 2(a) one may notice that at some detuning value abrupt
change of the field distribution takes place, indicating plati-
con formation. To be confident that steady-state solutions
were reached we repeated the simulation with a significantly
smaller frequency scan velocity α. We also checked that
in the absence of the frequency scan generated patterns

propagate in a stable fashion over indefinitely large periods of
time.

Then we studied the influence of the third-order dispersion
and it was found out that it affects the platicon generation
process greatly. It was revealed that in contrast to the case of
dissipative Kerr solitons at anomalous GVD [30] and platicon
generation due to the pump mode shift described in [29],
platicons generated via AM pump do not experience a drift
upon TOD. Such platicons are localized in the vicinity of
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FIG. 4. Platicon profiles in dimensionless units (left panel) and spectra (right panel) at ζ0 = 13, β2 = 0.005, and ε = 0.5 for different
values of the third-order dispersion.

FIG. 5. (Left panel) Critical TOD value β3cr vs pump frequency detuning ζ0 at β2 = 0.005, ε = 0.5. Platicons exist for the parameters
below the red line. (Right panel) β3cr vs β2 at ζ0 = 10, ε = 0.5. All quantities are plotted in dimensionless units.

FIG. 6. (Left panel) Platicon existence domains for different values of the modulation depth ε at � = 0. U = ∫ π

−π
|ψ |2dϕ. (Right panel)

Modulation frequency mismatch critical value vs modulation depth. All quantities are plotted in dimensionless units.
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FIG. 7. Modulation frequency mismatch critical value vs mod-
ulation depth for bright soliton and platicon for the same absolute
values of the parameters (F = 4, |β2| = 0.02). All quantities are
plotted in dimensionless units.

pump maximum at ϕ = 0 while TOD tries to shift them [see
Figs. 2(a) and 2(b)] making field distribution asymmetric.

If the TOD value is large enough platicons begin to
move away from the pump maximum and decay rapidly
[see Figs. 2(c) and 2(d)]. The platicon generation frequency
range (range of pump detuning ζ0) decreases notably with
the growth of TOD value. Above some critical TOD value
generation almost disappears and in order to avoid this a larger
modulation depth should be used.

To reveal the influence of the TOD on platicon dynamics,
we simulate platicon propagation at fixed mismatch value
for different values of β3 using platicon profiles obtained for
β3 = 0 as an input. As shown in Fig. 3, platicons propagate
in a stable manner without drift up to the critical TOD value.
If β3 exceeds this critical value platicon drift and decay are
observed [see Fig. 3(f)]. In Fig. 3(c) one may observe a sce-
nario of counteraction of the pump modulation to TOD: drift
tries to take the platicon away while the pump gradient returns
it back. Note that the direction of TOD action (drift direction)
depends on the TOD value [compare Figs. 3(b), 3(e), and 3(a)]
which is in good agreement with results reported in [29].

Also, with the growth of β3, the platicon profile (flat
top with symmetric oscillating tails) becomes indented and
asymmetric with a pronounced one-sided oscillating tail (see

Fig. 4). The platicon spectrum also becomes asymmetric and
even wider in the presence of TOD.

The critical value of TOD, β3cr , decreases with the growth
of the pump detuning value ζ0 (see Fig. 5, left panel). For
example, at ε = 0.5, β2 = 0.005 the platicon decays if β3/3 >

0.000 042 (β3/3β2 > 0.0084) for ζ0 = 13 and if β3/3 >

0.0001 (β3/3β2 > 0.02) for ζ0 = 8. Thus, narrow platicons
are more sensitive to the TOD than wide platicons. This result
agrees with the fact reported in [29] that in the presence of the
pump mode shift the absolute value of platicon drift velocity
(or, in other words, TOD influence) increases with the growth
of ζ0. Thus, for the same value of β3, the force trying to
shift the platicon from the pump maximum increases with the
growth of ζ0.

Critical TOD value also increases with the growth of GVD
coefficient β2. Considering the normalization procedure for
Eq. (2), one may approximate this dependence as β3cr ∼ β

3/2
2

and one may see a good correspondence between this estima-
tion and numerical results in Fig. 5 (right panel).

IV. PLATICON INJECTION LOCKING

It is well known that one may control the repetition rate of
dissipative Kerr solitons generated in optical microresonators
[1,2] via the microwave injection-locking technique [48–51].
The injection locking of the soliton repetition rate may be
implemented by applying amplitude modulation or phase
modulation on the pump laser, at a frequency close to the FSR.
In this case, a modulated cw field traps solitons, regulating the
time interval between them. Thus, in the frequency domain
modulation frequency defines the soliton repetition rate.

Here we studied the possibility of platicon repetition rate
control by tuning the frequency of pump amplitude modu-
lation. It should be noted that while bright dissipative Kerr
solitons can be generated without pump modulation that may
be used additionally for single-soliton generation [35], AM
is a crucial aspect of platicon generation. Equation (2) was
rewritten in a coordinate system rotating with the modulation
frequency using the substitution θ = ϕ + �τ :

∂ψ

∂τ
+ �

∂ψ

∂θ
= −i

1

2
β2

∂2ψ

∂θ2
+ i|ψ |2ψ

− (1 + iζ0)ψ + F {1 + ε cos θ}. (3)

FIG. 8. Platicon profiles in dimensionless units (left panel) and spectra in dB (right panel) at ζ0 = 10, ε = 0.4 for different values of the
modulation frequency mismatch �.
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FIG. 9. (Left panel) Mismatch critical value �cr vs pump detuning ζ0 for different values of ε. (Right panel) Mismatch critical value �cr

vs normalized GVD coefficient (β20 = 0.02). All quantities are plotted in dimensionless units.

Note that left part of Eq. (3) contains a drift term whose
strength is proportional to the modulation frequency mismatch
value �. Then we searched for the stationary solutions of
Eq. (3):

−1

2
β2

∂2ψ

∂θ2
+ i�

∂ψ

∂θ
+ |ψ |2ψ

+ i(1 + iζ0)ψ − iF {1 + ε cos θ} = 0. (4)

Such solutions describe platicons whose repetition rate is
equal to the modulation frequency. Equation (4) was solved
numerically by means of the relaxation technique. We set
F = 4, β2 = 0.02. First of all, we calculated the dependence
of platicon energy U = ∫ π

−π
|ψ |2dϕ on detuning value ζ0

and found platicon existence domains for different values of
the modulation depth ε (see Fig. 6, left panel). While the
modulation depth increases, the existence domain becomes
wider and the energy spectrum contains a smaller number
of steps. Discrete energy levels correspond to wide platicons
with a different number of oscillations in the platicon profile
[19,33].

Interestingly, even for high values of the modulation depth
the symmetry-breaking effect reported for bright solitons [52]
was not found. It was revealed that for each value of the
modulation depth ε (in our simulation ε ∈ [0.0; 0.5]) solitons
may exist if |�| < �cr . Thus, the platicon repetition rate
tuning range is 2�cr . The critical value of modulation fre-
quency mismatch grows almost linearly with the modulation
depth value (see Fig. 6, right panel). In comparison with
bright solitons, the repetition rate tuning range for platicons is
significantly wider (see Fig. 7) for the same absolute values of
the parameters. Moreover, at rather high values of modulation
depth symmetry breaking occurs for bright solitons. It leads
to the reduction of the tuning band since before symmetry
breaking it is possible to decrease or increase the repetition
rate equally. After symmetry breaking (at ε ≈ 0.29 in Fig. 7)
one tuning direction is suppressed and one can either increase
or decrease the repetition rate depending on the particular
symmetry-breaking case (compare lines marked with circles
and triangles in Fig. 7).

If modulation is resonant the platicons reside at the pump
maximum (note that stable, bright solitons reside at the pump
minimum). In the presence of the modulation frequency mis-
match platicons are shifted from the pump maximum to the

position where the pump gradient can compensate the drift
term (see Fig. 8, left panel). Shift direction is defined by
the sign of the modulation frequency mismatch. Shift value
increases with the growth of � and the platicon spectrum
becomes asymmetric (see Fig. 8, right panel). If |�| > �cr

platicons generated at � = 0 decay upon propagation.
�cr also depends nonmonotonically on the detuning value

ζ0 (see Fig. 9, left panel). However, in the greater part of the
existence domain, it decreases with the growth of ζ0. Note that
for detuning values providing several platicon solutions (see
left panel in Fig. 6) we consider the maximal possible value
of modulation frequency mismatch in Fig. 9.

We also found that �cr increases with the growth of the
GVD coefficient β2. However, while for bright solitons this
dependence was found to be linear, for platicons it is not so
(see Fig. 9, right panel).

Then, we introduced the TOD term into Eq. (3) and using a
platicon solution at � = 0 and β3 = 0 as an input we searched
the detuning range �cr− � � � �cr+ providing the existence
of stationary platiconlike solutions for different values of the
third-order dispersion coefficient β3. It was found out that
TOD also affects the platicon repetition rate tuning range
(see Fig. 10). Depending on its sign and value, TOD may
strengthen or weaken the action of the drift term defined by
the mismatch value. In the first case it leads to the decrease
of the maximal mismatch value, in the opposite case—to the

FIG. 10. Mismatch critical value vs TOD coefficient at β2 =
0.02, ζ0 = 10, and ε = 0.4. All quantities are plotted in dimension-
less units.
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FIG. 11. Platicon profile in dimensionless units (left panel) and spectrum in dB (right panel) at ζ0 = 10, β2 = 0.02, ε = 0.4, β3 = 0.015,
and � = −0.5.

increase of �cr . At β3 = 0, the tuning range is symmetric
with regard to the point � = 0. At small values of β3 the
tuning range becomes asymmetric and with further increase
of β3 it becomes shifted to the positive or negative values
depending on the TOD sign. Thus, at significant values of β3

platicons can exist only if modulation is nonresonant (� �= 0)
since such parameters provide balance between modulation
frequency mismatch and TOD. Note that, at large values of
TOD the platicon profile becomes indented significantly (see
Fig. 11).

We also revealed that while for repetition rate tuning of
bright solitons one may use both AM and PM or their combi-
nation, for platicons it is possible with AM only. However, it
can be expected that a similar spectral purification mechanism
of the external microwave signal frequency, leading to reduced
phase noise of the output signal, reported for bright solitons
[51] may exist for platicons.

V. CONCLUSION

In conclusion, we found that it is possible to use subhar-
monic phase modulation for platicon generation and analyzed
PM parameters suitable for it which is useful for experimental

realization, especially in the case of large values of FSR. We
also revealed the complex dynamics of platicons in the pres-
ence of TOD. It was shown that platicon dynamics depends
on both modulation parameters and TOD coefficient value
and it may be quite different from dynamics of dissipative
Kerr solitons at anomalous GVD and dynamics of platicons
generated due to pump mode shift. The obtained results are
important for understanding the impact of different factors
on the complex dynamics of nonlinear localized structures
in optical microresonators. It was also demonstrated that
it is possible to control the repetition rate of platicons by
tuning modulation frequency and tuning range for platicons
is much wider than for bright solitons. This effect may be
useful for a variety of practical applications such as metrology,
spectroscopy, and spectrometer calibration. TOD was shown
to affect the platicon repetition rate tuning range and may shift
it away from the resonant modulation frequency. Introducing
modulation frequency mismatch, it is possible to provide
platicon existence at significant TOD values.
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