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Traditionally, optical spatial dispersion (OSD) is defined as the dependence ε̂(�k) of the dielectric permittivity
tensor ε̂ on the light wave vector �k, similarly to the frequency (ω) dispersion of the dielectric tensor ε(ω). We
have developed an approach for the description of the OSD phenomena in the framework of Jones calculus. In
Jones calculus the differential Jones matrix (DJM) N is the generalization of the light wave-vector �k in the same
sense that �k is the generalization of the light wave number k. The latter inspires us to expect that there must exist
a way to describe the OSD phenomena in terms of the DJM. We show that such a relation between the OSD
phenomena and Jones calculus indeed exists. To prove the latter we derive a general relation between the DJM
and components of the dielectric permittivity tensor ε̂. We establish the relation of the DJM approach, proposed
in this paper, to the traditional OSD approach of the gyration pseudotensor as well as to that developed by
Mauguin for light propagation in cholesteric liquid crystals [M. C. Mauguin, Bull. Soc. Fr. Mineral. Crystallogr.
N3, 71 (1911)]. We demonstrate that both the gyration pseudotensor and Mauguin’s approach can be derived as
particular cases of the proposed DJM approach. In our approach the integral Jones matrix (IJM) of the medium
taking into account OSD is the product of the IJM without taking into account OSD by the correction IJM, which
accounts for the OSD effects. In a general case, when all components of the OSD DJM ND are nonzero, the
secular equation for the refractive indices of the eigenwaves is a quartic equation. The coefficient a3 at the cubic
term in the secular equation is nonzero only for nonzero OSD corrections to the average refractive index. For
transparent crystals at nonzero OSD correction to the average refractive index and zero to all other correction
parameters in ND, the secular equation has two distinct real and two complex-conjugate roots. We assign the
complex-conjugate roots to the forward and backward light scattering. Therefore, taking into account the OSD
effect on the refractive index, the Jones calculus becomes capable of describing light scattering. The proposed
Jones calculus approach is a general tool for taking into account OSD in optically inhomogeneous media, in
which several or all OSD correction parameters are simultaneously nonzero, for example, in liquid-crystal cells
with a spatially nonuniform director field, including those containing defects.
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I. INTRODUCTION

Description of light propagation is one of the most devel-
oped and still quite intensively developing theories in physics.
Several novel concepts such as localization of light [1], light
propagation in photonic media [2–4] and optical metamate-
rials [5,6], mirrorless lasing [7,8], and singular optics [9,10]
have been developed recently. The most general approach
to the description of new as well as classical problems of
light propagation in optical media is based on Maxwell’s
differential equations, which together with material equations
form a closed system of equations allowing for calculation
of the electric-field vector for the light propagating in and
exiting from the medium. Since the theory is based on a
system of second-order differential equations, it bears all the
complications related to their solution with respect to four
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variables: three space coordinates and time. As a result, only
in a few cases are exact analytical solutions obtained. In most
cases analytical expressions suitable for qualitative analysis
are not available; time-demanding numerical computations
are needed. However, there are typical cases when consider-
able simplifications are achieved. For a monochromatic light
wave with frequency that does not change on propagation,
time derivatives are excluded and thus one deals only with
space derivatives. For normal light incidence, when there is no
dependence of the electric-field components on the in-plane x
and y coordinates, their x and y derivatives are zero. Further
simplification achieves taking into account the transverse
character of the electric field of the plane light wave, prop-
agating through a flat plate at normal light incidence. For the
�Z axis of the Cartesian coordinate system directed along the
light propagation direction, which is along the plate normal,
the z component of the vector of dielectric displacement is
zero and one deals with the two z derivatives of the in-plane
components of the electric field. In such a case the system
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of Maxwell equations can be written in the two-dimensional
(2D) matrix form [11]

ε̂
d �E
dz

= −λ̄2 d2 �E
dz2

, (1)

where λ̄ = λ
2π

, λ is the light wavelength, and ε̂ is the 2 × 2
tensor of dielectric permittivity. Components of the 2 × 2
(2D) form ε

(2)
i j = εi j are related to the components of the

conventional 3 × 3 (3D) dielectric tensor ε
(3)
i j as

ε̂ = ε̂(2) =

⎡
⎢⎣ε

(3)
11 − (ε(3)

13 )2

ε
(3)
33

ε
(3)
12 − ε

(3)
13 ε

(3)
23

ε
(3)
33

ε
(3)
12 − ε

(3)
13 ε

(3)
23

ε
(3)
33

ε
(3)
22 − (ε(3)

23 )2

ε
(3)
33

⎤
⎥⎦. (2)

Taking into account that the 3D dielectric tensor is symmetric
[12], i.e., ε

(3)
i j = ε

(3)
ji , one finds that its 2D form is also sym-

metric, ε
(2)
i j = ε

(2)
ji .

The convenience of the 2D matrix form of Maxwell equa-
tions is that it can be combined with the approach of the 2 × 2
Jones matrix J , which relates the electric-field vector �Ei of
the incident light wave to the vector �E of the wave exiting
an optical plate in a linear fashion �E = J �Ei. Thereby, the
matrix J describes the plate as a whole; it does not carry
any information on the regime of propagation of the light
wave inside the plate and of course it gives no indication of
the presence of the internal optical inhomogeneity inside the
plate. For this reason J is called the integral Jones matrix
(IJM) to distinguish it from the differential Jones matrix N ,
which was introduced by Jones [13] to describe the optical
inhomogeneity in a sample. The IJM and differential Jones
matrix (DJM) are related via the matrix exponent

J = exp

(∫
N (z)dz

)
J0, (3)

where J0 is the IJM of the entrance interface of the plate.
Since we are dealing with the bulk properties of the media,
throughout this paper J0 is taken to be equal to the identity
matrix. For a single crystal N is independent of z and Eq. (3)
reduces to the form

J = eNz. (4)

Equation (4) describes the light propagation along the co-
ordinate z inside the plate. The regime of light propagation
inside the plate is defined by the form of N , which in turn is
governed by the crystallographic symmetry of the medium. In
a physical sense the matrix N is a generalization of the light
wave vector �k in the same way that �k is a generalization of the
scalar wave number k [13]. In this respect it is worth noting
that the �k dependence of the dielectric tensor ε̂ is at the heart
of the phenomena of optical spatial dispersion (OSD) [12,14].
Intuitively, one expects that since the DJM is a generalization
of the wave vector, it should be related to the OSD phenomena
as well. In this paper we show that such a relation between the
OSD phenomena and the DJM indeed exists. We propose an
approach for the description of the OSD phenomena via the
DJM and show that since the DJM is a generalization of �k,
the DJM approach is naturally more general with respect to
the traditional so-called approach of the gyration pseudoten-
sor [12,14]. The gyration pseudotensor approach is based

on the serial expansion of ε̂(�k), truncated at the first power
of �k with the expansion coefficient, which is the gyration
pseudotensor ĝ.

An alternative approach, which accounts for the OSD but
does not involve the notion of the gyration pseudotensor,
was developed by Mauguin [15] for light propagation along
the helical axis in a cholesteric liquid crystal. Although this
approach results in an exact solution of Maxwell equations
without any approximation, traditionally it is considered as
a solution for a particular problem. This approach is known
to the liquid-crystal community, but has not yet shown any
impact on the general treatment of the problem of the OSD
phenomena in anisotropic media. We show below that Mau-
guin’s approach is more general than that based on the gy-
ration pseudotensor. We show also that the DJM approach
proposed in this paper is more general with respect to both
Mauguin’s and the gyration pseudotensor approach, both of
which can be obtained from the DJM approach as particular
cases.

The paper is organized as follows. In Sec. II we show
how the DJM can be calculated from the dielectric tensor.
As shown by Jones [13], the form of the DJM allows for
identification of the optical phenomena possessed by the
medium. This statement is explained in detail in Appendix
A. In Sec. III we transform the DJM derived in Sec. II to a
form which allows for the identification of the contribution of
dielectric tensor components to different optical phenomena.
To relate the traditional gyration pseudotensor approach to
that developed by Mauguin [15] for cholesterics, we discuss
them in Secs. IV and V, respectively. In Sec. VI we pro-
pose the description of the OSD in terms of Jones matrices
and relate this approach to the gyration pseudotensor and
Mauguin’s approaches. In Sec. VII we discuss the physical
meaning of the DJM components responsible for OSD. Sec-
tion VIII presents some examples of the application of the
DJM approach developed in this paper to the description of
the OSD phenomena in optical media. Section IX summarizes
our results.

II. RELATION BETWEEN THE DJM
AND DIELECTRIC TENSOR

Using the Jones equation for a differential Jones matrix N
[13],

d �E
dz

= N �E , (5)

Eq. (1) can be rewritten in the form

ε̂ �E = −λ̄2N2 �E , (6)

where it is taken into account that for a uniform crystal
dN/dz = 0. The latter condition remains valid as long as one
remains within the framework of the approach of eigenwaves
with spatially uniform refractive indices, propagating in the
medium. An example of such a situation is light propagation
in a cholesteric, where the local optic axis helically rotates
around and along an axis, which is everywhere perpendicular
to the local optic axis. Although for such a spatially modulated
structure one would expect the refractive index to be spatially
modulated, the problem can be formulated and solved in terms
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of eigenwaves with spatially uniform refractive indices [16],
which thereby implies dN/dz = 0.

Equation (6) is a symbolic representation of a system
of two equations with four unknown variables Ni j and thus
cannot be solved without an additional assumption. Such an
assumption can be introduced concerning the polarization of
the light wave propagating in the medium. For the most gen-
eral case the propagating light wave is elliptically polarized
and thus can be written in the form

�E = �E0e−i(η/λ̄)z, (7)

where �E0 = [Ex0, iEy0]T (the superscript T denotes the trans-
pose operation such that �E0 is a column vector) and η is
the refractive index for the propagating light wave. For light
absorbing crystals η = n − iκ is complex, with κ standing for
the absorption index; for transparent crystals η reduces to the
real refractive index n. From Eqs. (1), (6), and (7) one finds

ε̂ �E = −λ̄2N2 �E = η2 �E . (8)

Equation (8) shows that η2 is the eigenvalue which is common
to the matrices ε̂ and −λ̄2N2. Since eigenvectors and eigenval-
ues uniquely define a matrix [17], one has

ε̂ = −λ̄2N2. (9)

The eigenvalue η is common to the matrices
√

ε̂ and iλ̄N ;
consequently, these two matrices,

√
ε̂ and iλ̄N , are also equal

and

N = − i

λ̄

√
ε̂ = − i

λ̄

1

η+ + η−

[
ε11 + η+η− ε12

ε21 ε22 + η+η−

]
,

(10)

where η+ and η− are square roots of the eigenvalues of the
matrix ε̂, namely,

η2
± = ε̄ ±

√
ε12ε21 + �ε2

4
, (11)

with ε̄ = (ε11 + ε22)/2 and �ε = ε11 − ε22. Without taking
into account OSD, the dielectric tensor is symmetric, i.e.,
ε12 = ε21. The solution for N , given by Eq. (10), has of course
multiple values. However, as remarked by Jones [11], only one
of the four square roots is physically meaningful for a light
wave propagating in the medium. For this reason, in this paper
we do not consider other solutions. Equation (10) shows that
without taking into account OSD, the DJM is symmetric, i.e.,
N12 = N21, as a consequence of the symmetry ε12 = ε21 of the
dielectric tensor ε̂. Taking into account the OSD increases the
symmetry of ε̂ such that ε12 �= ε21. For a transparent crystal, ε̂

should be Hermitian [12].
In Eq. (10) we use the expression for the square root of a

matrix given by Jones in Ref. [11]. From Eq. (11) one finds a
useful relation

η+η− = √
ε11ε22 − ε12ε21, (12)

with ε11ε22 − ε12ε21 = det[ε] the determinant of ε̂. We show
below how Eq. (10) can be obtained via matrix diagonaliza-
tion. The explicit form of the N matrix can be derived using
the second part −λ̄2N2 �E = η2 �E of Eq. (8), which gives

N �E = − i

λ̄
η �E = −ik �E . (13)

Equation (13) shows that the value −ik is the eigenvalue of the
DJM N , with k = η

λ̄
the wave number for the propagating light

wave. Equation (13) can also be obtained via substitution of
Eq. (7) in Eq. (5), as we recently have shown in Ref. [16]. The
eigenvalues η can be found from the third relation of Eq. (8):

ε̂ �E = η2 �E . (14)

Two roots of Eq. (14) are given by Eq. (11). Since the roots
values η+ and η− define the eigenvalues of the matrix N ,
according to Eq. (13), the diagonal d form of N is

Nd = − i

λ̄

[
η+ 0
0 η−

]
. (15)

The full form of N can be reconstructed as

N = T Nd T −1, (16)

where T −1 is the inverse matrix of the transform matrix

T = [ �E+, �E−], (17)

which is composed of the eigenvectors of ε̂. The eigenvectors
�E± of ε̂ are found via substitution of Eq. (11) into Eq. (14),

�E± =
[

1

− ε11−(η± )2

ε12

]
=

[
1

− ε12
ε22−(η± )2

]
, (18)

where it is taken into account that the dielectric tensor is
symmetric, i.e., ε12 = ε21. It should be noted that the number
of eigenvectors of a matrix is infinite, because their x and y
components are related through a constant, which can take
any value. To resolve this issue, one normalizes either the x or
y component to 1. It is the x component in Eq. (18) which is
normalized to 1. One can show that all the transform matrices
constructed of such eigenvectors give the same full form of
N when substituted in Eq. (16); see Ref. [16], where the latter
statement is proven for a cholesteric. Substitution of Eqs. (15),
(17), and (18) in Eq. (16) indeed gives Eq. (10). Recently,
we used the algorithm of the derivation of the matrix N ,
given by Eq. (16), for derivation of the DJM for a cholesteric
liquid crystal [16]. The equivalence of the two algorithms
(10) and (16) is based on the matrix property, according to
which the square root of a matrix can be calculated via its
diagonalization.

We recall that the aim of this paper is to establish how
the elements of the matrix ε̂ contribute to N and to trace the
contribution of OSD to N . As shown by Jones [11], one of
the advantages of the DJM is that its form identifies optical
phenomena possessed by the medium. The form of the N
matrix (in the following called the template form), in which
each of the four components is in the complex rectangular
form Ni j = N ′

i j − iN ′′
i j , with N ′

i j and N ′′
i j being split into av-

erages and differences of opposite components standing on
the same matrix diagonal, enables the establishment of how
the components of ε̂ contribute to optical properties of an
anisotropic medium. This statement is explained in Appendix
A. In the next section we use Eq. (10) to relate the contribution
of the real and imaginary parts of the components of ε̂ to
N and thus to identify the contributions of ε̂ components to
optical phenomena, predicted by the template form of N [see
Eq. (A6)].

013806-3



S. YU. NASTYSHYN et al. PHYSICAL REVIEW A 100, 013806 (2019)

III. CONTRIBUTION OF ε̂ COMPONENTS TO OPTICAL
PROPERTIES OF TRANSPARENT CRYSTALS:

εi j ARE REAL NUMBERS

For the light transparent medium εi j components and n+
are real values, whereas according to Eq. (11) the value of n−
becomes imaginary for nonzero off-diagonal εi j components

if ε̄ <

√
(ε12)2 + �ε2

4 . This case is analyzed below. For a light
absorbing medium εi j components are complex numbers with
nonzero real and imaginary parts. This case is analyzed in
Appendix B.

In the most general case for the light absorbing anisotropic
medium the DJM can be written in its template form

N = − i

λ̄

[
n̄ − iκ̄ + Blin − iDlin BJones − iDJones + Dcirc − iAopt

BJones + iDJones − (Dcirc − iAopt) n̄ − iκ̄ − (Blin − iDlin)

]
, (19)

where Blin, Dlin, BJones, DJones, Dcirc, and Aopt stand for the
contributions of linear birefringence, linear dichroism, Jones
birefringence, Jones dichroism, circular dichroism, and op-
tical activity, respectively (see Appendix A for details). For
light transparent crystal εi j are real numbers and Eq. (19)
reduces to the form

N0 = − i

λ̄

[
n̄eff + Blin BJones

BJones n̄eff − Blin

]
, (20)

with n̄eff = ε̄+n+n−
n++n−

, Blin = 1
2

�ε
n++n−

, BJones = 1
2

ε12+ε21
n++n−

, and

Dcirc = 1
2

ε12−ε21
n++n−

. Accounting for the symmetry of the dielec-
tric tensor ε12 = ε21, one has BJones = ε12

n++n−
and Dcirc = 0. It

is clear that without taking into account OSD, the symmetric
form ε21 = ε12 of the dielectric tensor results in Dcirc = 0
for all crystals: for transparent as well as for light absorbing
crystals, independently of the crystal symmetry. It is also
worth noting that Eq. (20) does not contain the Aopt term,
responsible for optical activity. The latter shows that optical
activity cannot be described without taking into account OSD,
i.e., circular dichroism and optical activity are phenomena of
OSD.

Any tensor with real components can be transformed to its
diagonal form by the rotation of the coordinate system. For
optically uniaxial crystals, i.e., those of high- and middle-
symmetry classes, whose symmetry is not lower than the
symmetry of orthorhombic crystallographic classes, the axes
of the crystal-physical coordinate system (which is attached
to the crystal lattice) coincide with the axes of the coor-
dinate system in which the tensor reduces to its diagonal
form (called the principal coordinate system). Therefore, for
optically uniaxial crystals ε12 = ε21 = 0 and thus n̄eff reduces
to n̄ = (

√
ε11 + √

ε22)/2 and Blin reduces to �n/2 = (
√

ε11 −√
ε22)/2, whereas BJones and Dcirc are zero. Therefore, as

expected, for uniaxial crystals, the average of the square roots
of the diagonal components of the dielectric tensor gives the
average refractive index n̄, whereas their difference gives
the linear birefringence �n of the medium. Equal diagonal
components ε11 = ε22 thus imply that the medium is optically
isotropic.

For optically biaxial crystals, i.e., those of low-symmetry
classes, ε12 = ε21 �= 0. Equation (20) indicates that a medium
with real εi j , n−, and n+ possesses linear birefringence Blin

and Jones birefringence BJones. To give an idea on the origin
of Jones birefringence in crystals of low-symmetry classes, we
remark that nonzero ε12 = ε21 �= 0 can be obtained by rotation

of the coordinate system around the Z axis by an angle γ ,

ε̂ = R(γ )ε̂(d )R−1(γ )

=
[
ε̄(d ) + 1

2�ε(d ) cos 2γ 1
2�ε(d ) sin 2γ

1
2�ε(d ) sin 2γ ε̄(d ) − 1

2�ε(d ) cos 2γ

]
, (21)

where ε̂(d ) is the diagonal form of ε̂, ε̄(d ) = (ε(d )
11 + ε

(d )
22 )/2,

�ε(d ) = ε
(d )
11 − ε

(d )
22 , and ε

(d )
11 and ε

(d )
22 are the principal values

of ε̂(d ). The angle γ can be interpreted as the angle of
disorientation between the principal coordinate system of the
dielectric tensor and the crystal-physical coordinate system of
the crystal. Substitution of Eq. (21) in Eqs. (10) and (11) gives

N = − i

λ̄

[
n̄ + 1

2�n cos 2γ 1
2�n sin 2γ

1
2�n sin 2γ n̄ − 1

2�n cos 2γ

]

= R(γ )

[
n1 0

0 n2

]
R−1(γ ), (22)

with the refractive indices for the eigenwaves n+ = n1 and

n− = n2, where n1 =
√

ε
(d )
11 and n2 =

√
ε

(d )
22 are refractive in-

dices of the crystal in the principal coordinate system of the di-
electric tensor and n̄ and �n are their average and difference,
respectively. From Eq. (22), for such a crystal one finds that
Blin = (�n/2) cos 2γ and BJones = (�n/2) sin 2γ . Therefore,
we are led to conclude that the transparent low-symmetry
crystals possess Jones birefringence, which originates in the
disorientation between the crystal-physical coordinate system
and the principal coordinate system of the dielectric tensor.
The axes of the DJM for such a crystal are rotated by the same
angle γ by which the diagonal dielectric tensor ε̂(d ) is rotated
and thus the axes of the DJM for a low-symmetry crystal
are along the axes of the crystal-physical coordinate system.
Such a crystal plate is equivalent to a crystal plate rotated by
the angle γ from the principal coordinate system, with the

same effective birefringence �neff = 2
√
B2

lin + B2
Jones = �n.

The substitution of Eq. (22) in Eq. (3) gives the IJM of the
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crystal in the form

J = R(γ )

[
e−(i/λ̄)n1z 0

0 e−(i/λ̄)n2z

]
R−1(γ ), (23)

which shows that in this case the effect of Jones birefrin-
gence reduces to the biasing of the coordinate system by the
angle γ .

According to Eq. (11) the value of n− could be imaginary
if

ε̄ <

√
(ε12)2 + �ε2

4
. (24)

It is clear that the condition (24) is never satisfied if ε12 =
0. If the off-diagonal component ε12 is nonzero due to the
disorientation between the crystal-physical and principal co-
ordinate systems of the dielectric tensor, then substitution of
Eq. (21) in Eq. (11) gives n2

± = ε(d ) ± 1
2�εd , thereby showing

that both values n+ and n− are real numbers and thus the
condition (24) is not satisfied for any angle γ of disorientation.
Therefore, without taking into account OSD in transparent
crystals, refractive indices n+ and n− of both eigenwaves are
real values.

IV. CONTRIBUTION OF OSD TO THE
DIELECTRIC TENSOR AND DJM

Optical spatial dispersion is a phenomenon of nonlocal
interaction of a light wave with a medium such that the
propagating optical field is defined by material parameters
not only in a given point but also in its vicinity. In such
a case the dielectric tensor is an operator containing spatial
derivatives. For the Z axis of the Cartesian coordinate system
directed along the light propagation direction, which is along
the normal to the sample plate, the dielectric displacement
vector of the light wave is perpendicular to the Z axis. In
this coordinate system the vector of dielectric displacement
can be decomposed into the in-plane and normal components
with respect to the plane of the sample plate. Because of
the transverse character of the electromagnetic light field, the
normal component of the dielectric displacement Dz = 0 and
thus one can express Ez through Ex and Ey, thereby excluding
Ez from consideration. Then in the 2D form the vector of
dielectric displacement is

�D = ε̂eff

[
Ex

Ey

]
, (25)

where ε̂eff is a 2 × 2 tensor with [11]

εeff
11 = ε

(3)0
11 − 1

ε0
33

[(
ε

(3)0
13

)2 − (
λ̄g(3)

23
�∇z

)2]
,

εeff
12 = ε

(3)0
12 − λ̄g(3)

33
�∇z − 1

ε
(3)0
33

(
ε

(3)0
13 + λ̄g(3)

23
�∇z

)(
ε

(3)0
23 + λ̄g(3)

13
�∇z

)
,

εeff
21 = ε

(3)0
12 + λ̄g(3)

33
�∇z − 1

ε
(3)0
33

(
ε

(3)0
13 − λ̄g(3)

23
�∇z

)(
ε

(3)0
23 − λ̄g(3)

13
�∇z

)
,

εeff
22 = ε

(3)0
22 − 1

ε
(3)0
33

[(
ε

(3)0
23

)2 − (
λ̄g(3)

13
�∇z

)2]
, (26)

where the superscript 0 corresponds to the 3D (superscript 3) dielectric tensor components without taking into account OSD. It
can be seen from Eq. (26) that by taking into account the OSD, the 2 × 2 tensor ε̂eff becomes nondiagonal and nonsymmetric
εeff

12 �= εeff
21 . The values gi j are coefficients of the series expansion of the dielectric tensor and thus gi j � εi j . For this reason, one

can neglect the squares and cross products of gi j and consequently Eq. (26) reduces to the form

ε̂eff =

⎡
⎢⎣ ε

(3)0
11 − (ε(3)0

13 )2

ε
(3)0
33

ε
(3)0
12 − ε

(3)0
13 ε

(3)0
23

ε
(3)0
33

− λ̄
g(3)

33 ε
(3)0
33 +ε

(3)0
13 g(3)

13 +ε
(3)0
23 g(3)

23

ε
(3)0
33

�∇z

ε
(3)0
12 − ε

(3)0
13 ε

(3)0
23

ε
(3)0
33

+ λ̄
g(3)

33 ε
(3)0
33 +ε

(3)0
13 g(3)

13 +ε
(3)0
23 g(3)

23

ε
(3)0
33

�∇z ε
(3)0
22 − (ε(3)0

23 )2

ε
(3)0
33

⎤
⎥⎦. (27)

Equation (27) can be rewritten in the form

ε̂eff = (ε̂0)eff + R

(
π

2

)
geff

12
d

dz
, (28)

where

ε̂eff =

⎡
⎢⎣ ε

(3)0
11 − (ε(3)0

13 )2

ε
(3)0
33

ε
(3)0
12 − ε

(3)0
13 ε

(3)0
23

ε
(3)0
33

ε
(3)0
12 − ε

(3)0
13 ε

(3)0
23

ε
(3)0
33

ε
(3)0
22 − (ε(3)0

23 )2

ε
(3)0
33

⎤
⎥⎦ (29)

and geff
12 = λ̄(g(3)

33 ε
(3)0
33 + ε

(3)0
13 g(3)

13 + ε
(3)0
23 g(3)

23 )/ε(3)0
33 . For a

medium with point group symmetry which is not lower
than orthorhombic, the off-diagonal components ε0

i j = 0 and

gi j = 0 at i �= j and thus Eq. (26) reduces to

ε̂eff =
[

ε
0(d )
11 −λ̄g33 �∇z

λ̄g33 �∇z ε
0(d )
22

]
= ε̂0(d ) + λ̄g33R

(
π

2

)
d

dz
,

(30)
with ε

0(d )
11 = ε

(3)0
11 and ε

0(d )
22 = ε

(3)0
22 . Equation (30) shows that

taking into account OSD leads to nonzero off-diagonal com-
ponents in εeff even if the matrix ε̂0 is diagonal. From Eq. (7)
one has d �E/dz = −ik �E0 (k = n/λ̄ is the wave number) and
thus Eq. (30) takes the form

ε̂eff = ε̂0(d ) − ikλ̄g33R

(
π

2

)
. (31)
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Equation (31) shows that due to the OSD, the effective dielec-
tric permittivity depends on the wave number k of the light
wave, which is the key notion of the OSD concept. The k-
dependent term in Eq. (31) is responsible for optical activity;
it enters εeff as an imaginary part, which is in agreement with
Eq. (19), where the Aopt term is also the imaginary part of the
off-diagonal components of the matrix in square brackets in
Eq. (19). Substitution of Eq. (30) in the Maxwell equation (1)
gives {

ε̂0(d ) + λ̄g33R

(
π

2

)
d

dz

}
�E = −λ̄2 d2 �E

dz2
. (32)

Expressions (25)–(32) represent an approach for taking into
account OSD in the optics of solid crystals [12,14]. The
pseudotensor of gyration is a material tensor, the components
of which can be experimentally measured [18]. Despite its
approximate character, this approach is commonly accepted
in crystal optics, being considered the most general consider-
ation available for OSD phenomena.

An alternative approach, which does not involve the notion
of the gyration pseudotensor, was developed by Mauguin [15]
for light propagation along the helical axis in a cholesteric
liquid crystal. We show below that Mauguin’s approach is
more general than that based on the gyration tensor (30).
Inspired by Mauguin’s approach, in this paper we develop a
general description of OSD phenomena in an optical medium
that is not based on the serial expansion approximation. To
be explicit, we first briefly revisit Mauguin’s approach for a
cholesteric and then, based on it, propose a more generalized
approach which allows for tracing of the contribution of OSD
phenomena to the dielectric tensor and DJM of an optical
medium.

V. LIGHT PROPAGATION IN A CHOLESTERIC ALONG
THE HELICAL AXIS IN TERMS OF THE DJM

Liquid crystal is a medium possessing orientational order
of anisometric building units (molecules or their aggregates)
at the lowered dimensionality of their translation order [19].
In solid crystals the building elements (atoms or molecules)
form a 3D crystalline lattice. In liquid crystals at least in one
direction the molecules can freely migrate as in a liquid. Liq-
uid crystal media with 2D crystalline order are represented by
columnar phases. Columns formed by molecules are arranged
in a 2D lattice but can freely move along the third direction,
which is along the columns-long axes. Liquid crystals with
1D translational order are layered media, called smectic liquid
crystals. The lowest zero dimensionality of the translational
order corresponds to a nematic liquid crystal (nematic, for
short) for which the ∞-fold rotational axes of elongated
(or disklike) building units are on average oriented along a
common axis called the nematic director �n; nematic building
units can freely migrate as in a true liquid.

A cholesteric is a chiral nematic in which the director
�n is spontaneously twisted around an axis �Z of a Cartesian
coordinate system such that �n ⊥ �Z . In the framework of
Mauguin’s approach [15], a cholesteric is modeled by a stack
of parallel uniaxial birefringent (nematic) plates, whose optic
axes are parallel to the plate plane and helically rotate around
the normal to the plates by a constant angle from plate to plate.

A plate at a distance z appears to be rotated by the angle qz
with respect to the plate at the origin of the coordinate system,
i.e., at z = 0. The parameter q = 2π/P is the wave number for
the helix with the pitch P (a distance at which the optic axis
of plates makes a full turn). In liquid-crystal terminology one
says that for a nematic plate the optic axis is oriented along
the director �n.

It should be noted that the director �n corresponds to the
local optic axis of an elementary nematic model plate but not
to the macroscopic optic axis of the cholesteric. Depending
on the light propagation regime (see [16] for details), the
cholesteric can be considered as either a twisted nematic,
uniaxial gyrotropic crystal or as a biaxial gyrotropic crystal.
In particular, for a light propagation regime, in which the
cholesteric is an optically uniaxial crystal, the cholesteric
optic axis is along its helical axis, i.e., it is perpendicular
to �n.

If one chooses the local Cartesian coordinate system for
each elementary nematic model plate such that the light prop-
agation direction is along the plate normal and at the distance
z = 0 the �X axis is along the director �n, then at the distance
z the electric-field vector �E and the dielectric displacement
vector �D in the rotated coordinate system with respect to the
nonrotated coordinate system are

�E = R(qz) �E0, (33)

D = R(qz) �D0, (34)

where �E0 and �D0 are the corresponding vectors in the non-
rotated (local) coordinate system and R(qz) is the rotation
matrix

R(qz) =
[

cos qz − sin qz

sin qz cos qz

]
. (35)

Vectors �D and �D0 are related to �E and �E0, respectively,
through dielectric tensors ε̂ and ε̂0 in the rotated and local
coordinate systems as

�D0 = ε0ε̂
0(d ) �E0, (36)

�D = ε0ε̂ �E , (37)

where ε0 = 8.85 × 10−12 F/m is the dielectric constant and

ε̂0(d ) =
[
ε‖ 0

0 ε⊥

]
, (38)

expressed through its principal values, measured along the
local coordinate axes in the plane perpendicular to the
cholesteric helical axis, which are along and perpendicular
to the nematic director n̄ in the local coordinate system.
Substitution of Eqs. (33), (34), and (36) in Eq. (37) gives the
relation between ε̂ and ε̂0,

ε̂ = R(qz)ε̂0(d )R−1(qz), (39)

as it is expected for a tensor. Substituting Eqs. (33) and (39)
in the Maxwell equation (1) for a light wave propagating in a
cholesteric, one finds the 2D Maxwell equation in the form{

ε̂0(d ) − λ̄2q2I + 2λ̄2qR

(
π

2

)
d

dz

}
�E0 = −λ̄2 d2 �E0

dz2
. (40)
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A detailed derivation of Eq. (40) can be found in [16].
Solutions of Eq. (40) for elliptically polarized eigenwaves
[Eq. (7)] result in expressions for refractive indices of the two
eigenwaves propagating in a cholesteric [16,20]

(n0
±)2 = n̄2 + �n2

4
+ (qλ)2

±
√

n̄2�n2 + 4

(
n̄2 + �n2

4

)
(qλ)2, (41)

where

ε̄ = ε‖ + ε⊥
2

= n̄2 + �n2

4
, n̄ = n‖ + n⊥

2
=

√
ε‖ + √

ε⊥
2

,

�ε = ε‖ − ε⊥ = 2n̄�n, �n = n‖ − n⊥ = √
ε‖ − √

ε⊥.

(42)

Comparing Eq. (40) to Eq. (32), one finds that for a cholesteric

ε̂eff = ε̂0(d ) + 2λ̄2qR

(
π

2

)
d

dz
− λ̄2q2I. (43)

It is worth noting that Eq. (43) can be written in the form

ε̂eff = ε̂0(d ) − 2ikλ̄2qR

(
π

2

)
− λ̄2q2I (44)

in the same way as it was done above in the pseudogyration
approach (31). Again, the k-dependent term appears to be
an imaginary part of the off-diagonal components of εeff as
it is for the k-dependent term in the gyration pseudotensor
approach. The imaginary character of the k-dependent terms
in the gyration pseudotensor and cholesteric approaches is the
result of the dependence of �D on the spatial derivative d �E/dz.

Equations (43) and (30) show that the structure of εeff in
both (gyration pseudotensor and cholesteric) approaches is
similar, though only to some extent. Indeed, in both expres-
sions (30) and (43), in addition to the original tensor ε̂0, which
describes the optical properties of the medium without OSD,
there is a common term proportional to R( π

2 ) d
dz , responsible

for the OSD. The coefficient 2λ̄q in Eq. (43) plays the role
of a gyration tensor component g33 in Eq. (30). Therefore,
the g33 term from Eq. (30) appears in Mauguin’s approach
given by Eq. (43). The cholesteric approach appears to be
more general with respect to the gyration tensor approach.
Indeed, in comparison with Eq. (30), Eq. (43) contains an ad-
ditional term −λ̄2q2I . In Eq. (43) the term −λ̄2q2I results from
the second derivative of the rotation matrix R(qz), namely,
−λ̄2q2I = λ̄2 d2R(qz)

dz2 R−1(qz).
Equation (33), which is a key hypothesis in Mauguin’s

approach, describes the rotation of the electric-field vector
along the Z-coordinate axis. Below we show that Eq. (33) can
be rewritten in terms of the Jones matrices approach such that
the gyration pseudotensor and cholesteric approaches can be
derived from this general approach as particular cases.

VI. OSD IN TERMS OF JONES MATRICES

The electric-field vector of the light eigenwave propagating
in an optical medium in the Jones calculus approach is of the

form

�E (z) = J (z) �Ei, (45)

where �Ei is the electric-field vector of an incident light wave.
Let the electric-field vector of the eigenwave at the coordinate
z without taking into account OSD be denoted by �E (0)(z).
Then

�E (0) = J0 �Ei, (46)

where J0 is the IJM of the medium without taking into account
OSD. Substitution of �Ei, expressed in Eq. (46), in Eq. (45)
gives

�E (z) = JD(z) �E0(z), (47)

where

JD = J (J0)−1 (48)

plays the role of the IJM responsible for the OSD effects; we
call JD [Eq. (48)] the OSD IJM. Similarly to Eq. (4), the OSD
IJM can be expressed via its corresponding OSD DJM ND,

JD = e(ND )z. (49)

It should be noted that ND is not restricted to being symmetric
as it is for the matrix N0 without taking into account OSD [see
Eq. (B5)]. The explicit form of the matrix ND and the physical
meaning of its components will be given in Sec. VII.

Because both �E (z) and �D(z) are vectors they transform
along the coordinate axis �Z by the same rule, given for �E (z)
by Eq. (47), i.e.,

�D(z) = JD(z)D0(z), (50)

where �D0 is the vector of dielectric displacement without
taking into account OSD. Substitution of Eqs. (36), (37), and
(47) in Eq. (50) gives the transformation rule of the dielectric
tensor under the action of OSD,

ε̂ = JDε̂0(JD)−1, (51)

where ε̂0 is the dielectric tensor without taking into account
OSD. Substitution of Eqs. (47) and (51) in Eq. (1) gives the
Maxwell equation taking into account OSD in the form[

ε̂0 + λ2(JD)−1

{
d2JD

dz2
+ 2

dJD

dz

d

dz

}]
�E0 = −λ2 d2 �E0

dz2
.

(52)

The term in square brackets in Eq. (52),

ε̂eff = ε̂0 + λ̄2(JD)−1

{
d2JD

dz2
+ 2

dJD

dz

d

dz

}
, (53)

is the effective dielectric permittivity tensor taking into ac-
count OSD. Using Eq. (49), one rewrites Eq. (53) in the form

εeff = ε̂0 + λ̄2

{
(JD)−1 d (ND)

dz
JD + (JD)−1(ND)2JD

+ 2(JD)−1NDJD d

dz

}
. (54)

For ND, which is independent of z, Eq. (54) reduces to

εeff = ε̂0 + λ̄2

{
(ND)2 + 2ND d

dz

}
. (55)
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Equation (55) was obtained taking into account that the ma-
trices ND and e(ND )z commute. The latter can be proven using
the definition of the matrix exponent

e(ND )z = 1 +
k∑

k=1

(ND)k zk

k!
. (56)

With Eq. (56) the question of the commutation of the matrices
ND and e(ND )z reduces to the commutation of the matrix ND

with itself. Another proof of Eq. (55) can be done, using the
property of the Hausdorff equation [21,22]

eBAe−B =A + [B, A]

1!
+ [B, [B, A]]

2!
+ [B, [B, [B, A]]]

3!
+ · · · ,

(57)
where A and B are any square matrices and [B, A] is their
commutator. For A = B = ND one has [B, A] = [ND, ND] =
0. Then Eq. (57) reduces to

e(ND )zNDe−(ND )z = ND (58)

and consequently

e(ND )z(ND)2e−(ND )z = (ND)2. (59)

Comparison of Eqs. (53) and (55) to Eq. (30) shows that the
term 2λ̄2(JD)−1 dJD

dz
d
dz in Eq. (53) and the term 2λ̄2ND(z) d

dz in
Eq. (55) correspond to the traditional form λ̄g33R( π

2 ) d
dz of the

OSD term, Eq. (30) in the gyration pseudotensor approach.
Equation (55) demonstrates that even with the condition

dND

dz = 0 the OSD terms appear in εeff. In fact, by keeping the

terms containing dND

dz �= 0, one exits the framework of eigen-

waves with spatially uniform refractive indices. We recall that
even taking into account the OSD effect, one assumes that
the refractive indices of the eigenwaves are spatially uniform,
though being dependent on the parameter characterizing the
OSD. For example, for a cholesteric liquid crystal the nematic
director �n (which is the local optic axis1) helically rotates
with respect to the axis, which is perpendicular to �n. However
the refractive indices of the eigenwaves are spatially uniform,
being given by Eq. (41) and thus depending on the ratio of the
light wavelength to the cholesteric pitch λ/P = qλ̄, which is
a measure of OSD for a cholesteric. At vanishing λ/P, corre-
sponding to long pitches with respect to the light wavelength,
the refractive indices n+ and n− reduce, respectively, to the
values n‖ and n⊥ of the untwisted (parent) nematic.

In this paper we do not delve deeper into the DJM approach
for the optics of cholesterics; interested readers can find such
consideration in our recent paper [16]. A description of the
optical properties of the cholesteric in terms of integral Jones
matrices can be found in papers by Oldano and co-workers
[23–30], Yang and Mi [31], and Gevorgyan [32]. Here we
use the DJM approach for cholesterics as a link between
the traditional gyration pseudotensor approach and the DJM
approach to the description of OSD effects.

VII. PHYSICAL MEANING OF THE PARAMETERS IN ND

From Eq. (48) one has

J = JDJ0, (60)
which shows that JD is the correction matrix to the IJM J0.
The most general form of JD(z) is given by Eq. (49), with ND

being of the form

ND = − i

λ̄

[
δn̄ − iδκ̄ + δBlin − iδDlin δBJones − iδDJones + Dcirc − iAopt

δBJones − iδDJones − (Dcirc − iAopt) δn̄ − iδκ̄ − (δBlin − iδDlin)

]
. (61)

The eight parameters in the matrix ND are contributions of the OSD to the DJM of the medium; they are akin to those specified
in Eq. (19), but of different origin. For diagonal (d ) matrices N0(d ) and ND(d ),

N (d ) = N0(d ) + ND(d ), (62)

which shows that ND(d ) is an additive correction to N0(d ). For this reason we have denoted the parameters in ND by δ to highlight
that they are correction parameters per se, and thus can take either positive or negative values. In a general case for nondiagonal
N0 and ND the DJM of the medium is not equal to their sum. To express N through the components of nondiagonal N0 and ND

one has to solve the equation

eNz = e(ND )ze(N0 )z (63)

with respect to N . Equation (63) can be rewritten in the form

eη̄z�J = e(η̄0+η̄D )z�JD�J0 (64)

[see Eq. (A8)]. From Eq. (64) one has

η̄ = η̄0 + η̄D, (65)

�J = �JD�J0

[
�JD

11�J0
11 + �JD

12�J0
21 �JD

11�J0
12 + �JD

12�J0
22

�JD
21�J0

11 + �JD
22�J0

21 �JD
21�J0

12 + �JD
22�J0

22

]
. (66)

1The local optic axis along the director is a modeling issue, which should not be misunderstood as the optic axis of the cholesteric. Depending
on the regime of light propagation, the cholesteric can be considered as either a twisted nematic uniaxial cholesteric or a biaxial cholesteric.
For the uniaxial regime, the optic axis of the cholesteric is along the helical axis.
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Equation (65) shows that η̄D is an OSD correction to the aver-
age refractive index η̄0 independently of the forms (diagonal
or nondiagonal) of N0 and ND (equivalently of J0 and JD).
If the off-diagonal components of ND are zero, then �J is
diagonal,

�J (d ) =
[

e−(i/λ)(�η0+�ηD )z 0

0 e(i/λ)(�η0+�ηD )z

]
, (67)

which shows that the diagonal part of ND corrects the complex
phases of the eigenwaves, including their anisotropies, such
that the correction of the refraction indices is equivalent to
the correction of the length z of the light path in the exponent
in Eq. (67). However, the action of nonzero η̄D is not only
in the simple biasing of the refractive index. In Sec. VIII we
will show that for a light transparent crystal the nonzero OSD
correction δη̄D to the average refractive index leads to the light
scattering.

For nondiagonal forms of N0 and ND (equivalently of J0

and JD) the average complex refraction indices are corrected
additively by η̄D, whereas the components of the anisotropic
part �J in Eq. (66) appear to be cross coupled such that the di-
agonal (off-diagonal) components of �J contain off-diagonal
(diagonal) components of J0 and JD. The latter implies that
for nondiagonal forms of N0 and ND (equivalently of J0 and
JD) different anisotropic optical properties are coupled such
that, for example, linear birefringence Blin (linear dichroism
Dlin) is affected not only by δBlin (by δDlin), but also by other
anisotropic corrections: Aopt, Dcirc, δBJones, and δDJones.

Therefore, the matrix ND [Eq. (61)] is composed of eight
correction parameters due to the OSD effects to the param-
eters in N0 describing eight optical phenomena which are
possible in an anisotropic medium. It should be noted that
the components of the matrix N are solutions of the Maxwell
equation, whereas the components of ND are modeling param-
eters, which are considered to be known from the experiment.
For example, one of the eight optically elementary matrices in
Eq. (19),

NAopt = R

(
π

2

)
q, (68)

is the matrix describing rotation of light polarization [for
details see Eq. (A6)]. In Eq. (68) we refer to light propagation
in a cholesteric and for this reason replace the parameter Aopt,
introduced in Eq. (19), by qλ̄ [16], where q = 2π/P is the
wave number of the cholesteric helix with the pitch P. The

explicit form of the IJM JAopt is obtained by substitution of
NAopt given by Eq. (68), instead of ND in Eq. (49), namely,

JAopt = eR(π/2)qz =
[

cos qz − sin qz

sin qz sin qz

]
= R(qz). (69)

Equation (69) shows that for a cholesteric the general form
of the OSD IJM (47) reduces to its particular form of the
rotation matrix R(qz) [Eq. (35)]. It is worth noting that by
replacing JD in Eq. (51) by JAopt , given by Eq. (69), one
recovers the transformation rule for the dielectric tensor in
a cholesteric (39) as a particular case of a general form
given by Eq. (51). Replacement of JD in Eq. (47) by JAopt ,
given by Eq. (69), gives Eq. (33), which is the transformation
law for the eigenwave on its propagation in a cholesteric.
Replacement of JD by JAopt reduces Eqs. (52) and (53) to
Eqs. (40) and (43) in the cholesteric approach such that the
second term λ̄2(JD)−1 d2JD

dz2 in Eq. (53) and the term λ̄2(ND)2 in
Eq. (55), respectively, reduce to the term −λ̄2q2I in Eq. (43),
obtained in the cholesteric approach. There is no term cor-
responding to the term −λ̄2q2I in Eq. (30), obtained in the
gyration pseudotensor approach. Equations (30) and (43) are
thus particular cases of the general form of the dielectric
tensor taking into account OSD, given by Eq. (53). Therefore,
for a cholesteric, in a physical sense JD is the rotation matrix
R(qz) and the parameter q = Aopt/λ̄ in ND [Eq. (61)] is the
rotation angle per unit length for the molecules along the
helical axis of the cholesteric. For other media the parameter
Aopt stands for modeling of the angle of rotation of light
polarization. Another parameter Dcirc, which appears in N due
to the nonsymmetric condition ε12 �= ε21 more exactly than
from the antisymmetric part of the dielectric tensor, describes
circular dichroism. Both these parameters Aopt and Dcirc are
absent in the DJM N0, obtained without taking into account
OSD [see Eq. (B5)].

In a physical sense, the six other δ parameters in ND

are corrections due to OSD to the corresponding parameters
found in N0. For example, δn̄ is the correction to the average
refractive index accounting for the inhomogeneity of the
electric field of the light wave caused by the inhomogeneity
of the medium.

It is interesting to find ND, which corresponds to the
dielectric tensor (28) taking into account OSD in terms of the
pseudogyration tensor. The substitution of Eq. (28) in Eq. (10)
followed by the expansion of

√
εeff in a series of the small

parameter containing geff with the truncation to the first order
gives

N = N0 + 1

2
geff(N0)−1R

(
π

2

)
(N0). (70)

According to Eq. (62), the second term in Eq. (70) is ND. After matrix multiplications in Eq. (70) one has

ND = 1

2
geff

⎡
⎢⎢⎢⎣

− n0
12(n0

11+n0
22 )

n0
11n0

22−(n0
12 )

2
1
2

(n0
11+n0

22 )
2

n0
11n0

22−(n0
12 )

2 +
(

1 − 1
2

(n0
11+n0

22 )
2

n0
11n0

22−(n0
12 )

2

)

1
2

(n0
11+n0

22 )
2

n0
11n0

22−(n0
12 )2 −

(
1 − 1

2
(n0

11+n0
22 )

2

n0
11n0

22−(n0
12 )

2

)
n0

12(n0
11+n0

22 )
n0

11n0
22−(n0

12 )
2

⎤
⎥⎥⎥⎦, (71)
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where according to Eq. (10) n0
i j =

√
ε

(0)eff
i j (i, j = 1, 2) are

components of the DJM N0 = −(i/λ̄)n0
i j without taking into

account OSD; ε(0)eff is given by Eq. (29). Equation (71)
shows that in the framework of the gyration pseudotensor
approach the OSD DJM is proportional to geff, which indicates
that without taking into account OSD, i.e., at geff = 0, one
has ND = 0. The diagonal components ND

11 = −ND
22 are

proportional to n0
12, which is zero for media of high- and

middle-symmetry classes; the diagonal components are of
opposite sign and thus correspond in Eq. (61) to the correction
δ�η = δBlin − iδDlin. The corrections δη̄ = δη̄ − iδκ̄ = 0
to the average refraction and absorption indices are zero.
The off-diagonal components of ND contain symmetric and
antisymmetric parts, which correspond to the corrections
δḡ = BJones − iDJones and δ�g = Dcirc − iAopt. For light
transparent media the symmetric and antisymmetric parts of
the off-diagonal components describe Jones birefringence
and optical activity.

In the next section we give examples of how the DJM
approach developed in this paper can be applied to the
description of the OSD phenomena in different optical
media.

VIII. EXAMPLES

The description of the medium in the framework of the
Jones matrix calculus is considered to be complete if the
IJM J of the medium is known. The general scheme for
the derivation of the IJM of the medium taking into account
OSD can be sketched as follows.

The starting point is the Maxwell equation (1), in which
ε̂ has to be replaced by ε̂eff, given by Eq. (55). The term
ε̂0 in Eq. (55) is the dielectric tensor of the medium in
the crystal-physical coordinate system without taking into
account OSD; the form of ε̂0 (number of nonzero components
and relations between them) is governed by the symme-
try of the medium and can be found in works on crystal
physics (see, for example, [33]). Two other terms in Eq. (55),
containing ND, account for OSD. For a given medium the
general form of ND [Eq. (61)] reduces to a form which is
specific for the medium. Below we give illustrations of how
the matrix ND can be constructed for different media. Using
Eqs. (5), (13), and (55), one transforms the Maxwell equation
(1) into an equation for eigenvalues η0 of the DJM of the
medium

{ε̂0 − (η0I + iλ̄ND)2} �E0 = 0. (72)

The characteristic (also called secular) equation (72) has
nontrivial solutions for the eigenwaves �E0 if

det[ε̂0 − (η0I + iλ̄ND)2] = 0. (73)

Explicitly, the secular equation (73) is a quartic equation

(η0)4 + a3(η0)3 − a2(η0)2 − a1η
0 + a0 = 0, (74)

with

a3 = 4δη̄,

a2 = 2ε̄0 − 6(δη̄)2 + 2(δḡ)2 − 1

2
(�δg − �δη),

a1 = 4δη̄{ε̄0 + (δη̄)2 − (δḡ)2 + (�δη)2/4 − (�δg)2/4}
− 4δḡε0

12 − �δη�ε0,

a0 =
{
ε̄0 − (δη̄)2 − 1

4
(�δη)2 − (δḡ)2 + 1

4
(�δg)2

}2

−
{

�ε

2
− δη̄�δη

}2

− {
ε0

12 − 2δη̄�δη
}2

. (75)

A quartic equation is a polynomial equation with the high-
est degree, which can be solved analytically by radicals [34].
There are several different approaches to find four roots of the
full quartic equation analytically, but generally the formulas
for solutions are rather lengthy and their analysis is beyond the
scope of the present paper. Nevertheless, several properties of
the solutions can be given even before solving the equation.
For real coefficients a j , which correspond to the case of light
transparent media, there are several rules which allow one to
predict whether the solutions are rational or complex [35].

For an isotropic transparent medium with nonzero OSD
correction δn̄ to the values of the refractive index and zero
to all other parameters in ND [Eq. (61)], the coefficients a j

[Eqs. (75)] are real. Taking into account that (δn̄)2 � ε̄0, we
find, for the discriminant of Eq. (74),

� = −16384δn̄6(ε̄0)3. (76)

Equation (76) shows that � is negative, independently of
the sign of δn̄. Negative values of � indicate that with the
above assumptions, Eq. (74) has two distinct real roots and
two complex-conjugate nonreal roots. For such a case of the
isotropic medium with the isotropic corrections δn̄, we find
the solutions of Eq. (74) in the form

(η̄0)1,2 =
√

ε̄0 − δn̄

(
1 ∓

√
δn̄√
ε̄0

)
, (77)

(η̄0)3,4 = −
√

ε̄0 − δn̄

(
1 ∓

√
− δn̄√

ε̄0

)
. (78)

The first pair of roots, given by Eq. (77), corresponds to
the transmitting waves, whereas the second pair given by
Eq. (78) corresponds to the reflecting waves. In agreement
with the prediction following from the negative sign of �,
there are two real roots and two complex-conjugate roots.
In Eqs. (77) and (78) δn̄ can be either positive or negative.
Consequently, the answer to the question of which of the roots
are real and which are complex depends on the sign of δn̄.
Nonzero δn̄ is due to spatial inhomogeneity of the electric
field of the light wave propagating in the medium. In turn
the spatially inhomogeneous electric field is a result of spatial
inhomogeneity of the refractive index such that δn̄ = dn

dz dz.
Therefore, the sign of δn̄ is governed by the sign of the space
derivative dn

dz at a given point with the coordinate z. Since
the medium under study is assumed to be light transparent,
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we assign the imaginary parts of the refractive indices in the
transmitted waves, for δn̄ < 0, and in the reflected waves, for
δn̄ > 0, to the forward and backward scattering depending
on the plus or minus sign in Eqs. (77) and (78). Therefore,
taking into account OSD allows for the taking into account of
light scattering on the refractive index inhomogeneity in the
framework of Jones calculus.

It is commonly accepted that the traditional Jones calculus
without taking into account OSD is not capable of describing
light scattering. A special type of matrix, the so-called Mueller
matrix, was designed for this purpose [36]. We have shown
above in this section that the light scattering can be described
in the framework of Jones calculus taking into account OSD.
Spatial inhomogeneity of the average refractive index can
be expected, for example, in transparent isotropic media
with a spatially nonuniform mass density or concentration
of the components, caused, for example, by the spatially
inhomogeneous temperature field. Therefore, the origin of the
OSD correction δη̄ = δn̄ − iδκ̄ can be assigned to the spatial
inhomogeneity of the average dielectric permittivity. Indeed,
the coefficient a3 of the cubic term in Eq. (74) is nonzero only
if the OSD correction δη̄ to the average refractive index is
nonzero. Physical origins of the other correction parameters
in Eq. (61) can be defined in the same way. Namely, the OSD
correction �δη = δBlin − iδDlin corresponds to the spatial
inhomogeneity of the refractive index anisotropy; similarly,
other correction parameters in ND can be interpreted as a
result of spatial inhomogeneity of the corresponding optical
parameters standing in the DJM (19) [see also Eq. (A6)].

According to Eq. (75), zero OSD correction to the average
complex refractive index δη̄ = 0 leads to a zero value of
the coefficient a3 of the cubic term in Eq. (74). Equation
(74) additionally simplifies for a zero value of the coefficient
a1 of the linear term. For isotropic and uniaxial media (of
the high- and middle-symmetry classes, respectively) the off-
diagonal components ε0

12 = ε0
21 = 0 and according to Eq. (75)

the coefficient a1 of the linear term in Eq. (74) is zero
for zero corrections to the average refractive index of the
eigenwaves δη̄ and to the refractive index anisotropy �δη. For
biaxial crystals ε0

12 = ε0
21 �= 0 and consequently an additional

condition for the absence of the linear term in Eq. (74) is
zero correction δḡ = 0 to the Jones birefringence and Jones
dichroism.

For a3 = a1 = 0 the quartic equation (74) reduces to the
Fresnel biquadratic equation

(η0)4 − 2
[
ε̄0 − 1

4 (�δg)2
]
(η0)2 + [

ε̄0
11 − 1

4 (�δg)2
]

× [
ε̄0

22 − 1
4 (�δg)2

] = 0, (79)

the solutions of which are of the form

(η0
± )2 = ε̄0 − 1

4
(�δg)2 ±

√
(�ε0)2

4
− ε̄0(�δg)2. (80)

For a light-transparent cholesteric the substitution of η0
± = n0

±
and �δg = 2iqλ̄ in Eq. (80) gives

(n0
± )2 = ε̄0 + (λ̄q)2 ±

√
4ε̄0(λ̄q)2 + (�ε0)2

4
, (81)

which can be rewritten in the form of Eq. (41), using the
substitutions given by Eqs. (42).

It should be noted that the present approach does not
provide instruction for the calculation of the values of the
components in the OSD DJM ND. The correction parameters
appearing in ND are modeling parameters and thus their
values are subject to the experimental determination in the
same way that the refractive absorption indices and their
anisotropies are.

For example, it is known from experiments that the
cholesteric possesses optical activity caused by the rotation
of the director around the helical axis of the cholesteric. The
optically elementary matrix ND responsible for optical activ-
ity is given by Eq. (68). For a light transparent cholesteric,
by neglecting all other correction parameters and substituting
Eq. (64) in Eq. (55), one recovers Eq. (43), which gives the
effective dielectric permittivity tensor ε̂eff of a cholesteric
taking into account OSD.

Once Nd of the medium is constructed then ε̂eff, written
using Eq. (55), has to be substituted instead of ε̂ in Eq. (8),
the solutions of which give the refractive indices of the
eigenwaves taking into account OSD. The obtained refractive
indices are eigenvalues of the DJM for the medium and thus
give the diagonal form Nd [Eq. (15)] of the DJM of the
medium. The full form of the DJM of the medium is obtained
by substituting Nd in Eq. (16), in which the transform matrix
T is composed of the eigenvectors, obtained from the same
equation, from which the eigenvalues n± were derived. To find
the IJM of the medium, one substitutes the DJM, obtained
from Eq. (16), into Eq. (4). A detailed derivation of the
DJM and IJM for a cholesteric can be found in our recent
paper [16].

It is worth noting that in the approach of OSD developed
in this paper in terms of Jones matrix calculus, the Mauguin
solutions for a cholesteric (41) were obtained without the
coordinate transformations, which is the key hypothesis of the
Mauguin [15] and de Vries [20] approaches. In this respect
our approach to OSD in terms of Jones calculus is coordinate-
less. Another coordinateless approach, the so-called invariant
approach, for description of light propagation in anisotropic
media was developed by Fedorov [37].

IX. CONCLUSION

Traditionally, optical spatial dispersion is defined as the
dependence ε(�k) of the dielectric permittivity tensor on the
light wave vector, similarly to the frequency dispersion of
the dielectric tensor ε(ω). The dependence ε(�k) is the result
of nonlocal interaction of the electric field �E of the light
wave with a medium such that in the next approximation one
accounts for the dependence of the dielectric displacement �D
not only on the local value of �E in a given point, but also on
its values in the vicinity of the given point. As a result, the
dielectric tensor ε̂ becomes an operator which includes the �∇
vector of space derivatives (of �E in the expression for �D).

We have developed an approach for the description of the
OSD phenomena in the framework of Jones calculus. In Jones
calculus the differential Jones matrix N is the generalization
for the light wave vector �k in the same sense that �k is the
generalization for the light wave number k = n/λ̄. The wave
number k multiplied by the imaginary unit −i (taken with the
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negative sign) is the eigenvalue of the DJM N via equation
N �E = −ik �E [Eq. (13)]. The latter inspires us to expect that
there must exist a way to describe the OSD phenomena in
terms of the DJM. Since the DJM is a generalization for
�k, the DJM approach for OSD is a generalization of the
traditional approach based on the k expansion of the depen-
dence ε(�k). We have shown that such a relation between
the OSD phenomena and Jones calculus indeed exists. To
prove the latter we have derived a general relation between
the DJM and components of the dielectric permittivity tensor
ε̂. One of the advantages of the DJM approach is that its
template form (19) allows for identification of the optical
phenomena which are possible in an anisotropic medium.
In the most general case the DJM can be decomposed into
the sum of eight elementary matrices describing eight (four
pairs of) optical phenomena: refraction and absorption, linear
birefringence and linear dichroism, Jones birefringence and
Jones dichroism, and circular dichroism and optical activity.

To be explicit, we have established the relation of the
approach proposed in this paper to the traditional approach
of the gyration pseudotensor as well as to that developed by
Mauguin for light propagation in cholesteric liquid crystals.
We demonstrate that both the gyration pseudotensor and the
Mauguin approach can be derived as particular cases of the
proposed DJM approach.

In our approach the IJM J = eNz of the medium taking into
account OSD is the product of the IJM J0 = e(N0 )z without
taking into account OSD by the correction IJM JD = e(ND )z,
which accounts for the OSD effects, i.e., J = e(ND )ze(N0 )z.
Because in a general case N0 and ND do not commute,
e(ND )ze(N0 )z �= e(N0+ND )z and consequently the DJM N of the
medium without taking into account OSD is not the sum of the
DJM N0 and a correction OSD DJM ND [Eq. (61)]. Equation
(62), N ≈ N0 + ND, holds only in an approximation which
takes into account the smallness of the components of ND. In
this approximation the components of ND are correction pa-
rameters accounting for the contribution of the OSD to each of
the six parameters describing six of eight optical phenomena
which are possible in an anisotropic medium without taking
into account OSD. The two remaining parameters Aopt and
Dcirc do not have their counterparts in the DJM N0 without
taking into account OSD. The parameters Aopt and Dcirc are
not corrections per se to the parameters appearing in N0, as
the other six parameters are. They describe properties which
do not appear without taking into account OSD, i.e., optical
activity and circular dichroism are phenomena of purely OSD
origin. Concerning the properties of Jones birefringence and
Jones dichroism, which were predicted by Jones in Ref. [13],
we show that both these properties originate from the nonzero
off-diagonal components of the dielectric tensor. We conclude
that the transparent low-symmetry crystals possess Jones bire-
fringence, which originates in the disorientation between the
crystal-physical coordinate system and the principal coordi-
nate system of the dielectric tensor.

In a general case when all components of the OSD DJM
ND are nonzero, the secular equation is a quartic equation
(74). The coefficient a3 of the cubic term in the secular
equation is nonzero only for nonzero corrections η̄D to the
average refractive index. For transparent crystals at δn̄D �=

0 and at zero for all other correction parameters in ND,
the secular equation has two distinct real and two complex-
conjugate roots. Two of the solutions describe transmitting
waves and the other two describe reflecting waves. In both
pairs of solutions there are terms containing either

√
δn̄ (trans-

mitting waves) or
√−δn̄ (reflecting waves). Thus, at δn̄ > 0

the solutions are real for transmitting waves, but complex
conjugates for reflecting waves and, contrarily, at δn̄ > 0 the
solutions are complex conjugates for transmitting waves but
real for reflecting waves. For transparent crystals we assign
the complex-conjugate terms in the refractive index of the
eigenwaves to the forward and backward light scattering
depending on the plus or minus sign in Eqs. (77) and (78).
Therefore, taking into account the OSD effect on the refractive
index, the Jones calculus becomes capable of describing light
scattering.

For zero coefficients a3 and a1 of the cubic and linear
terms in Eq. (74), respectively, which holds for δη̄ = δ�η =
δḡ = 0, the secular equation (74) reduces to a biquadratic
equation (79), which is equivalent to the secular equation for
a cholesteric liquid crystal [16].

In this paper we have focused on the relation between
the proposed approach for description of OSD phenomena
in terms of Jones calculus to the traditional approach, based
on the gyration pseudotensor approach as well as that de-
veloped by Mauguin for cholesteric liquid crystals. We have
illustrated how the OSD phenomena can be accounted for in
an optically isotropic transparent medium with nonzero OSD
correction parameter δn̄ to the average refractive index n̄ and
with all other correction parameters zero in the correction
matrix ND as well as in a cholesteric liquid crystal with
nonzero parameter �δg = 2iqλ and other correction param-
eters zero. However, the proposed Jones calculus approach is
a general tool for taking into account OSD in any optically
inhomogeneous media, including those in which several or
all OSD correction parameters are simultaneously nonzero.
For example, taking into account OSD, corrections δn̄ to
the average refractive indices of the eigenwaves and to their
anisotropy δBlin should be applied for the description of light
propagation in transparent distorted liquid crystal cells with
bend and splay distortions of the director field. An example of
such a liquid crystal cell is the so-called hybrid nematic cell, in
which the director �n smoothly varies through the cell thickness
from planar (parallel to the substrate) at one substrate to
homeotropic (perpendicular to the substrate) at the opposite
substrate. At nonzero corrections δn̄ and δBlin the coefficients
a3 and a1 of the cubic and linear terms in Eq. (74) will be
nonzero and thus, taking into account that the discriminant of
the secular equation is negative � < 0, one can expect that the
solutions will be complex conjugates, describing the internal
light scattering caused by the spatial variation of the director
along the light propagation through the hybrid nematic cell.
In liquid-crystal cells the distortion of the director field might
be accompanied by orientational singularities, defects in the
spatial distribution of the director. In some cases the defects
appear spontaneously even if the surface alignment conditions
are not singular. Such situations are observed in thin (on
the order of several microns) nematic films with degenerate
hybrid director alignment [38], in hybrid aligned smectic-A
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films films, in which focal conic domains appear [19,39–41],
and in cholesteric films with the same alignment conditions
showing stripe and focal conic domain textures [19,42]. In the
vicinity of macroscopic defects, where the director distortions
are considerably strong, the OSD phenomena should be well
expressed. It should also be noted that the light propagation
in distorted liquid crystals is a complicated matter: In addition
to the polarization properties described in the frame of Jones
calculus, one expects also changes in the trajectory of the
propagating light waves [43] for which the ray-tracing matrix
approach [44,45] should be employed.

If a distorted liquid crystal is light absorbing then four cor-
rection parameters δn̄, δk̄, δBlin, and δDlin will be nonzero. All
eight correction parameters in ND will be nonzero, for exam-
ple, for a light absorbing liquid crystal with splay, twist, and
bend deformations of the director field. The OSD phenomena
are expected in liquid-crystal phases with a spatially modu-
lated director field such as the nematic twist-bend Ntb [46–49]
phase and the oblique helicoid state ChOH of a cholesteric
[50,51], the twist grain boundary phases [19,52–55], chiral
blue phases [19,56–58], the so-called Q smectics [59–62], and
many other thermodynamic phases. The approach developed
in this paper is applicable also for nonhomogeneous solid
crystals.
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APPENDIX A: THE DJM AS A TEMPLATE FOR
IDENTIFICATION OF OPTICAL PHENOMENA IN AN

OPTICALLY ANISOTROPIC MEDIUM

According to Eq. (13) the DJM in its most general form
can be written as

N = − i

λ̄

[
η11 η12

η21 η22

]
. (A1)

Though according to Eq. (10) the symmetric form ε̂i j = ε̂ ji

implies the same symmetry Ni j = Nji for the DJM, in this
Appendix we keep the general form Ni j �= Nji. The reason for
this is that taking into account OSD increases the symmetry
of ε̂ and consequently of N . It is easy to see that by the
transformation

N =
[

N11+N22
2 + N11−N22

2
N12+N21

2 + N12−N21
2

N12+N21
2 − N12−N21

2
N11+N22

2 − N11−N22
2

]
, (A2)

the DJM can be rewritten in the form

N = − i

λ̄

[
η̄ + �η ḡ + �g
ḡ − �g η̄ − �η

]
(A3)

and thus can be decomposed into four elementary matrices

N = − i

λ̄

(
η̄

[
1 0
0 1

]
+ �η

[
1 0
0 −1

]
+ ḡ

[
0 1
1 0

]
+ �g

[
0 1

−1 0

])
, (A4)

where η̄ = (η11 + η22)/2 and ḡ = (η12 + η21)/2 are averages of diagonal and off-diagonal components, respectively, and �η =
(η11 − η22)/2 and �g = (η12 − η21)/2 are their half differences. If the components η jl ( j, l = 1, 2) in Eq. (A1) are complex
numbers such that η̄ = n̄ − iκ̄ , �η = Blin − iDlin, ḡ = BJones − iDJones, and �g = Dcirc − iAopt, then Eq. (A3) becomes of the
form

N = − i

λ̄

[
n̄ − iκ̄ + Blin − iDlin BJones − iDJones + Dcirc − iAopt

BJones + iDJones − (Dcirc − iAopt) n̄ − iκ̄ − (Blin − iDlin)

]
. (A5)

The matrix form (A5) in which the matrix components are in their complex rectangular forms Ni j = N ′
i j − iN ′′

i j and are
transformed according to Eq. (A2) is the template form of the DJM. Equation (A5) shows that in the most general case the
DJM contains eight parameters. As shown by Jones [13], these eight DJM parameters describe eight optical phenomena which
can take place at light propagation in an anisotropic medium. In other words, the DJM N [Eq. (A5)] is the sum of eight optically
elementary DJMs, namely,

N = − i

λ̄

(
n̄

[
1 0
0 1

]
− κ̄

[
i 0
0 i

]
+ Blin

[
1 0
0 −1

]
− Dlin

[
i 0
0 −i

]

+BJones

[
0 1
1 0

]
− DJones

[
0 i
i 0

]
+ Dcirc

[
0 1

−1 0

]
− Aopt

[
0 i
−i 0

])
, (A6)

each of which is responsible for a specific action of the
medium on the propagating light wave (further called
optically elementary DJMs). Namely, matrices Nr = −(i/λ̄)n̄
[{1, 0}; {0, 1}] and Na = (i/λ̄)κ̄[{i, 0}; {0, i}] correspond,
respectively, to the refraction (r) and absorption (a), described
by the average refractive and absorption indices n̄ and κ̄ ,
respectively; matrices NBlin = −(i/λ̄)(�n/2)[{1, 0}; {0,−1}]
and NDlin = (i/λ̄)(�κ/2)[{i, 0}; {0,−i}] correspond to the lin-

ear birefringence Blin and linear dichroism Dlin (conventional
notation �n/2 and �κ/2); matrices NBJones = −(i/λ̄)BJones

[{0, 1}; {1, 0}] and NDJones = (i/λ̄)DJones[{0, i}; {i, 0}] corre-
spond to the Jones birefringence BJones and Jones dichroism
DJones; matrices NAopt = (i/λ̄)Aopt[{0, i}; {−i, 0}] and NDcirc =
−(i/λ̄)Dcirc[{0, 1}; {−1, 0}] correspond to the circular
birefringence (also called optical activity Aopt) and circular
dichroism Dcirc. Therefore, if the analytical form of the DJM
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of the medium is known, Eq. (A5) or (A6) can be used as a
template for identification of optical properties possessed by
an anisotropic medium; we will show that it allows for tracing
the contributions from OSD to optical characteristics of the
medium.

It should be noted that even though the term iAopt, in the
off-diagonal components of the matrix in the square brackets
in Eq. (A5), is imaginary, it does not originate from light
absorption as is the case for the imaginary terms iκ̄ and iDlin

on the main diagonal of the matrix. It was shown in Secs. IV
and V that the Aopt term appears when the OSD is taken into
account.

A remark is in order here concerning the notions of Jones
birefringence and Jones dichroism. These two optical prop-
erties, predicted by Jones in Ref. [13], are rarely mentioned
in research papers [63–72] and their physical sense remains

mysterious. In this paper we show that both Jones birefrin-
gence and Jones dichroism originate from the nonzero off-
diagonal components of the dielectric tensor.

It is worth noting that, according to Eq. (3), in a general
case the IJM cannot be decomposed into the product of
optically elementary IJMs, each of which is responsible for
a single optical property, as it can be for the DJM according
to Eq. (A6). Indeed, for a DJM, which is the sum of eight
optically elementary DJMs, the decomposition of the IJM (3)
into a product of single exponents can be done only if the
DJM is diagonal. Indeed, for a diagonal DJM Nd = Nr +
Na + NBlin + NDlin , one has Jd = eNr zeNazeNBlin zeNDlin z because
the diagonal matrices Nr , Na, NBlin , and NDlin commute.
For a nondiagonal DJM the optically elementary DJMs do
not commute. In the case of a nondiagonal DJM, which is
independent of z, the IJM is of the form

J = e[(N11+N22 )/2]z

[
cosh �z

2 + N11−N22
�

sinh �z
2 2 N12

�
sinh �z

2

2 N21
�

sinh �z
2 cosh �z

2 − N11−N22
�

sinh �z
2

]
, (A7)

where � =
√

(N11 − N22)2 + 4N12N21. Therefore, for the DJM consisting of eight optically elementary matrices, after substitu-
tion of Eq. (A5) in Eq. (A7) one has

J = e−(i/λ̄)η̄z�J, (A8)

where η̄ = n̄ − iκ̄ is the complex average refractive index,

�J =
⎡
⎣cosh

(
i
λ̄
�0z

) − Blin−iDlin
�0

sinh
(

i
λ̄
�0z

) −BJones−iDJones+Dcirc−iAopt

�0
sinh

(
i
λ̄
�0z

)
−BJones−iDJones−(Dcirc−iAopt )

�0
sinh

(
i
λ̄
�0z

)
cosh

(
i
λ̄
�0z

) + Blin−iDlin
�0

sinh
(

i
λ̄
�0z

)
⎤
⎦, (A9)

and �0=
√

(Blin−iDlin)2+(BJones−iDJones)2−(Dcirc−iAopt)2.
Equation (A9) shows that in the presence of any of the
nonzero off-diagonal elements BJones, DJones, Dcirc, and Aopt,
the IJM cannot be decomposed into a product of optically
elementary IJMs, while the DJM is the sum of optically
elementary DJMs. For this reason, the description of light
propagation in the DJM approach might be more convenient
than in the traditional IJM approach.

APPENDIX B: CONTRIBUTION OF ε̂ COMPONENTS TO
OPTICAL PROPERTIES OF LIGHT ABSORBING

CRYSTALS: εi j ARE COMPLEX NUMBERS

For light absorbing crystals both ε̂ and N are complex, ε̂ =
ε′ − iε′′ and N = N ′ − iN ′′. As a result, Eq. (9) splits into a
system of two matrix equations for the real N ′ and imaginary
N ′′ parts of N ,

(λ̄N ′)4 + (λ̄N ′)2ε′ − 1
4 (ε′′)2 = 0,

(λ̄N ′′)2 = (λ̄N ′)2 + ε′. (B1)

A general form of the solution of the biquadratic matrix
equation for N ′ is not known [73]. In a special case, when
the matrices ε′ and ε′′ commute and

√
(ε′)2 + (ε′′)2 can be

diagonalized, the solutions for N ′ and N ′′ can be written

explicitly [73] and we find

(λ̄N ′)2 = − 1
2 [ε′(d ) +

√
(ε′(d ) )2 + (ε′′(d ) )2],

(λ̄N ′′)2 = − 1
2 [−ε′(d ) +

√
(ε′(d ) )2 + (ε′′(d ) )2]. (B2)

Both conditions mentioned above obviously are met if the
tensors ε′ and ε′′ are diagonal (d ). This is the case for optically
uniaxial crystals, for which ε12 = ε21 = 0, and consequently
from Eq. (10) one finds that Eq. (A5) reduces to the form

N = − i

λ̄

[
n̄ − iκ̄ + Blin − iDlin 0

0 n̄ − iκ̄ − (Blin − iDlin)

]
.

(B3)

Equation (B3) shows that in addition to the isotropic re-
fraction and absorption, a uniaxial light absorbing crystal
possesses linear birefringence and linear dichroism. The no-
tation n̄, κ̄ , Blin = 1

2�n, and Dlin = 1
2�κ corresponds to the

average refractive and absorption indices, birefringence, and
dichroism, which can be defined through the dielectric tensor
components. Namely, for the light absorbing crystal with
complex principal components ε

(d )
j j = ε

′(d )
j j − iε′′(d )

j j (with j =
1, 2) of the diagonal (d) dielectric tensor from Eq. (B2), using
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Eqs. (10) and (11), we find

n̄ = 1
2 (n1 + n2), �n = n1 − n2,

n1 = {[
ε

′(d )
11 +

√(
ε

′(d )
11

)2 + (
ε

′′(d )
11

)2]/
2
}1/2

,

n2 = {[
ε

′(d )
22 +

√(
ε

′(d )
22

)2 + (
ε

′′(d )
22

)2]/
2
}1/2

,

κ̄ = 1
2 (κ1 + κ2), �κ = κ1 − κ2,

κ1 = {
1
2

[−ε
′(d )
11 +

√(
ε

′(d )
11

)2 + (
ε

′′(d )
11

)2]}1/2
,

κ2 = {
1
2

[−ε
′(d )
22 +

√(
ε

′(d )
22

)2 + (
ε

′′(d )
22

)2]}1/2
.

(B4)

For optically isotropic absorbing media ε11 = ε22, and thus
Eqs. (B4), derived here in the DJM approach, reduce to
those given in Ref. [12]. The latter confirms the compatibility
of the DJM approach with Maxwell equations. For biaxial
crystals the dielectric tensor is not diagonal, ε12 = ε21 �= 0,
and consequently the DJM (A5) is of the form

N0 = − i

λ̄

[
n̄ − iκ̄ +Blin − iDlin BJones − iDJones

BJones − iDJones n̄ + iκ̄ − (Blin − iDlin)

]
.

(B5)

In light absorbing crystals of lower-symmetry classes the
real ε′ and imaginary ε′′ parts of the dielectric tensor are
transformed to their diagonal forms by rotation of the crystal-
physical coordinate system by different angles γ ′ and γ ′′, i.e.,
the dielectric tensor can be written in the form

ε̂ = R(γ ′)ε̂′(d )
R(γ ′) − iR(γ ′′)ε̂′′(d )

R(γ ′′). (B6)

Among the crystals of low-symmetry classes there are crystals
for which γ ′ = γ ′′ = γ , i.e., the principal axes of the real and
imaginary parts of the dielectric tensor appear to be rotated
by the same angle γ with respect to the crystal-physical
coordinate system. In such a case we find that Eq. (B5) can
be rewritten in the form

N = − i

λ̄

[
η̄ + 1

2�η cos 2γ 1
2�η sin 2γ

1
2�η sin 2γ η̄ − 1

2�η cos 2γ

]

= − i

λ̄
R(γ )

[
η1 0

0 η2

]
R−1(γ ), (B7)

where η1,2 = n1,2 − iκ1,2 are complex indices of refraction for
eigenwaves propagating in the crystal, η̄ = (η1 + η2)/2, and
�η = η1 − η2; values of n1,2 and κ1,2 are given by Eqs. (B4).
Equation (B7) shows that for low-symmetry crystals for which
γ ′ = γ ′′ = γ the DJM can be diagonalized by rotation of
the crystal plate around its normal by the angle γ , thereby
eliminating simultaneously both Jones birefringence BJones =
(�n/2) sin 2γ and Jones dichroism DJones = (�κ/2) sin 2γ .

For matrix coefficients ε′ and ε′′ in Eq. (B1), which cannot
be diagonalized simultaneously, a method for solving the
biquadratic equation (B1) is not available, but for weakly
absorbing crystals (most of dielectrics) the relations between
components of N and ε̂ can be obtained in the approximation
ε′′ � ε′. By substitution of Eq. (B6) in Eq. (11), followed
by expansion of square roots in a series of ε′′ and then
neglecting terms with (ε′′)2 and of higher powers, we find the
components for N [Eqs. (10) and (B5)] in the form

n̄ − iκ̄ = ε̄ + η+η−
η+ + η−

,

Blin = Re

{
�ε

η+ + η−

}

≈ �ε′(d )

n̄±
cos 2γ ′ + �ε′′(d )κ̄±

n̄2±
cos 2γ ′′,

Dlin = Im

{
�ε

η+ + η−

}

≈ �ε′′(d )

n̄±
cos 2γ ′′ − �ε′(d )κ̄±

n̄2±
cos 2γ ′,

BJones = Re

{
ε12

η+ + η−

}

≈ �ε′(d )

n̄±
sin 2γ ′ + �ε′′(d )κ̄±

n̄2±
sin 2γ ′′,

DJones = Im

{
ε12

η+ + η−

}

= �ε′′(d )

n̄±
sin 2γ ′′ − �ε′(d )κ̄±

n̄2±
sin 2γ ′,

(B8)

with η̄ = η++η−
2 , η± = n± − iκ±,

n+ ={[
ε

′(d )
11 +

√(
ε

′(d )
11

)2 + (
ε

′′(d )
11 − �ε′′(d ) sin2 �γ

)2]/
2
}1/2

,

n− ={[
ε

′(d )
22 +

√(
ε

′(d )
22

)2 + (
ε

′′(d )
22 + �ε′′(d ) sin2 �γ

)2]/
2
}1/2

,

κ+ ={[−ε
′(d )
11 +

√(
ε

′(d )
11

)2 +(
ε

′(d )
11 −�ε′′(d ) sin2 �γ

)2]/
2
}1/2

,

κ− ={[−ε
′(d )
22 +

√(
ε

′(d )
22

)2 +(
ε

′′(d )
22 +�ε′′(d ) sin2 �γ

)2]/
2
}1/2

.

(B9)

Equations (B8) and (B9) show that the light absorbing crystals
of low symmetry possess linear birefringence, linear dichro-
ism, Jones birefringence, and Jones dichroism, which cannot
be excluded by rotation of the sample. The latter implies that
in light absorbing crystals of lowest symmetry with a nondiag-
onalizable complex dielectric tensor, the Jones birefringence
and Jones dichroism are inherent material properties in the
same sense that the linear birefringence and linear dichroism
are.
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