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Theory for cavity cooling of levitated nanoparticles via coherent scattering:
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We develop a theory for cavity cooling of the center-of-mass motion of a levitated nanoparticle through
coherent scattering into an optical cavity. We analytically determine the full coupled Hamiltonian for the
nanoparticle, cavity, and free electromagnetic field. By tracing out the latter, we obtain a master equation for
the cavity and the center-of-mass motion, where the decoherence rates ascribed to recoil heating, gas pressure,
and trap displacement noise are calculated explicitly. Then we benchmark our model by reproducing published
experimental results for three-dimensional cooling. Finally, we use our model to demonstrate the possibility of
ground-state cooling along each of the three motional axes. Our work illustrates the potential of cavity-assisted
coherent scattering to reach the quantum regime of levitated nanomechanics.
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I. INTRODUCTION

Initially conceived as a way to minimize clamping losses
in mechanical resonators [1,2], the study of levitated nanopar-
ticles (NPs), or levitodynamics, has branched into a wide
research field in recent years. On the one hand, this is due
to the wide range of particles available for levitation, such
as dielectrics [3–8], nanocrystals containing quantum emit-
ters [9–14], nanomagnets [15], and superconducting spheres
[16–18], as well as the large variety in NP shapes [19–22]. On
the other hand, many recent experiments have demonstrated a
very precise control of both the center-of-mass (c.m.) motion
[8,21,23,24] and the rotation [25–28] of levitated NPs, as
well as the integration of levitated NPs with optical emitters
[10–12], and levitation in ultrahigh vacuum [8]. Such achieve-
ments pave the way toward interesting new possibilities, such
as using NPs as inertial or force sensors [29–31], studying
microscopic thermodynamics of the c.m. motion of a NP
[32–34], or the potential to use levitated NPs for optome-
chanics [1,2,35] and for the preparation of large quantum
superposition states [36–38].

The promising prospects of levitodynamic-based quantum
applications rely on the ability of cooling the c.m. motion
down to the ground state. Although this milestone has not
yet been attained, significant advances toward this goal have
been achieved, such as parametric feedback cooling [3,4,23]
or cavity-assisted optomechanical cooling [5,6,19]. Among
these, a particularly interesting option, initially proposed for
cold atoms and molecules [39–42], is to cool the c.m. motion
via coherent light scattering into an optical cavity, as recently
demonstrated in two experiments [43,44]. In this configura-
tion, a NP is optically trapped by an optical tweezer [45,46],
whose photons are scattered into a blue-detuned cavity,
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reducing the mechanical energy of the c.m. in the process.
This cooling method presents several advantages such as
reduced technological complexity, a high level of control, and
the possibility of cooling the c.m. motion along the three
motional axes. It therefore appears as a strong candidate for
realizing the c.m. ground state in levitated nanomechanical
systems.

Previous theoretical works have addressed the method of
cavity-assisted c.m. cooling by coherent scattering: either
semiclassically for cold atoms [39,47,48] or using quantum
optomechanical theory to describe the cooling of the c.m. of
atoms along one or two of the trapping axes [49,50] and of
optically levitated dielectric NPs along one trapping axis [35].
However, a full quantum theory of three-dimensional cooling
of optically levitated dielectric NPs via coherent scattering,
as well as a detailed study of the relevant heating and de-
coherence mechanisms, is lacking so far. On the one hand,
developing such a theory will contribute to the understanding
of the limitations of present experiments [43,44] and the way
to overcome them in order to achieve ground-state cooling.
On the other hand, once the ground state is reached, a full
quantum theory including a detailed quantum description of
the decoherence sources will be essential not only to describe
this state, but to implement further quantum protocols and
applications to prepare, for instance, non-Gaussian quantum
states.

In this paper we develop a quantum theory of three-
dimensional c.m. cooling via cavity-assisted coherent scatter-
ing. First, in Sec. II we derive the full optomechanical Hamil-
tonian in the long-wavelength approximation. In Sec. III
we obtain an effective equation of motion for the reduced
subsystem formed by cavity and c.m. motion and introduce
three relevant heating rates, namely, the recoil heating, the
heating related to the background gas pressure, and the trap
displacement noise. In Sec. IV we focus on a case study and
characterize the system dynamics for a realistic experimental
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setup [43]. We continue in Sec. V by analyzing the possibility
of ground-state cooling along each motional axis in state-of-
the-art experiments. Finally, our conclusions are presented in
Sec. VI.

II. HAMILTONIAN OF THE TOTAL SYSTEM

The system under study, schematically depicted in Fig. 1,
consists of a single dielectric NP with radius R and homoge-
neous and isotropic relative permittivity ε. The NP is trapped
at the focus of a high-intensity optical tweezer propagating
along the z axis whose frequency is ω0 = 2πc/λ0, where c
is the vacuum speed of light and λ0 the tweezer wavelength.
Additionally, the NP is placed inside an optical cavity and
is coupled to a mode with frequency ωc. The cavity axis is
orthogonal to the propagation direction of the tweezer. We
include the two degenerate polarization states of the nonbire-
fringent cavity with frequency ωc, although, as we will see
below, only one will significantly contribute to c.m. cooling.
In this section we describe the system and the fundamental
light-matter Hamiltonian governing its dynamics. We then
derive, for a NP confined close to the tweezer focus, a second-
quantization form for such a Hamiltonian. Finally, we reduce
this Hamiltonian to a quadratic form by transforming into a
frame where nonquadratic terms become negligible.

The system detailed above, and depicted in Fig. 1, can be
described by a Hamiltonian containing the kinetic energy of
the free NP, the energy of the electromagnetic (EM) field, and
the NP-field interaction, i.e.,

Ĥ = P̂2

2m
+ ĤF + Ĥint. (1)

Here P̂ denotes the c.m. momentum operator and m denotes
the mass of the NP. The free Hamiltonian of the EM field is

FIG. 1. Scheme of the system under study. A nanoparticle is
levitated by a propagating optical tweezer (in red) and placed into an
independent blue-detuned cavity (blue). The position of the particle
along the cavity axis can be controlled by moving the tweezer focus.

given by

ĤF = ε0

2

∫
d3r[Ê2(r) + c2B̂2(r)], (2)

with the transverse electric- and magnetic-field operators Ê(r)
and B̂(r) at position r. The NP–EM-field interaction term in
Eq. (1) reads [35]

Ĥint = − 1
2αÊ2(R̂), (3)

where we have introduced the NP polarizability α = ε0εcV ,
with the NP volume V , the vacuum permittivity ε0, and εc ≡
3(ε − 1)/(ε + 2). The above expression is valid in the long-
wavelength approximation, i.e., when R � λ for all relevant
wavelengths λ [51]. The motion-light interaction arises from
evaluating the electric-field operator at the c.m. position of the
NP, R̂. Note that matter is treated classically in this work, as
the optical response of the NP is described exclusively by its
polarizability.

In order to write the Hamiltonian in a second-quantization
form, we need to determine the structure of the EM field.
Both in Eqs. (2) and (3), the electric- and magnetic-field
operators should be written in terms of the eigenmodes of
the corresponding EM structure. Since solving Maxwell’s
equations in all space in the presence of a cavity is rather
involved, it is common in photonics to approximate the EM
field as independent free-space modes plus some extra modes
representing the structure, i.e., the cavity. Here we use the
same approximation, thus writing the electric field as

Ê(r) ≈ E tw(r, t ) + Êcav(r) + Êfree(r), (4)

whose three components correspond to the tweezer field, the
cavity field, and the free EM field, respectively. Since we
assume the tweezer field to be in a highly populated coherent
state, we approximate it as a classical quantity by its mean
value in the rotating frame,

E tw(r, t ) = 1
2 [E tw(r)eiω0t + E∗

tw(r)e−iω0t ]. (5)

On the other hand, the electric fields of the cavity and the free
EM modes are described quantum mechanically, i.e.,

Êcav(r) =
∑

α

√
h̄ωc

2ε0Vc
[Ecα (r)ĉα + H.c.], (6)

Êfree(r) =
∑
kε

√
h̄ωk

2ε0V
[εkeik·râεk + H.c.]. (7)

Here Vc, Ecα (r), and ĉα represent the cavity mode volume, the
normalized classical electric field of the cavity mode, and the
annihilation operator for a cavity mode with polarization α,
respectively. Analogously, V and âεk represent the quantiza-
tion volume for the free EM field and the annihilation operator
of a free EM mode with wave vector k and polarization εk.
Note that, in our approximation, the Hamiltonian of the EM
field in Eq. (2) can be written as

ĤF ≈ h̄ωc

∑
α

ĉ†
α ĉα + h̄

∑
kε

ωkâ†
εkâεk. (8)

However, in order to account for the cavity losses due to
transmission through the mirrors, which play a relevant role in
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FIG. 2. Illustration of the chosen coordinate system. The tweezer
propagates along the z axis with a cylindrically asymmetric trans-
verse profile modeled as an ellipse. We assume for simplicity linear
polarization along one of the main axes, which we choose as the x
axis. Then both the cavity axis and the cavity polarizations appear
rotated by an angle � in the x-y plane. The origin of coordinates is
taken at the intensity maximum of the tweezer.

the cooling, it is convenient to refine the above Hamiltonian by
explicitly including an additional set of EM modes to which
the cavity is coupled [35,52], i.e., we take

ĤF = h̄ωc

∑
α

ĉ†
α ĉα + h̄

∑
kε

ωkâ†
εkâεk

+ h̄
∑

ω

{ωâ†
0(ω)â0(ω) + iγ0[â0(ω)ĉ† − H.c.]}. (9)

Here the continuum of modes described by the photonic
operators â0(ω) would in principle represent a fraction of
the free-space modes. Thus, by considering them a separate
degree of freedom, we are double counting some of the states.
This overcounting, very common in quantum optics [53],
has nevertheless a negligible effect on the correctness of the
solution, since the ensemble of extra modes â0(ω) has zero
measure [35]. The coupling constant γ0(ω) is directly related
to the cavity linewidth κ , here defined as the cavity-field decay
rate, and can be considered constant across a wide frequency
range centered at ωc with a value given by γ0(ω) = 2π

√
κ/π

[52]. This equality can be readily certified by obtaining the
Born-Markov master equation of the cavity in the presence
of the environment composed by the modes â0(ω) (see, e.g.,
Appendix B).

In order to calculate the second-quantized interaction
Hamiltonian Ĥ using the electric fields described above, it
is convenient to determine the explicit form of the tweezer-
and the cavity-field profiles. Let us start by the tweezer field,
namely, E tw(r) in Eq. (5). Our first step is to fix the x and y
axes in our coordinate system. Those axes are aligned with the
symmetry axes of the tweezer-formed trapping potential. As
pointed out in studies with atomic clouds [39], the possibility
of three-dimensional (3D) cooling requires that none of these
axes is parallel to the cavity axis. In the present case, this
is achieved for tweezer polarizations being neither purely
parallel nor purely orthogonal to the cavity axis, as schemat-
ically depicted in Fig. 2. Since the tweezer polarization axis
determines the trapping directions of the levitated particle,
it is convenient to choose a coordinate system centered on
the tweezer intensity maximum and aligned with the tweezer
polarization. We therefore choose the tweezer to be polarized
along the x axis (see Fig. 2), i.e., E tw(r) = exEtw(r), and

modeled in the paraxial approximation by a classical, zeroth-
order, propagating Hermite-Gaussian beam [54],

Etw(r) = E0
Wt

W (z)
e−x2/W 2

x (z)e−y2/W 2
y (z)eik0zeiφt (r). (10)

In this equation, W (z) = Wt

√
1 + (z/zR)2, where Wt is the

tweezer waist at the focus and zR = πW 2
t /λ0 is the Rayleigh

range. The asymmetry of the transverse beam profile, which
becomes more relevant for strongly focused tweezers, is
encoded in the different extensions of the beam along the
transverse axis, Wx,y(z) = Ax,yW (z) with Ax,y adimensional.
The phase factor φt (r) is given by

φt (r) = arctan

(
z

zR

)
− k0z

2

x2 + y2

z2 + z2
R

≈ 0 (11)

in the vicinity of the origin, i.e., for x, y, z � zR ≈ 1 μm in
typical experiments [43]. Finally, the field amplitude E0 can be
related to the tweezer power Pt by first obtaining the paraxial
expression for the associated magnetic field [54],

Htw(r, t ) = 1
2 ey[Htw(r)eiω0t + H∗

tw(r)e−iω0t ], (12)

where Htw(r) = √
ε0/μ0Etw(r). One then defines the tweezer

power in terms of the Poynting vector as

Pt =
∫

dS〈E tw(r, t ) × Htw(r, t )〉T , (13)

where dS is the surface element perpendicular to the Poynting
vector (in this case, dS = dxdyez) and 〈 〉T denotes the time
average. Using this expression, we find

E0 =
√

4Pt

πε0cW 2
t AxAy

. (14)

In this way we can relate all the beam parameters to exper-
imental input parameters [43], such as power, wavelength,
and beam waist (or, equivalently, numerical aperture of the
focusing lens).

Let us now shift our attention to the cavity field Ecα (r) in
Eq. (6). We will also approximate its profile by a zeroth-order
Hermite-Gauss beam, this time in a standing-wave configura-
tion. Because of our choice of coordinate system (Fig. 2), the
axis of this beam will not be parallel to x or y, but instead lie
along along ecav = sin �ex + cos �ey. The expression for the
two degenerate polarization modes is thus given by

Ecα (r) = eα

Wc

W (y′)
e−(x′2+z2 )/W 2(y′ ) cos[kcy′ + φc(r) − φ].

(15)

Here kc = ωc/c and Wc is the cavity waist which, together
with the cavity length Lc = πc/2κF (F being the finesse),
determines the mode volume as Vc = πW 2

c Lc/4. The above
beam contains the rotated coordinates x′ and y′, which are
given by

x′ = x cos � − y sin �, (16)

y′ = x sin � + y cos �. (17)

Importantly, the phase factor φ in Eq. (15) determines the
field intensity at the position of the NP, i.e., at the origin of
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coordinates. For φ = 0 (π/2) the particle is at a maximum
(minimum) of the cavity intensity profile. Finally, the func-
tions W (y′) and φc(r) in Eq. (15) are given by

W (y′) = Wc

√
1 + (y′/yR)2, (18)

φc(r) = arctan

(
y′

yR

)
− kcy′

2

x′2 + z2

y′2 + y2
R

, (19)

with yR = πW 2
c /λc being the Rayleigh range of the cavity

beam. Since we will be interested in the cavity field close
to the origin, i.e., for x, y � yR ∼ mm in typical experiments
[43], we will assume φc(r) ≈ 0. Finally, the polarization
vectors in Eq. (6) are the two unit vectors orthogonal to the
cavity axis and will be labeled as

eα =
{

ez

e⊥ = ex cos � − ey sin �.
(20)

Note that, by taking � → 0, we recover the usual Hermite-
Gauss standing wave along the y axis.

We are now in a position to derive the second-quantized
form of the total Hamiltonian, assuming that the NP always
remains close to the origin of coordinates, i.e., close to the
tweezer intensity maximum. We will follow the treatment
done in Ref. [35], although in this paper our main focus will be
a different optomechanical coupling, namely, that arising from
the coherent scattering from the tweezer into the cavity. We
start by introducing the expression for the total electric-field
operator (4) into the interaction Hamiltonian (3) to obtain

Ĥint = −ε0εcV

2
[E tw(R̂, t ) + Êcav(R̂) + Êfree(R̂)]2. (21)

This expression results in six different terms, which give rise
to the different physical interactions in this system. Let us
analyze them separately.

First, the tweezer-tweezer term proportional to E2
tw(R̂, t )

gives rise to the trapping of the NP. The interaction energy
arising from this term is

Ĥt-t = −ε0εcV

2
E2

tw(R̂, t ). (22)

Since the NP will be confined close to the origin of coor-
dinates, we approximate the electric field of the tweezer by
its expansion close to R̂ = 0. Using Eqs. (5) and (10), this
expansion is carried out to yield

E2
tw(R̂, t ) ≈ E2

0 cos2(ω0t )

[
1 −

(
2X̂ 2

A2
xW

2
t

+ 2Ŷ 2

A2
yW

2
t

+ Ẑ2

z2
R

)]

+ E2
0 (k0Ẑ )[k0Ẑ cos(2ω0t ) − sin(2ω0t )]. (23)

As the tweezer frequency ω0 is very large compared to the
typical coupling rates between the different degrees of free-
dom, we can perform a rotating-wave approximation by ne-
glecting all the rapidly oscillating terms exp(±2iω0t ). Within
this approximation, we introduce the above electric field into
Eq. (22) and, after neglecting constant energy contributions,
we obtain the usual harmonic potential

Ĥt-t =
∑

j=x,y,z

1

2
m�2

j R̂
2
j . (24)

This potential represents the trapping of the NP by the
tweezer, with trapping frequencies⎡

⎢⎣
�x

�y

�z

⎤
⎥⎦ =

√
ε0εcE2

0

2ρW 2
t

⎡
⎢⎣

√
2/Ax√
2/Ay

λ0/πWt

⎤
⎥⎦, (25)

where ρ = m/V is the mass density of the NP. Note that the
presence of this trapping potential allows for the definition
of the c.m. phonons. Specifically, we can combine the above
interaction term with the kinetic energy of the c.m., namely,
the first term in Eq. (1), to obtain

P̂2

2m
+ Ĥt-t = h̄

∑
j=x,y,z

� j b̂
†
j b̂ j ≡ Ĥc.m.. (26)

Here the bosonic operators b̂ j are defined in terms of the
position and momentum operators through

R̂ j = r j0(b̂†
j + b̂ j ), P̂j = im� j r j0(b̂†

j − b̂ j ), (27)

where we have defined the zero-point motion r j0 =
(h̄/2m� j )1/2.

The second contribution we consider is given by the square
of the cavity field

Ĥc-c = −ε0εcV

2
Ê2

cav(R̂). (28)

Introducing Eq. (6) together with the field Ecα (r) = eαEc(r)
from Eq. (15) and keeping only the nonrotating terms,1 we
find

Ĥc-c = −h̄
ωcεcV

2Vc
|Ec(R̂)|2

(∑
α

ĉ†
α ĉα + 1

2

)
. (29)

We now expand the square modulus in powers of the c.m.
position R̂ up to first order, obtaining

Ĥc-c = −h̄
ωcεcV

2Vc
cos2(φ)

∑
α

ĉ†
α ĉα

− h̄
ωcεcV

2Vc
kc sin(2φ)Ŷ ′

(∑
α

ĉ†
α ĉα + 1

2

)
. (30)

where we have defined for convenience the rotated y operator

Ŷ ′ ≡ sin �X̂ + cos �Ŷ . (31)

The interaction Hamiltonian Ĥc-c contains three physically
different effects. First, a shift of the cavity frequency that
depends on the NP position inside the cavity,

ωc → ωc − �c = ωc

(
1 − εcV

2Vc
cos2 φ

)
. (32)

1This rotating-wave approximation (RWA) is analogous to the one
taken for the tweezer field and equally valid since ωc ≈ ω0. Note
that we take it at this point for simplicity, but one could keep the
counterrotating terms until Eq. (52), where they would vanish under
the general RWA undertaken immediately afterward.
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Second, an optomechanical coupling between c.m. and cavity
modes

−h̄
∑

α

ĉ†
α ĉα (gcxb̂†

x + gcyb̂†
y + H.c.), (33)

with

gcx = ωcεcV

2Vc
kcx0 sin(2φ) sin �, (34)

gcy = ωcεcV

2Vc
kcy0 sin(2φ) cos �. (35)

Finally, a force on the c.m. along the X -Y plane,

−(h̄/2)(gcxb̂†
x + gcyb̂†

y + H.c.). (36)

For common experimental values [43], we find that gcj ≈
2π × 1 Hz. This allows us to neglect this third term, as it
corresponds to a negligible shift in the equilibrium position
of the c.m. motion (∼gcj/� j ∼ 10−5 times the zero-point
motion). Note that the optomechanical coupling in Eq. (33)
could still be relevant if the cavity occupation is large, so this
term must be retained. We thus write the contribution of the
term Ê2

cav(R̂) as

Ĥc-c ≈ −h̄
∑

α

ĉ†
α ĉα

⎡
⎣�c +

∑
j=x,y

gcj(b̂
†
j + b̂ j )

⎤
⎦. (37)

The third contribution to Eq. (21) stems from the square of
the free EM field and is given by

Ĥf-f = −ε0εcV

2
Ê2

free(R̂)

= −h̄
εcV

4V
∑
kε

∑
k′ε′

√
ωkωk′εkεk′

× (eikR̂âεk + H.c.)(eik′R̂âε′k′ + H.c.), (38)

where we have used Eq. (7). This term has been proven
to become negligible for particles smaller than the relevant
wavelengths [55], and thus will be ignored hereafter.

Finally, we address the contributions arising from the three
cross terms, namely,

Ĥt-c = −ε0εcVE tw(R̂, t ) · Êcav(R̂), (39)

Ĥt-f = −ε0εcVE tw(R̂, t ) · Êfree(R̂), (40)

and

Ĥc-f = −ε0εcV Êfree(R̂) · Êcav(R̂), (41)

which result in interactions between the three system com-
ponents. They are all constructed in the same way, namely, by
expanding the corresponding electric fields close to the origin,

E tw(R̂, t ) ≈ exE0(cos ω0t − k0Ẑ sin ω0t ), (42)

Êcα (R̂) ≈
∑

α

√
h̄ωc

2ε0Vc
eα[cos φ + kcŶ

′ sin φ]ĉα + H.c.,

(43)

Êfree(R̂) ≈
∑
kε

√
h̄ωk

2ε0V
εk[(1 + ik · R̂)âεk + H.c.], (44)

and keeping terms of up to first order in the c.m. position.
Among the three cross terms, the most important is the
tweezer-cavity contribution (39), which will be responsible
for the cooling via coherent scattering. It is given by

Ĥt-c = −h̄
∑

α

Gα (ĉ†
α + ĉα ){kcŶ

′ sin(φ) cos(ω0t )

+ cos(φ)[cos(ω0t ) − k0Ẑ sin(ω0t )]}, (45)

where

Gα = ε0εcV E0(ex · eα )
√

ωc

2h̄ε0Vc
. (46)

Note that Ĥt-c contains both a displacement of the cavity
modes induced by the trapping field and an interaction be-
tween cavity and c.m. degrees of freedom, the latter of which
will ultimately be responsible for the cooling. Note that it
follows from Eq. (20) that the coupling Gz vanishes, i.e.,
the z-polarized cavity mode plays a negligible role in the
dynamics since it will not be populated by the x-polarized
tweezer. Because of this argument, we will neglect this mode
and reduce the cavity to a single mode polarized along e⊥.

The second cross term, namely, the one coming from the
tweezer-free-field product, reads

Ĥt-f = −h̄
∑
kε

G0(k){−k0Ẑ sin ω0t (â†
εk + âεk )

+ cos ω0t[(â†
εk + âεk ) + ik · R̂(−â†

εk + âεk )]}, (47)

with the coupling rate

G0(k) = ε0εcV E0

√
ωk

2h̄ε0V
(ex · εk ). (48)

The term Ĥt-f contains a displacement of the free-space EM
modes and a tweezer-mediated interaction between free-space
modes and c.m. motion. As we will see below, the latter
interaction will result in the recoil heating of the NP [8,35].

Finally, the product between cavity and free EM field adds
a contribution

Ĥc-f = −h̄
∑
kε,α

Gα (k)(ĉ†
α + ĉα )[ik · R̂(−â†

εk + âεk )

+ (â†
εk + âεk )(cos φ + kcŶ

′ sin φ)], (49)

with a coupling factor

Gα (k) = εcV

2

√
ωcωk

VcV
(eα · εk ). (50)

This interaction term is more involved than the previous two.
On the one hand, it contains a quadratic interaction between
cavity modes and the free field, responsible for extra losses
of the cavity into free space. Since these losses are mediated
by the NP, they depend on its position through cos φ. Note that
this term is small for subwavelength particles, as otherwise the
cavity linewidth would be modified by the presence of the NP,
an effect not observed in experiments [43]. On the other hand,
Ĥc-f contains a nonquadratic three-body interaction between
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free-space photons, cavity photons, and c.m. phonons. This
contribution, however, can be safely neglected since it is
of order ∼kr j0, kcr j0 ∼ 10−6, 10−5 times smaller than the
quadratic contribution at optical frequencies. This argument
might fail if the cavity is largely populated by the tweezer,
where this three-body interaction results in an effective free-
field–c.m. coupling which contributes to the recoil heating.
However, this extra cavity-induced recoil will be negligible
compared to the recoil induced by the much highly occu-
pied tweezer [Eq. (47)], which is known to dominate [8,35].

Therefore, we can safely approximate

Ĥc-f ≈ −h̄
∑
kε,α

Gα (k)(ĉ†
α + ĉα )(â†

εk + âεk ) cos φ. (51)

The full Hamiltonian of the system is obtained by adding
up all the above contributions, namely, Eqs. (9), (26), (37),
(45), (47), and (49). As discussed above, from now on we will
ignore the z-polarized cavity mode and refer to the remaining
creation operators simply as ĉ⊥ ≡ ĉ. In terms of the c.m.
creation and annihilation operators, the full Hamiltonian reads

Ĥ/h̄ ≈ ω̃cĉ†ĉ +
∑
kε

ωkâ†
εkâεk +

∑
j

� j b̂
†
j b̂ j +

∑
ω

ωâ†
0(ω)â0(ω) − cos(ω0t )

[
G cos(φ)ĉ† +

∑
kε

G0(k)â†
εk + H.c.

]

− G(ĉ† + ĉ){kc[sin(�)x0b̂†
x + cos(�)y0b̂†

y + H.c.] sin(φ) cos(ω0t ) − k0z0(b̂†
z + b̂z ) cos(φ) sin(ω0t )}

+
∑
kε

G0(k)

⎡
⎣k0z0(b̂†

z + b̂z ) sin(ω0t )(â†
εk + âεk ) − i

∑
j

k jr0 j (b̂
†
j + b̂ j ) cos(ω0t )(−â†

εk + âεk )

⎤
⎦

−
∑
kε

G(k)(ĉ† + ĉ)(â†
εk + âεk ) cos(φ) − ĉ†ĉ[gcx(b̂†

x + b̂x ) + gcy(b̂†
y + b̂y)] + i

∑
ω

γ0(ω)[â0(ω)ĉ† − H.c.], (52)

where G ≡ G⊥, G(k) ≡ G⊥(k), and ω̃c = ωc − �c.
The above Hamiltonian, though simpler than the original, remains very challenging to solve, but it can be further simplified.

First, we eliminate the time dependence by virtue of the same rotating-wave approximation undertaken after Eq. (23). In order
to do this, we first perform a unitary transformation into a frame rotating with the tweezer frequency, i.e.,

Û = exp(iω0t Â), (53)

with

Â = ĉ†ĉ +
∑
kε

â†
εkâεk + 2π

∑
ω

â†
0(ω)â0(ω). (54)

After applying this transformation, the Hamiltonian will contain two different kinds of terms, namely, the nonrotating terms
which do not depend on time and contributions rotating at frequencies ±2ω0. We then take the rotating-wave approximation by
neglecting the latter. After such an approximation, the Hamiltonian is reduced to

Ĥ/h̄ ≈ ĉ†ĉ[δ̃ − gcx(b̂†
x + b̂x ) − gcy(b̂†

y + b̂y)] +
∑
kε

�kâ†
εkâεk +

∑
j

� j b̂
†
j b̂ j +

∑
ω

�0(ω)â†
0(ω)â0(ω)

− G

2
(ĉ† + ĉ) cos φ −

∑
kε

G0(k)

2
(â†

εk + âεk ) −
∑
kε

G(k)(ĉâ†
εk + ĉ†âεk ) cos φ

− G

2
(ĉ† + ĉ)kc[sin(�)x0b̂†

x + cos(�)y0b̂†
y + H.c.] sin φ + i

G

2
(ĉ† − ĉ)k0z0(b̂†

z + b̂z ) cos φ

−
∑
kε

G0(k)

2
i(âεk − â†

εk )

⎡
⎣−k0z0(b̂†

z + b̂z ) +
∑

j

k jr0 j (b̂
†
j + b̂ j )

⎤
⎦ + i

∑
ω

γ0(ω)[â0(ω)ĉ† − H.c.], (55)

where we have defined the detunings

δ̃ = ω̃c − ω0, (56)

�k = ωk − ω0, (57)

�0(ω) = ω − ω0. (58)

Note that the Hamiltonian contains a displacement of the
cavity and the free EM modes [second line of Eq. (55)].
As usual in quantum optics, it is convenient to remove such

displacements by means of a second unitary transformation,
which displaces all the system modes at once:

âεk → âεk + αk, (59)

b̂ j → b̂ j + β j, (60)

ĉ → ĉ + αc, (61)

â0(ω) → â0(ω) + α0(ω). (62)
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After substitution of the above operators into Eq. (55), we ne-
glect the constant energy shifts and set the terms proportional
to âεk, b̂ j , ĉα , and â0(ω) to zero, so that any displacement
will vanish from the transformed Hamiltonian. In this way we
obtain a system of equations relating the coefficients αk, β j ,
αc, and α0(ω), whose solution is given in Appendix A together
with the general form of the transformed Hamiltonian.

After the above displacement, the operators appearing in
the Hamiltonian represent the fluctuations of the correspond-
ing degree of freedom above a classical value. Since these
fluctuations are small, we can neglect the remaining non-
quadratic terms in the transformed Hamiltonian. Then, in the
transformed frame, the Hamiltonian can be written in a very
compact form as

Ĥ = ĤS + ĤRA + ĤRB + V̂A + V̂B1 + V̂B2. (63)

Here we are describing the system in the usual notation in
open quantum systems [56], where we divide our degrees
of freedom into a system S, composed of the cavity and
the c.m. modes, and two reservoirs RA and RB, composed
of the free EM modes and the output modes of the cavity.
Such distinction facilitates the procedure outlined in the next
section, namely, the tracing out of the reservoir modes to
get a reduced equation of motion only for the cavity and
c.m. subsystem. In this system plus reservoir picture, the
Hamiltonian of the system S is defined as

ĤS/h̄ = (δ̃ − 2gcxβx − 2gcyβy)ĉ†ĉ +
∑

j

� j b̂
†
j b̂ j + V̂0,

(64)

where V̂0 = ∑
j g j ĉ†(b̂†

j + b̂ j ) + H.c. is the interaction be-
tween the system degrees of freedom, with coupling rates⎡

⎢⎣
gx

gy

gz

⎤
⎥⎦ = −

⎡
⎢⎣

(G/2)kcx0 sin φ sin � + αcgcx

(G/2)kcy0 sin φ cos � + αcgcy

−i(G/2)k0z0 cos φ

⎤
⎥⎦. (65)

On the other hand, the two reservoirs are governed by the
Hamiltonians

ĤRA/h̄ =
∑

ω

�0(ω)â†
0(ω)â0(ω), (66)

ĤRB/h̄ =
∑
kε

�kâ†
εkâεk. (67)

Finally, the interaction between system and reservoirs is given
by three independent terms, namely,

V̂A/h̄ = i
∑

ω

γ0(ω)[â0(ω)ĉ† − H.c.], (68)

V̂B1/h̄ =
∑
kε

(gεkĉ†âεk + H.c.), (69)

and

V̂B2/h̄ =
∑
j,kε

[g jεkâ†
εk(b̂†

j + b̂ j ) + H.c.], (70)

where the coupling rates are given, respectively, by

gεk = −G(k) cos φ, (71)

g jεk = i
G0(k)

2
(k jr j0 − δ jzk0z0). (72)

By using the above definitions, the quadratic Hamiltonian
describing both the system and the reservoirs, Eq. (63), takes
a suitable form for tracing out the latter.

III. REDUCED DYNAMICS OF THE CAVITY AND THE
CENTER-OF-MASS MODES

The Hamiltonian in Eq. (63) describes an infinite system
of coupled harmonic oscillators. Since we are only interested
in the reduced dynamics of the system formed by the c.m. and
cavity, in this section we trace out the two sets of continuum
EM modes to obtain an effective equation of evolution for
such a subsystem. We will only briefly summarize the deriva-
tion for the unfamiliar reader, as such a derivation is standard
in the literature (see, e.g., Ref. [56]). The procedure for tracing
out the reservoir degrees of freedom starts by transforming
into the interaction picture with respect to the free evolution
of all degrees of freedom, i.e., with respect to ĤRA + ĤRB +
ĤS − V̂0. In this picture, the evolution of the total density
matrix ρ is given by the von Neumann equation [56]

ρ̇ = − i

h̄
[V̂0(t ) + V̂ (t ), ρ̂(t )], (73)

where V̂0(t ) and V̂ (t ) = V̂A(t ) + V̂B1(t ) + V̂B2(t ) represent
the two interaction potentials in the interaction picture. In
order to solve Eq. (73), we undertake the weak coupling or
Born approximation, which consists in approximating the full
density matrix as a product state, i.e., ρ̂(t ) = μ̂(t ) ⊗ ρ̂R. Here
μ̂(t ) = TrRρ̂(t ) is the reduced density matrix of the system,
TrR denoting the partial trace over the reservoir modes. On the
other hand, ρ̂R is the reduced density matrix of the reservoir,
which is assumed constant on the basis of the environment be-
ing composed by an infinitely large amount of modes, whose
state is therefore only negligibly modified by the presence of
the system. We will assume that the density matrix describing
the free EM reservoirs is a thermal state at room temperature,

ρ̂R ∝ e−(ĤRA+ĤRB )/kBT . (74)

Note that, in principle, the assumption of a thermal state for
the reservoirs is only legitimate in the original frame, and
such a thermal state should be transformed accordingly
into the displaced frame given by the transformation
{âεk, â0(ω)} → {âεk + αk, â0(ω) + α0(ω)}. However, this
state remains a good approximation in the transformed
frame since, as evidenced by our results in Appendix A,
the contribution of the reservoir modes is only relevant at
frequencies close to ω0. At these frequencies, the presence
of a highly occupied classical tweezer field makes any other
dynamics of the EM field negligible. For this reason, the
thermal state in Eq. (74) remains a good approximation for
reproducing experimental results, as we will see below.

Under the Born approximation and with the reservoirs in a
thermal state, we can formally solve Eq. (73), reinsert it into
itself, and take the trace over the reservoir modes, obtaining

μ̇(t ) = − i

h̄

[
V̂0(t ), μ̂(0) − i

h̄

∫ t

0
ds[V̂0(s), μ̂(s)]

]

− 1

h̄2 TrR

∫ t

0
ds[V̂ (t ), [V̂ (s), μ̂(s) ⊗ ρ̂R]]. (75)
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The second argument inside the commutator in the first line
above can be identified as μ̂(t ), as can be readily checked
by taking the partial trace and formally solving for μ̂(t ) in
Eq. (73). Moreover, in the second line of Eq. (75), it is
customary to undertake the Markov approximation, which
assumes that the reservoir correlation functions decay much
faster than the system-reservoir interaction rate. Formally, this
is equivalent to approximating μ̂(s) ≈ μ̂(t ) and extending
the upper integration limit to infinity [56]. The final master
equation reads

μ̇(t ) = − i

h̄
[V̂0(t ), μ̂(t )]

− 1

h̄2 TrR

∫ ∞

0
ds[V̂ (t ), [V̂ (s), μ̂(t ) ⊗ ρ̂R]]. (76)

The master equation (76) now has the desired form,
namely, an equation of motion involving only the system
degrees of freedom, i.e., the cavity and the c.m. modes. This
equation contains the free evolution of the system plus some
extra terms, describing the effect of the reservoirs [second line
of Eq. (76)]. The explicit calculation of such terms, carried out
in Appendix B, leads to the master equation in the Schrödinger
picture

μ̇(t ) = − i

h̄
[Ĥ ′

S, μ̂(t )] + D[μ̂]. (77)

Here the Hamiltonian Ĥ ′
S has the same form as the Hamilto-

nian HS , but with all the involved frequencies renormalized
(shifted) by the effect of the reservoirs,

Ĥ ′
S/h̄ = δ′ĉ†ĉ +

∑
j

�′
j b̂

†
j b̂ j +

∑
j

(g′
j ĉ

†q̂ j + H.c.), (78)

where we define q̂ j ≡ b̂†
j + b̂ j , and the expressions for δ′, �′

j ,
and g′

j are given in Appendix B. Note that the shifts in the
frequencies and coupling rates represent the conservative part
of the reservoir-induced system dynamics. On the other hand,
the term D[μ̂] contains the incoherent (or nonconservative)
dissipators, which include cavity losses at a rate κ ′, recoil
heating of the c.m. modes at a rate �

(r)
j , and incoherent cavity-

c.m. interaction at a rate ϒ ,

D[μ̂] = 2κ ′[ĉμ̂ĉ† − 1

2
{ĉ†ĉ, μ̂}] −

∑
j

�
(r)
j [q̂ j, [q̂ j, μ̂]]

+ [ϒ(2q̂zμ̂ĉ† − {ĉ†q̂z, μ̂}) + H.c.], (79)

where the curly brackets denote the anticommutator. Here
the cavity linewidth κ ′ contains in principle also a small
correction due to the presence of the NP, and the incoherent
interaction rate ϒ is usually negligible for subwavelength
particles [55]. The explicit expressions for κ ′, �

(r)
j , and ϒ are

given in Appendix B.

Other noise sources

In a typical levitodynamics experiment, the noise sources
associated with thermal free photons are not the only ones.
Indeed, some noise sources, stemming from different degrees
of freedom not accounted for in our original Hamiltonian (1),
can play a relevant role in the system dynamics. Therefore, we

must include such sources in our equation of motion for the
cavity and c.m. degrees of freedom. In this work we focus on
two particular decoherence channels, namely, displacement
noise in the trap and residual gas pressure.

We first focus our attention on the displacement noise
associated with the “shaking” of the center of the trap. This
mechanism has been discussed in detail in the literature
[18,56–58] and results in an extra dissipator in the master
equation of the position localization or Brownian motion form

Dd[μ̂] = −
∑

j

� j[R̂ j, [R̂ j, μ̂]]

= −
∑

j

� j r
2
j0[q̂ j, [q̂ j, μ̂]], (80)

where R̂ j = r j0q̂ j is the j component of the c.m. position op-
erator. The magnitude � j r2

j0 is the corresponding dissipation
rate and can be related to observables in the following way.
Let us describe the trap displacements along each direction j
by means of independent classical fluctuating variables ξ j (t )
such that R̂ j → R̂ j + ξ j (t ). We assume such variables to have
zero mean and nonzero fluctuations, i.e., 〈ξ j (t )〉T = 0 and
〈ξ j (t )ξ j (t ′)〉T �= 0 [18]. In terms of these variables, we can
define the two-sided power spectral density (PSD)

S(d )
j j (ω) = 1

2π

∫ ∞

−∞
dτ 〈ξ j (t + τ )ξ j (t )〉T eiωτ , (81)

which has units of m2/Hz. For the particular case S(d )
j j (� j ) =

S(d )
j j (−� j ) one can demonstrate, by averaging over the

stochastic force generated by ξ j , that the displacements result
in the dissipator Eq. (80), with

� j = m2�4
j

h̄2 πS(d )
j j (� j ). (82)

The dissipation rates associated with the trap displacement
�

(d )
j ≡ � j r2

0 j can therefore be written as

�
(d )
j = π

� j

4

(
S(d )

j j (� j )

�−1
j r2

0 j

)
≡ π

� j

4
σ 2

j , (83)

i.e., the ratio �
(d )
j /� j is proportional to the PSD in units

of r2
0 j/� j , whose square root we define as σ j . Note that

the above rate scales linearly with the NP mass, therefore
taking much higher values for a NP than for a trapped atom.
Indeed, as we will see below, in recent levitodynamic cooling
experiments [43], this mechanism could represent a relevant
source of heating. Finally, note that the origin of the trap
displacement noise is here unspecified, as it strongly depends
on the particular realization. However, identifying such an
origin in each situation might be important to properly isolate
the system from unwanted heating.

Let us now focus on the effect of gas pressure which,
by inducing an extra heating of the c.m. motion, limits the
cooling power of the experiment. The pressure of the gas is
modeled through a combination of two dissipators [57,59],

Dpressure[μ̂] = DR[μ̂] + Dp[μ̂]. (84)
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Here the first term also takes the form of a position localiza-
tion dissipator,

DR[μ̂] = −mγ kBT

h̄2

∑
j

[R̂ j, [R̂ j, μ̂]]

= −mγ kBT

h̄2

∑
j

r2
j0[q̂ j, [q̂ j, μ̂]], (85)

with T the temperature of the gas, whereas the second term
describes viscous friction and is given by

Dp[μ̂] = −i
γ

2h̄

∑
j

[R̂ j, {P̂j, μ̂}]

= γ

4

∑
j

[q̂ j, { p̂ j, μ̂}], (86)

where we define the conjugate variable p̂ j ≡ b̂†
j − b̂ j . The rate

γ can be obtained from the kinetic theory of gases [3,60] and
reads

γ = 0.619
6πR2

ml̄
ηg = 0.619

6πR2

m
P

√
2m0

πkBT
, (87)

where ηg = l̄P(2m0/πKBT )1/2 is the viscosity of the gas, l̄ the
mean free path of the air molecules, P the pressure, and m0 the
molecular mass of the gas.

Both the first dissipator associated with the gas pressure
DR[μ] and the displacements of the trap center Dd [μ] have
the same form as the recoil heating term in Eq. (79) and can
thus be grouped together. The final master equation then reads

μ̇ = − i

h̄
[Ĥ ′

S, μ̂(t )] + D′[μ̂], (88)

where Ĥ ′
S is given by Eq. (78), and the final dissipator reads

D′[μ̂] = 2κ ′
[

ĉμ̂ĉ† − 1

2
{ĉ†ĉ, μ̂}

]
−

∑
j

� j[q̂ j, [q̂ j, μ̂]]

+ [ϒ(2q̂zμ̂ĉ† − {ĉ†q̂z, μ̂}) + H.c.] + Dp[μ̂], (89)

with

� j = �
(r)
j + �

(d )
j + �

(p)
j (90)

and

�
(p)
j = mkBT

h̄2 r2
j0γ . (91)

Equation (88) is the final equation of evolution for the system
formed by cavity and c.m. motion. As a reading guide, a
compilation of the most relevant parameters governing the
system evolution is shown in Table III (Appendix D). Note
that, although we are neglecting any parametric noise induced
by fluctuations in the trapping frequencies, such noise could
be incorporated in our model by means of a Brownian motion
dissipator for the operators R̂2

j [61]. This, however, lies be-
yond the scope of the present work since, as will be shown
below, the three heating sources introduced here, namely,
gas pressure, recoil heating, and displacement noise, are both
necessary and sufficient for our model to be compatible with
experimental observations.

IV. RESULTS: THREE-DIMENSIONAL CAVITY COOLING
IN A RECENT EXPERIMENTAL SETUP

In this section we study the behavior of the system for
realistic experimental parameters. In order to illustrate our
model, we take as a case study the recent experiment with
a SiO2 NP by Windey et al. [43]. The values of the parameters
measured in this experiment are shown in Table I, together
with the permittivity and density of silica extracted from
the literature. Note that not all the parameters in our model
are measured directly, leaving some of them free to fit the
experimental results. For instance, the radius of the NP is only
known within a relatively wide range, and in the following we
will take R = 50 nm for the sake of definiteness.

Our first task is to evaluate all the parameters appearing
in our effective equation of motion (88) starting by the c.m.
trapping frequencies �′

j . To obtain them, we need to fix the
values of the tweezer waist Wt and the asymmetry factors Ax

and Ay. Reasonable values for the former lie on the order
of Wt ∼ λ0/πN ∼ 1 μm, where N ≈ 0.8 is the numerical
aperture of the lens [51]. On the other hand, since the tweezer
cross section is not expected to deviate significantly from a
cylindrically symmetric spot, both Ax and Ay should be of the
order of 1. Within these bounds, we choose Wt = 1.08 μm,
Ax = 1.03, and Ay = 0.89, which result in the mechanical
frequencies ⎡

⎢⎣
�′

x

�′
y

�′
z

⎤
⎥⎦ = 2π ×

⎡
⎢⎣

0.12

0.14

0.04

⎤
⎥⎦ MHz. (92)

These values agree with the measurements in Ref. [43].
We now focus on the cavity parameters in Eq. (88), namely,

the renormalized detunings δ′ and linewidth κ ′. Note that, due
to the large cavity occupation induced by the high tweezer
power, the cavity frequency can be significantly modified
by the presence of the NP, thus allowing for the definition
of two different detunings. Indeed, the detuning measured
without the NP is defined as δbare = ωc + �A − ω0, whereas
the detuning measured with the NP inside the cavity is given

TABLE I. Input parameters for our model. All the values except
for the last two are taken from Ref. [43]. Although the tweezer waist
is not directly measured, an estimation of its order of magnitude can
be drawn (see the text). Note that, because of the chosen convention,
the rate κ in our theory corresponds to half the value of κ reported in
Ref. [43].

Parameter Value

tweezer power Pt = 0.5 W
tweezer wavelength λ0 = 1.55 μm
tweezer waist Wt ∼ 1 μm
cavity length Lc = 6.46 mm
cavity waist Wc = 48 μm
cavity linewidth 2κ = 2π × 1.06 MHz
radius of NP R ∼ (70 ± 20) nm
SiO2 permittivity at 1.55 μma ε = 2.07
density of SiO2

b ρ = 2200 kg/m3

aReference [62].
bReference [63].
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FIG. 3. Displacements of the c.m. equilibrium positions and of
the cavity mode for the parameters of Table I. (a) Displacements as a
function of position inside the cavity, for � = 10◦. (b) Displacements
as a function of tweezer polarization angle, for φ = π/4. Note that
the definition of the X and Y axes is different for each value of � (see
Fig. 2). In both panels, the displacements in the X and Y directions
are multiplied by a factor 10 for better visualization.

by δ′ = δbare − �c + �B1 − 2gcxβx − 2gcyβy, where the ex-
pressions for all undefined shifts are given in Appendix B.
For the parameters in Table I, the difference between these two
quantities is dominated by �c and can reach a maximum value
of |δ′ − δbare| ≈ 2π × 3.4 kHz when the NP is placed at an
intensity maximum. Since this value is ∼10% the mechanical
frequency �z, a proper identification of which detuning is
measured experimentally could be relevant for resolved side-
band cooling [64]. Following the measurements in Ref. [43],
where the detuning is measured with the NP inside the cavity,
in the following we will refer to δ′ as the cavity detuning and
set it to δ′ = 2π × 400 kHz unless stated otherwise.2 Finally,
regarding the cavity linewidth, we find that κ ′ = κ + κB1 ≈ κ ,
since the correction to the bare cavity linewidth is negligible,
κB1 = 2π × (5 cos2 φ) Hz.

The determination of the mechanical frequencies and the
cavity parameters allows us to compute the displacements of
the cavity αc and of the c.m. motion β j , which arise after
introducing the trapped NP into the optical cavity. The former
can be expressed in terms of the tweezer-induced photonic
occupation of the cavity mode |αc|2, whereas the latter quan-
tifies the cavity-induced displacement of the c.m. equilibrium

2For the chosen parameters, a smaller detuning would result in the
system becoming dynamically unstable and the NP would abandon
the trap. This phenomenon has also been experimentally observed in
Ref. [43].

(a)

(b)

FIG. 4. Total optomechanical coupling rates in absolute value,
for the parameters of Table I and δ′ = 2π × 400 kHz. (a) Couplings
versus NP position along the cavity axis for � = 10◦. (b) Couplings
versus tweezer polarization angle, for φ = π/4.

positions 2β j r0 j . These displacements are shown in Fig. 3
versus the NP position inside the cavity [Fig. 3(a)] and the
tweezer polarization angle [Fig. 3(b)]. All the displacements
vanish when the NP sits at a cavity node (φ = π/2), since
the cavity field is zero at such a position, and when the
tweezer polarization is parallel to the cavity axis (� = π/2),
as no photons are scattered into the cavity direction by the
dipolar NP. In general, the displacements of the c.m. equilib-
rium positions are orders of magnitude above the zero-point
amplitudes r0 j ∼ 10−12 m. Moreover, the shift in the c.m.
position along the tweezer axis (Z) has a larger magnitude
and negative sign. Such traits can be ascribed, respectively,
to the larger mechanical frequencies and to the reduction in
the tweezer scattering force along Z , caused by the coherent
scattering of tweezer photons into the cavity. Finally, note that
the cavity might be largely occupied, containing up to ∼106

photons. This might result in a significant modification of the
optomechanical coupling [see Eq. (65)].

Using the displacements calculated above, we determine
the remaining parameters in the equation of motion. First, we
show in Fig. 4 the coherent optomechanical coupling rates
between the cavity mode and the c.m. motion, namely, g′

j in
the Hamiltonian (78). As shown in Fig. 4(a), for the NP sitting
at the node of the cavity (φ = π/2), the coupling vanishes for
the Z-c.m. coordinate and reaches its maximum value for the
transverse (X -Y ) coordinates, while the opposite trend is ob-
served at a cavity antinode (φ = 0). Such behavior evidences
the different origin of the couplings for the Z and for the X and
Y directions [see, e.g., Eq. (45)]. Indeed, the interaction in the
Z direction is proportional to the electric-field intensity of the
cavity, whereas the interaction in the X -Y direction is propor-
tional to its derivative. In Fig. 4(b) we show the dependence
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TABLE II. Heating rates contributing to the position localization rate � j in Eq. (90), for the parameters in Table I. The second, third, and
fourth rows show, respectively, the heating rate due to pressure (Pmbars denotes pressure in millibars), the photon recoil heating rate, and the
trap displacement heating rate.

��������������������Position localization rate

Axis

X Y Z

�
(p)
j /2π (GHz) 28.6Pmbars 24.5Pmbars 85.7Pmbars

�
(r)
j /2π (kHz) 0.09 0.15 1.89

�
(d )
j /2π (kHz) 94σ 2

x 110σ 2
y 31σ 2

z

of the optomechanical couplings with the polarization angle
of the tweezer. As expected, when the tweezer is polarized
along the cavity axis (� = π/2), no tweezer photons can
be scattered into the cavity and the interaction rates along
all three directions vanish. Moreover, as mentioned above, a
tweezer polarization purely perpendicular to the cavity axis
(� = 0, π ) results in the decoupling of the X -c.m. motion
and thus prevents the possibility of 3D cooling. Note that
the coupling rates can reach values comparable to or even
higher than the mechanical frequencies, which may result in
the system reaching dynamically unstable regimes [65].

Finally, we calculate the remaining rates appearing in
the dissipator (89), for the parameters in Table I. First, the
incoherent coupling rate between the Z-c.m. mode and the
cavity is given by ϒ = 2π × 82 cos φ cos � Hz and depends
on the tweezer power as P1/4

t . This rate can safely be neglected
in this case since it is much smaller than the corresponding co-
herent coupling rate, i.e., ϒ � g′

z. Regarding the dissipation
associated with the viscous friction term Dp, we find that

γ = 2π × (1.1Pmbars) kHz, (93)

where Pmbars is the gas pressure in millibars. From here we
can immediately determine the rates of position localization
� j in Eq. (90), which are independent of the angle φ or �.
The three contributions to these rates are shown in Table II.
Note that the displacement noise depends critically on the
adimensional PSD σ j . In order to reproduce the experimental
observations, these parameters are chosen as {σx, σy, σz} =
{0.67, 0.26, 18.6}, which correspond to displacement noise
PSD values of {[S(d )

xx ]1/2, [S(d )
yy ]1/2, [S(d )

zz ]1/2} ≈ {6, 2, 500} ×
10−15 m Hz−1/2. These values are of the same order as those
estimated in Ref. [43].

Once the parameters of the equation of motion (88) have
been calculated, we are in a position to study the system
dynamics. The expected value of any system observable Ô
can be obtained from the density matrix μ̂ through the usual
trace expression 〈Ô〉(t ) = Tr[Ôμ̂(t )] [56]. In the present case,
there is no need to compute the whole density matrix, since
our master equation is quadratic in the system creation and
annihilation operators. Thus, any information about the state
of the system is encoded in the first- and second-order mo-
menta, namely, the expected value of single system operators
(〈ĉ〉, 〈ĉ†〉, 〈b̂x〉, 〈b̂†

x〉, . . .) and the expected value of all their
quadratic combinations (〈ĉ2〉, 〈ĉ†ĉ〉, 〈ĉ†2〉, 〈ĉb̂x〉, 〈ĉb̂†

x〉, . . .).
As detailed in Appendix C, from Eq. (88) we derive the
equations of motion for all the above expected values, which
form a closed system of 44 differential equations. After

numerically solving such a system of equations we can
compute any observable as a function of their solutions,
for instance, the position operator 〈R̂ j〉 = r0 j (〈b̂ j〉 + 〈b̂†

j〉).
Specifically, the temperature of the motion along a given axis
is defined as Tj ≡ h̄�′

j〈b̂†
j b̂ j〉/kB.

Our results for the steady-state temperature along each of
the trapping axes as a function of the pressure of the surround-
ing gas are shown in Fig. 5. As expected, the dependence of
the temperatures on the position inside the cavity φ mimics
that of the optomechanical couplings in Fig. 4. Specifically,
the cooling along the Z axis is maximally efficient at a cavity
antinode and vanishes at the cavity node, whereas the cooling
in the X and Y directions obeys an opposite trend. For the
parameters chosen above, the temperatures reached at P =
10−5 mbar and optimum cooling conditions are Tx ≈ 100 mK,

Pressure (mbars)

FIG. 5. Steady-state temperature of the c.m. motion along the
three motional axes as a function of gas pressure, for different
positions inside the cavity, φ, detuning δ′ = 2π × 400 kHz, and
polarization angle � = 10◦. The dashed lines represent the node
(φ = π/2) and antinode (φ = 0) of the cavity field.
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Ty ≈ 3 mK, and Tz ≈ 60 mK, which are consistent with the
experimental observations [43]. According to our model, the
saturation of Tz at low pressures is limited by the trap displace-
ment heating �(d )

z , whereas at large pressures the gas heating
rates �

(p)
j dominate for all axes and prevent the motional

cooling. Interestingly, we have confirmed that for the chosen
parameters the system is very close to a dynamical instability
[65] due to the high tweezer powers, which can result in
strong sensitivity to the system parameters. For instance, a
slight increase in the size of the NP results in large heating
rates at low pressures due to the critical ratio between the
coupling rates and the optomechanical frequencies. Regarding
an experimental implementation, such dynamical instabilities
must be taken into account as they limit the parameter values
for which efficient cooling is attainable.

It is common in optomechanics to define the cooling power
by means of a cooling rate, which determines both the mini-
mal achievable temperature and the time required to reach it.
This quantity can be defined by calculating the PSD of the
c.m. motion, defined as

S j j (ω) = r2
0 j

2π

∫ ∞

−∞
dτ 〈q̂ j (t + τ )q̂ j (t )〉sse

iωτ , (94)

where the subindex ss denotes the steady state. As detailed
in Appendix C, the motional PSD is computed by using the
quantum regression theorem [66] which, in its simplest form,
relates the two-time correlation function 〈q̂ j (t + τ )q̂ j (t )〉ss to
its value at zero delay, namely, 〈q̂2

j 〉ss. The calculation of
the PSD is straightforward from here, since the zero-delay
expected value has been already determined by numerically
solving the system equations of motion.

The motional PSD (94) is shown in Fig. 6(a) for φ = π/4.
As evidenced here, the PSD along a given axis j shows a series
of Lorentzian peaks, the most relevant of which is centered in
the vicinity of �′

j . The full width at half maximum (FWHM)
of these peaks, shown in Fig. 6(b), determines the total rate
at which the temperature evolves in time [43]. Note that, as
demonstrated in Appendix C, such a FWHM is independent
of the position localization rates �

(d )
j , �

(p)
j , and �

(r)
j , which

only affect the steady-state temperature. Furthermore, the
remaining source of heating provided by the rate γ [Eq. (93)]
becomes negligible at low pressures. Therefore, we can iden-
tify the cooling rates as the low-pressure limits of the curves
in Fig. 6, that is, γx ∼ 2π × 30 Hz and γy,z ∼ 2π × 1 kHz for
optimal cooling angles φ. These values are consistent with
experimental observations [43] and remarkably they are of
the same order as the rates predicted by adiabatic elimination
of the cavity [67] (γ j ≈ |g′

j |2κ/[κ2 + (δ′ − �′
j )

2]), despite
the fact that the assumptions for such elimination, namely,
κ � |g′

j |, are not fulfilled in this case.
From the above argumentation and the curves in Fig. 6, we

can predict that, at pressures P � 5 × 10−3 mbar and optimal
cooling positions φ, the temperatures will decay to 1/e times
their initial value in around ∼1/γx ∼ 5 ms along the X axis
and ∼1/γy,z ∼ 0.2 ms along the Y and Z axes. This trend is
indeed observed in the system dynamics, displayed in Fig. 7.
Clearly, the dependence of the optomechanical couplings on
the position of the NP inside the cavity influences not only
the steady-state temperature, but the whole time evolution.

(a)

(b)

Pressure (mbars)

FIG. 6. (a) Motional PSD along the three axes, for P = 3 ×
10−3 mbar and φ = π/4. The vertical lines indicate the mechanical
frequencies (92). (b) FWHM of the main peaks in the PSD as a
function of gas pressure. For all panels, � = 10◦.

Moreover, the efficiency of the cooling depends critically
on φ, with no cooling at all occurring in the less optimal
configuration. In order to certify that the coupling to the
cavity is responsible for the cooling, we display in Fig. 8
the reheating of the c.m. motion along the Z axis (similar
curves are obtained for every axis). Here we have initialized
the system in its cooled steady state and effectively turned off
the cavity cooling by setting the cavity detuning to δ′ = 2π ×
20 MHz � κ ′,�′

j. As expected, in this situation the dynamics
is cavity independent and governed only by gas pressure
reheating, thus occurring on a timescale γ −1 ∼ 50 ms, in
agreement with the experiment [43]. Also in agreement with
the above discussion, the reheating dynamics is independent
of the position localization heating rates �

(d )
j , �

(p)
j , and �

(r)
j .

Finally, note that, in this limit, namely, g′
j → 0, the equations

of motion can be analytically solved in terms of γ , the steady-
state temperature Tss, and the initial temperature T0. The
resulting analytical expression is represented by the dashed
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FIG. 7. Time evolution of the temperature of the c.m. motion
along the three motional axes at pressure P = 3 × 10−3 mbar and
detuning δ′ = 2π × 400 kHz, for different positions of the NP inside
the cavity, φ, and polarization angle � = 10◦. The system is initial-
ized in a thermal state at room temperature.

line in Fig. 8 and shows excellent agreement with the full
numerical solution. Our results in Figs. 7 and 8 quantitatively
agree with experimental measurements [43].

Because the above-defined cooling rates are a function of
the optomechanical couplings g′

j , they depend strongly on
the cavity detuning δ′, a dependence that stems from the
tweezer-induced displacement αc [see Eq. (A15)]. In order to
characterize this dependence, we show in Figs. 9(a)–9(c) the
steady-state temperature along the three motional axes as a
function of δ′. As expected, the cooling becomes significantly

FIG. 8. Reheating curve: c.m. temperature along the Z axis,
at pressure P = 3 × 10−3 mbar, detuning δ′ = 2π × 20 MHz, and
polarization angle � = 10◦. The curves show similar behavior for
every axis and every position φ.

(a) (b)

(c) (d)

FIG. 9. Steady-state temperatures (a) Tx , (b) Ty, and (c) Tz as
a function of cavity detuning, for Pt = 500 mW. (d) Steady-state
temperature at the best cooling position (i.e., φ = π/2 for the X -Y
plane and φ = 0 for the Z axis) versus tweezer power, for δ′ =
2π × 400 kHz. In all panels, P = 3 × 10−3 mbar and � = 10◦.

less efficient when the detuning becomes larger than the
cavity linewidth, δ′ � κ ′ ≈ 2π × 0.5 MHz, and completely
disappears at around δ′ ≈ 10κ ′. Moreover, the steady-state
temperature saturates at small detunings due to the large
optomechanical couplings |g′

j | ≈ �′
j . Indeed, as mentioned

above, for such large couplings the system is near a dynamical
instability regime, where further reduction of the detuning
toward resonance with the c.m. modes pushes the system
closer to the unstable regime. This results in additional heating
(not shown in Fig. 9) and eventually in the loss of the NP
from the trap as the system becomes unstable. For the current
parameters, such instability might hinder the realization of
ground-state cooling, since reaching the ground state usually
requires the cavity detuning to be in resonance with the
mechanical frequency.

The dependence of the cooling rates on the optomechanical
coupling rates g′

j also allows for their tuning by means of
the tweezer power. In Fig. 9(d) we show the dependence
of the steady-state temperature with the tweezer power, at
δ′ = 2π × 400 kHz and at optimal cooling positions of the
NP. Here we observe an increase of the cooling efficiency
with higher powers, as both the c.m. frequencies and the
optomechanical couplings become more relevant with respect
to the heating rates. As the power is increased, however,
the decrease of the steady-state temperature becomes less
pronounced, as the enhancement in the cooling rate starts to
be compensated by the displacement heating rates �

(d )
j ∝ P2

t .
Above a certain power (Pt ≈ 2 W for the parameters of Fig. 9),
such heating rates become dominant and the steady-state
temperatures become a quadratically increasing function of
the tweezer power.
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As shown by the results in this section, our model is able
to reproduce all the experimental observations reported in
Ref. [43], both qualitatively and quantitatively. This shows the
validity of such a model to describe cavity-assisted cooling via
coherent scattering.

V. REQUIREMENTS FOR GROUND-STATE COOLING

The parameter values chosen for the preceding section do
not allow for ground-state cooling, defined as the reduction
of the c.m. phonon occupation to 〈n̂ j〉 ≡ 〈b̂†

j b̂ j〉 < 1. The
first reason is the high values of the gas pressure and the
tweezer power, which result in large heating rates �

(d )
j and

�
(p)
j . Moreover, the optomechanical couplings |g′

j |, especially
along the Z axis, are comparable to the c.m. frequencies.
As a result, a desirable condition for cooling, namely, the
cavity being in resonance with the c.m. modes (δ′ = �′

j),
cannot be reached without the system becoming dynamically
unstable [65]. Another reason hindering ground-state cooling
is the unresolved sideband regime, i.e., the large linewidth
of the cavity with respect to the mechanical frequencies.
In this section we use our model, which has been tested
by reproducing experimental observations, to determine the
conditions for reaching the mechanical ground state along any
of the motional axes.

Let us first focus on cooling the motion only along one of
the axes, regardless of the dynamics along the remaining two.
In order to simplify the physical interpretation of the results,
for cooling along the Y (Z) axis we take {�,φ} = {0, π/2}
({�,φ} = {0, 0}), such that the motion along the remaining
two directions is uncoupled from the cavity. On the other
hand, for cooling along the X axis, we can only uncouple
the Z motion by choosing {�,φ} = {π/4, π/2}. In this sec-
tion we aim at modifying the system parameters to achieve
ground-state cooling in the resolved sideband regime [64], for
which three requisites must be fulfilled. First, the total heating
rates � j = �

(r)
j + �

(p)
j + �

(d )
j have to be minimized. Second,

the cavity linewidth must be able to resolve the motional
sidebands, i.e., κ ′ � �′

j . Third, the optomechanical coupling
must remain small, |g′

j | � �′
j , so that the motional phonons

and cavity photons do not hybridize appreciably. Let us focus
on these three requisites independently.

We begin by the minimization of the heating rates. We
will assume, on the one hand, a reduced gas pressure of
P = 10−9 mbar, a value within reach of current ultrahigh-
vacuum technology. On the other hand, since the calculated
c.m. temperatures in the preceding section were limited by
trap displacement heating, it is necessary to incorporate some
isolation in our system, in order to reduce the corresponding
noise PSDs S(d )

j j [Eq. (81)]. Note that determining the specific
form of such isolation would require us to first identify the
source of trap displacement noise in each experiment. In
Fig. 10 we display the partial heating rates �

(r)
j , �(p)

j , and �
(d )
j ,

the total heating rate � j , the frequencies �′
j , and the optome-

chanical couplings |g′
j | as a function of tweezer power and

for three different values of the displacement noise PSD. Note
that both the recoil heating rate and the displacement heating
rate increase with the tweezer power, whereas �

(p)
j obeys the

opposite behavior, resulting in an optimal tweezer power for

which the heating rates are minimized. At high values of
the displacement noise PSD, the heating rate is completely
dominated by the displacement heating rate, which become
comparable to or even larger than the mechanical frequen-
cies. In this limit, ground-state cooling becomes impossible.
On the other hand, for [S(d )

j j ]1/2 ∼ 10−16 m/Hz−1/2, the trap
displacement noise is effectively eliminated and the heating
is dominated by the interplay between gas pressure and recoil
heating. In this regime [Figs. 10(g)–10(i)], the total heating
rates reach minimum values of � j ∼ 2π × 100 Hz, orders of
magnitude smaller than the optomechanical couplings. Our
results in Fig. 10 suggest that choosing an adequate tweezer
power is crucial for ground-state cooling. We remark that all
the results in Fig. 10 are practically independent of the cavity
linewidth along a wide interval, at least 100 Hz � κ ′/2π �
1 MHz.

We now focus on the tuning of the cavity linewidth into
the resolved sideband regime. Using our results in Fig. 10,
we calculate the steady-state occupation along the X and Y
axes (the Z axis is more involved and will be analyzed later)
as a function of the cavity linewidth, choosing the values
of the tweezer power that minimize the total heating rate.
Such occupations are displayed in Figs. 11(a) and 11(b) for
three different values of the displacement noise PSD. For high
values of the PSD, the system becomes dynamically unstable
at small κ ′, as the dissipation rate cannot compensate for
both the large heating rate and the high ratio |g′

j |/�′
j ≈ 1.

On the other hand, for low values of the displacement noise
PSD, ground-state cooling is observed along both of the
axes, with occupation numbers 〈n̂x〉 ≈ 0.09 and 〈n̂y〉 ≈ 0.14,
respectively. The optimal cooling is not attained for arbitrarily
small linewidths, but reaches a minimum at κ ′ ∼ |g′

j |. As we
will demonstrate below, this can be ascribed to the balance
between the photon scattering rate into the cavity and the rate
of photon loss through the mirrors. We emphasize that the
minimal occupations observed in Figs. 11(a) and 11(b) are not
necessarily the lowest occupations achievable in this system,
as we will see below.

The last requirement for cooling is the reduction of the ratio
|g′

j |/�′
j . For the X and Y axes this becomes manifest in the

fact that the tweezer powers chosen in Figs. 11(a) and 11(b)
are not the optimal ones for cooling despite minimizing the
heating rate. Indeed, one can check that for higher values of
Pt , the advantageous reduction of |g′

j |/�′
j ∼ P1/4

t overcomes
the detrimental increase in the heating rate and gives rise to
lower occupation numbers than the ones shown in Figs. 11(a)
and 11(b). However, the critical importance of reducing the
ratio |g′

j |/�′
j is most evidenced when cooling along the Z

axis, where this ratio takes very large values (see Fig. 10).
Such large values, combined with the recoil heating rate being
∼10× larger along the Z axis, make it impossible to cool the
motion for tweezer powers below Pt ∼ 1 − 2W, as the system
becomes unstable for any value of κ ′ within the resolved
sideband regime. However, in order to efficiently cool the
motion along the Z axis, the ratio |g′

j |/�′
j can be reduced by

either increasing the tweezer power or changing the position
of the NP inside the cavity φ. A combination of both methods
allows for ground-state cooling along the Z axis as well, as
shown in Fig. 11(c). Due to the larger recoil heating rates,
the minimum occupations reached along Z , 〈n̂z〉 ≈ 0.66, are
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FIG. 10. Comparison of the relevant system rates for cooling along the three motional axes, at P = 10−9 mbar. The rates are displayed as a
function of tweezer power for three different values of the displacement noise PSD S(d )

j j , assumed equal along the three axes. For each axis we
choose optimal cooling conditions, namely, (a), (d), and (g) {δ′,�, φ} = {�′

x, π/4, π/2} along X , (b), (e), and (h) {δ′, �, φ} = {�′
y, 0, π/2}

along Y , and (c), (f), and (i) {δ′,�, φ} = {�′
z, 0, 0} along Z . All unspecified parameters have the same value as in Sec. IV.

roughly one order of magnitude larger than along the remain-
ing two axes. Additionally, since recoil dominates the heating
for displacement noise PSDs below ∼10−15 m/

√
Hz (see

Fig. 10), reducing such PSD below that value has little effect
on the phonon occupation. Remarkably, for the parameters
of Fig. 11(c) we find a regime of uncertain stability (shaded
area), where some solutions of the polynomial equation for
βy (see Appendix A) yield stable equations of motion and
some do not. Physically, this is a regime where the dynamics
is extremely sensitive to small perturbations, as evidenced by
the fact that the dependence of the equations of motion on
βy is weak. Discerning whether the system is stable or not in
such regime would likely require us to refine the treatment
of the problem, including previously disregarded terms in
the Hamiltonian. This, however, lies beyond the scope of the
present work, as such uncertain stability regimes are seldom
encountered in the parameter space.

Regardless of the cooling axis, all the steady-state oc-
cupation curves in Fig. 11 follow a general trend, reaching
a minimum at κ ′ ≈ |g′

j |. This behavior can be explained
from our equations of motion in the low-pressure limit γ �
�′

j, κ
′, |g′

j |, where, assuming only one motional axis is cou-
pled to the cavity, its steady-state occupation along the chosen

direction can be analytically calculated as

〈b̂†
j b̂ j〉ss = A − B + C

4|g|2δκ�[4|g|2δ − (δ2 + κ2)�]
, (95)

where

A = 2|g|4δ[δ2κ + κ3 + 4δ�(� − κ ) + 2κ�2], (96)

B = ��(δ2 + κ2)[κ2 + (δ − �)2][κ2 + (δ + �)2], (97)

C = |g|2{−κ�(δ2 + κ2)[κ2 + (δ − �)2]

+ 2�δ[2�4 + �2(3κ2 − 5δ2) + (δ2 + κ2)2]}, (98)

and we use the simplified notation g ≡ |g j |, δ ≡ δ′, � ≡ � j ,
κ ≡ κ ′, and � ≡ �′

j . Assuming the cavity is tuned at δ = �,
we can find three simple limits for the above expression:

〈n̂ j〉ss ≈

⎧⎪⎨
⎪⎩

� j/κ
′ for κ ′ � |g′

j | � �′
j

2� j/κ
′ for κ ′ ≈ |g′

j | � �′
j

κ ′� j/|g′
j |2 for |g′

j | � κ ′ � �′
j .

(99)

The above limits are easily understood as the ratio between
the heating rate and a cooling rate, the latter of which depends
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(a)

(b)

(c)

FIG. 11. Steady-state phonon occupation as a function of cavity
linewidth. For each curve in (a) and (b), we take the parameters of
Fig. 10 and the tweezer power that minimizes � j . The open circles
mark the linewidths below which the system becomes dynamically
unstable. (c) For the Z axis we set Pt = 3 W and φ = 60◦. The shaded
region indicates the potentially unstable regime (see the text).

on two factors: on the one hand, the ability of the NP to
scatter photons inside the cavity |g′

j |, and on the other hand,
the ability of the cavity to dissipate such photons κ ′. For
κ ′ � |g′

j |, the cooling power is limited by the small cavity
loss, which is not enough to efficiently reduce the cavity occu-
pation. This results in the increase in steady-state occupation
at low κ ′ observed in Fig. 11. In the opposite limit κ ′ �
|g′

j |, the cooling rate is given by |g′
j |2/κ ′, which coincides

with the rate obtained through adiabatic elimination [67]. In
this case, the cooling efficiency is limited by the low value
of the optomechanical coupling and, for the system under
study, ground-state cooling becomes ultimately inefficient as
κ ′ increases. Finally, in the intermediate regime κ ′ ≈ |g′

j |
the cooling is optimized, as the rate at which photons are
scattered into the cavity is equal to the rate at which they
are lost through the cavity mirrors. This explains the optimal
values of κ ′ found in Fig. 11 and gives an order-of-magnitude
theoretical estimation for the lowest achievable occupations,
namely, 〈n̂x, n̂y, n̂z〉 ≈ 2� j/|g′

j | = {0.02, 0.02, 0.2}.
So far, we have demonstrated ground-state cooling along

each of the three motional axes, in order to have a deeper

(a)

(b)

FIG. 12. Steady-state phonon occupation along the three mo-
tional axes as a function of cavity linewidth, for [S(d )

j j ]1/2 =
10−16 m/Hz−1/2 and � = π/4. (a) Ground-state cooling along the
X -Y plane, at {Pt , δ

′, φ} = {75 mW,�′
y, 65◦}. (b) Ground-state cool-

ing along the Z axis, at {Pt , δ
′, φ} = {3 W, �′

z, 60◦}. Unspecified
parameters are taken as in previous figures. As a guide, the black hor-
izontal lines indicate the occupations corresponding to Tj = 10 μK
along (a) the Z axis and (b) the X and Y axes.

understanding of the underlying physics and relevant parame-
ters. However, the results obtained above (e.g., in Fig. 11) are
ill-suited from an experimental point of view, as the motion
along the remaining two axes is either in an unfavorable
regime for cooling or even completely uncoupled from the
cavity. As a result, the occupations along these two axes usu-
ally remain at their room temperature values and in some cases
drastically increase as the system is close to a dynamically
unstable regime. From a practical perspective, it is convenient
to find a configuration in which one of the motional axis
is cooled to the ground state while the remaining two are
cooled at least below ∼1 K such that their motion does not
probe the nonlinearity of the trapping potential. This can be
achieved by taking our results in Fig. 11 as a starting point in
parameter space and modifying the angles {�,φ} in order to
couple the remaining axes to the cavity. As shown in Fig. 12,
this method leads to regimes in which near-to-ground-state
cooling is attained along the three axes. Note that the X and
Y motional directions can be simultaneously cooled to the
ground state [Fig. 12(a)]. In both Figs. 12(a) and 12(b) the
axes that do not reach the ground state are cooled below
10 μK. These results show that ground-state cooling along
each of the motional directions is experimentally feasible.

All the results in this section highlight the relevance of
isolation from trap displacement noise for reaching the ground
state and provide strict bounds for the displacement noise level
above which ground-state cooling becomes impossible. How-
ever, note that reducing the trap displacement noise might not
be sufficient for reaching the ground state, as the system might
be subject to some additional heating sources that, similar to
the trap displacement, have no effect on the motional PSD.
Thus, a proper identification and suppression of the relevant
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heating sources in a given experimental setup is crucial for
ground-state cooling.

VI. CONCLUSION

In this work we have developed a theoretical model for the
c.m. cooling of a levitated NP via coherent scattering into
a cavity. We have done so by, first, obtaining a quadratic
Hamiltonian for the NP and the electromagnetic field and,
second, by tracing out the free field to obtain a master equation
for the cavity and c.m. degrees of freedom. Heating due to gas
pressure and trap displacement has been included. Our model
has been shown to reproduce recent experimental observations
and is thus revealed as a useful tool for levitodynamics.

We have also used our model to study the possibility of
ground-state cooling of a levitated NP. The relevance of the
heating due to trap displacement, which is often ignored,
has been emphasized and evidences the necessity of isolation

in order to reach the ground state. Our model demonstrates
the potential of current experimental setups to reach the
mechanical ground state of the c.m. motion of a NP. The
requirements for ground-state cooling given in this paper
could bring about the quantum regime of levitodynamics,
where the full quantum theory we have developed represents
a necessary and powerful theoretical tool.
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APPENDIX A: CALCULATION OF DISPLACEMENTS

In this Appendix we find the equations for the coefficients αk, β j , αc, and α0(ω) and solve them. We start by substituting the
displaced operators (59)–(62) into the Hamiltonian (55). The transformed Hamiltonian reads Ĥ0 + �Ĥ , where Ĥ0 contains no
displacements:

Ĥ0/h̄ ≈ ĉ†ĉ(δ̃ − 2gcxβx − 2gcyβy) +
∑
kε

�kâ†
kâk +

∑
j

� j b̂
†
j b̂ j − ĉ†ĉ[gcx(b̂†

x + b̂x ) + gcy(b̂†
y + b̂y)]

− G

2
(ĉ† + ĉ)kc(sin �x0b̂†

x + cos �y0b̂†
y + H.c.) sin φ + i

G

2
(ĉ† − ĉ)k0z0(b̂†

z + b̂z ) cos φ

−
∑
kε

G0(k)

2
i(âk − â†

k )

⎡
⎣−k0z0(b̂†

z + b̂z ) +
∑

j

k jr0 j (b̂
†
j + b̂ j )

⎤
⎦ −

∑
kε

G(k) cos φ(ĉâ†
k + ĉ†âk )

− (αcĉ† + α∗
c ĉ)[gcx(b̂†

x + b̂x ) + gcy(b̂†
y + b̂y)] +

∑
ω

�0(ω)â†
0(ω)â0(ω) + i

∑
ω

γ0(ω)[â0(ω)ĉ† − H.c.]. (A1)

The nonquadratic term in the first line of this equation, ∼ĉ†ĉ(b̂ j + H.c.), can be safely neglected, since in the displaced frame
the cavity is in the vacuum state and thus the contribution of this term is of order gc j ∼ 2π × 1 Hz. On the other hand, �Ĥ
contains all the single-operator terms:

�Ĥ/h̄ ≈ δ̃ĉ†αc +
∑
kε

�kâ†
kαk +

∑
j

� j b̂
†
jβ j −

∑
kε

G(k) cos φ(αcâ†
k + ĉ†αk ) − G

2
ĉ† cos φ −

∑
kε

G0(k)

2
â†

k

− G

2
(α∗

c + αc)kc(sin �x0b̂†
x + cos �y0b̂†

y ) sin φ + i
G

2
(α∗

c − αc)k0z0b̂†
z cos φ

− G

2
ĉ†kc[sin �x0(β∗

x + βx ) + cos �y0(β∗
y + βy)] sin φ + i

G

2
ĉ†k0z0(β∗

z + βz ) cos φ

+
∑
kε

G0(k)

2
iâ†

k

[
− k0z0(β∗

z + βz ) +
∑

j

k jr0 j (β
∗
j + β j )

]
− 2γ ĉ†(gcxβx + gcyβy) − |αc|2(gcxb̂†

x + gcyb̂†
y )

−
∑
kε

G0(k)

2
i(αk − α∗

k )

⎛
⎝−k0z0b̂†

z +
∑

j

k jr0 j b̂
†
j

⎞
⎠ +

∑
ω

[â†
0(ω)[�0(ω)α0(ω) − iαcγ0(ω)] + iγ0(ω)α0(ω)ĉ†] + H.c.

(A2)
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We can now make �Ĥ = 0 by setting the coefficients of each creation operator to zero, obtaining the system of equations

�xβx − sin φ sin �(kcx0)
G

2
(αc + α∗

c ) −
∑

k

G0(k)

2
i(αk − α∗

k )kxx0 − gcx|αc|2 = 0, (A3)

�yβy − sin φ cos �(kcy0)
G

2
(αc + α∗

c ) −
∑

k

G0(k)

2
i(αk − α∗

k )kyy0 − gcy|αc|2 = 0, (A4)

�zβz + cos φ(k0z0)
G

2
i(α∗

c − αc) −
∑

k

G0(k)

2
i(αk − α∗

k )(kz − k0)z0 = 0, (A5)

(δ̃ − 2gcxβx − 2gcyβy)αc − G

2
cos φ + i

∫
dω

γ0(ω)

2π
α0(ω) − G sin φ sin �(kcx0)βx − G sin φ cos �(kcy0)βy

+ iG(k0z0) cos φβz − cos φ
∑

k

αkG(k) = 0, (A6)

∑
k

{
iG0(k)[kxx0βx + kyy0βy + (kz − k0)z0βz] + �kαk − G0(k)

2
− cos φαcG(k)

}
= 0, (A7)∫

dω

[
�0(ω)α0(ω) − iαc

γ0(ω)

2π

]
= 0, (A8)

where we have used the fact that the coefficients β j can be chosen real without loss of generality. For convenience, we have also
extended the sum over ω to an integral, by taking

∑
ω → (2π )−1

∫
dω and redefining �0 as �0/2π . From Eqs. (A7) and (A8)

we immediately obtain [35]

αk =
{

− iG0(k)[kxx0βx + kyy0βy + (kz − k0)z0βz] + G0(k)

2
+ cos φG(k)αc

}
P

1

�k
, (A9)

α0(ω) = −αcγ0(ω0)

2
δ(�0) − iαc

γ0(ω)

2π
P

1

�0(ω)
, (A10)

where P stands for the Cauchy principal value. We now introduce the above results into Eq. (A6) to solve for αc. In the process,
we must calculate two integrals. The first one is given by

i
∫

dω
γ0(ω)

2π
α0(ω) = −iπαc

(
γ0(ω0)

2π

)2

+ αc

4π2
P
∫

dω γ 2
0 (ω)

1

�0(ω)
. (A11)

The principal value integral above can be carried out by using the fact that γ0(ω) ≈ 2π
√

κ/π on a broad range of frequencies.
After changing variables from ω to ω − ω0, we can approximate the second term of the above equation by

αcκ

π
P
∫ ∞

−ω0

dω
1

ω
≈ αcκ

π
P
∫ ∞

−∞
dω

1

ω
= 0. (A12)

The second integral to calculate is given by∑
kε

G(k)αk = V
(2π )3

∑
ε

∫
d�k

∫
dk k2α(k), (A13)

where we have transformed the sum into an integral
∑

εk → ∑
ε V/(2π )3

∫
d�k

∫
dk k2, �k being the solid angle in wave-vector

space. Using the closure relation of the polarization vectors∑
ε

(εk · e1)(εk · e2) = e1 · e2 −
∑

i j

kik j

k2
e1ie2 j, (A14)

we can perform explicitly all the angular integrals above and solve for the coefficient αc as

αc = 1

δ̃ − iκ − 2gcxβx − 2gcyβy − � cos2 φ
[Pxy + i(k0z0) cos φβz(−G +

√
2�η)], (A15)

where we have defined for compactness

Pxy = G

2
cos φ + �η cos φ√

2
+ G sin φ(kcx0βx sin � + kcy0βy cos �), (A16)

� ≡ ε2
cV 2

12π2

ωc

Vc
P
∫ Kc

0
dkk3 1

k − k0
, (A17)

η = cos �

√
ε0VcE2

0

h̄ωc
. (A18)
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In Eq. (A17), we have introduced a high-energy cutoff Kc to prevent the integral from diverging. Physically, this cutoff restricts
the integration domain to values of k for which the long-wavelength approximation (and thus our model) remains valid. In our
calculations we choose Kc = 0.1/R.

The last step is to introduce Eqs. (A10), (A9), and (A15) into the three equations for the coefficients β j . In the same fashion
as above, we first calculate the sums

∑
kε

G0(k)

2
i(αk − α∗

k )

⎡
⎢⎣

kxx0

kyy0

(kz − k0)z0

⎤
⎥⎦ = �2

⎡
⎢⎣

(k0x0)2βx

2(k0y0)2βy

2(k0z0)2βz

⎤
⎥⎦ + Im(αc)k0z0 cos φ

⎡
⎢⎣

0

0

2η�

⎤
⎥⎦, (A19)

where we define

�2 =
(

εcV E0

π

)2
ε0

30h̄k2
0

P
∫ Kc

0
dk

k5

k − k0
. (A20)

The resulting system of equations for β j can be further simplified. Indeed, since the expression for αc is linear in βz, we can
express this coefficient in terms of βx and βy as

βz = k0z0 cos φPxyκ

[
κ2 + Q2

xy

�η − G/2
[�z − 2�2(k0z0)2] − Qxy(

√
2�η − G)(k0z0)2 cos2 φ

]−1

, (A21)

where we define

Qxy = δ̃ − � cos2 φ − 2gcxβx − 2gcyβy. (A22)

Introducing all the above identities into the equations for βx and βy, we obtain the system of equations

(
κ2 + Q2

xy

)
[�x − �2(k0x0)2]βx = G

2
sin φ sin �kcx0

[
PxyQxy − κ (k0z0) cos φ(

√
2η� − G)βz

]
+ gcx

[
P2

xy + βz(k0z0)2 cos2 φ(
√

2η� − G)2
]
, (A23)

(
κ2 + Q2

xy

)
[�y − 2�2(k0y0)2]βy = G

2
sin φ cos �kcy0

[
PxyQxy − κ (k0z0) cos φ(

√
2η� − G)βz

]
+ gcy

[
P2

xy + βz(k0z0)2 cos2 φ(
√

2η� − G)2
]
. (A24)

Both of these equations are polynomial equations of degree 5 in the variables βx and βy. However, they can be reduced by
introducing the explicit expressions for gcx and gcy [Eqs. (34) and (35)]. This allows us to take the ratio of both equations and
show that, for � �= π/2, the two variables are easily related through

βx =
√

�y

�x
tan �

�y − 2�2(k0y0)2

�x − �2(k0x0)2
βy. (A25)

After introducing this solution into either Eq. (A23) or (A24), we find a fifth-degree polynomial equation for the remaining
coefficient βy, which has to be solved numerically. Note that imaginary solutions for such a polynomial equation are disregarded
as βy ∈ R by assumption. This univocally determines βy since in the stable regions the polynomial usually has a single real
solution. After numerically obtaining βy, the remaining coefficients can be easily computed using Eqs. (A9), (A10), (A15),
(A21), and (A25).

APPENDIX B: TRACING OUT THE CONTINUUM
RESERVOIRS

Our starting point in this section is Eq. (76) and more
specifically the second term

D ≡ − 1

h̄2 TrR

∫ ∞

0
ds[V̂ (t ), [V̂ (s), μ̂(t ) ⊗ ρ̂R]]. (B1)

As mentioned in the main text, the interaction potential con-
tains three terms, resulting in nine independent contributions
for the above commutator. However, these interaction terms
correspond to two reservoirs considered independent and
therefore, in a thermal state, the cross terms between them

will vanish after tracing,

TrR(V̂AV̂B1ρ̂R) = TrR(V̂AV̂B2ρ̂R) = 0. (B2)

We thus reduce the problem to calculating four independent
dissipators

DA = − 1

h̄2 TrR

∫ ∞

0
ds[V̂A(t ), [V̂A(s), μ̂(t ) ⊗ ρ̂R]], (B3)

DB1 ≡ − 1

h̄2 TrR

∫ ∞

0
ds[V̂B1(t ), [V̂B1(s), μ̂(t ) ⊗ ρ̂R]], (B4)

DB2 ≡ − 1

h̄2 TrR

∫ ∞

0
ds[V̂B2(t ), [V̂B2(s), μ̂(t ) ⊗ ρ̂R]], (B5)
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DB12 ≡ − 1

h̄2 TrR

∫ ∞

0
ds[V̂B1(t ), [V̂B2(s), μ̂(t ) ⊗ ρ̂R]]

− 1

h̄2 TrR

∫ ∞

0
ds[V̂B2(t ), [V̂B1(s), μ̂(t ) ⊗ ρ̂R]]. (B6)

Let us illustrate the calculation for the cavity dissipa-
tion given by DA. The potential in the interaction picture is
given by

V̂A(t ) = i
∫

dω
γ0(ω)

2π
[â0(ω)ĉ†ei(δ0−�0 )t − H.c.], (B7)

where for simplicity we have defined

δ0 ≡ δ̃ − 2gcxβx − 2gcyβy (B8)

and we have taken the continuum limit as detailed in
Appendix A. We now introduce this potential into Eq. (B3)
and take the trace over the bath modes explicitly. In order to
do so, we note that in a thermal state,

TrB[â0(ω)â0(ω′)ρ̂R] = TrB[â†
0(ω)â†

0(ω′)ρ̂R] = 0, (B9)

TrB[â†
0(ω)â0(ω′)ρ̂R] = TrB[â0(ω)â†

0(ω′)ρ̂R] − 1

= δ(ω − ω′)n̄ω, (B10)

where n̄ω is the mean occupation of the bath at frequency ω,
given by the Bose distribution. After tracing out we obtain

DA = −
∫ ∞

0
ds

∫ ∞

0
dω

(
γ0(ω)

2π

)2

[(n̄ω + 1)Aĉ†,ĉ(δ0 − �0)

+ n̄ωAĉ,ĉ† (−δ0 + �0)], (B11)

with

Aâ,b̂(φ) = âb̂μeiφ + μâb̂e−iφ − 2âμb̂ cos φ. (B12)

We now perform the integral in s by using the identity∫ ∞

0
ds e±isA = πδ(A) ± i P

1

A
, (B13)

obtaining

DA = 2κ{(n̄ω0+δ0 + 1)Dĉ[μ] + n̄ω0+δ0Dĉ† [μ]}

− 2i[ĉ†ĉ, μ]P
∫ ∞

0
dω

γ 2
0 (ω)

4π2
n̄ω

1

δ0 + ω0 − ω
, (B14)

in terms of the Lindblad dissipator [52,56]

Dâ[μ̂] = âμ̂â† − 1
2 {â†â, μ̂}, (B15)

where the curly brackets denote the anticommutator. To obtain
the result (B14), we have used the same approximations used
for Eqs. (A11) and (A12). In order to estimate the Lamb shift
of the cavity in Eq. (B14), we assume that, like most physical
spectral densities, the coupling γ satisfies γ (ω) ≈ 0 at low
frequencies. Then, in the integration, the only relevant contri-
bution will arise from frequencies close to ω = δ0 + ω0 ≈ ω0.
In this interval, we can approximate n̄ω ≈ exp(−h̄ω0/kBT )
since exp(h̄ω0/kBT ) � 1. Also making use of the identity

γ (ω0) = 2π
√

κ/π , we find after changing variables

2 P
∫ ∞

0
dω

γ 2
0 (ω)

4π2
n̄ω

1

δ0 + ω0 − ω
≈ 2κ

π
e−u0 P

∫ ∞

−u0

dy e−y 1

y
,

(B16)

with u0 = h̄(ω0 + δ0)/kBT � 1. The integral above is named
the exponential integral [68] Ei(u0), and its asymptotic expan-
sion for u0 � 1 is Ei(u0) ≈ eu0 [u−1

0 + O(u−2
0 )]. This identity

allows us to approximate in this limit

2 P
∫ ∞

0
dω

γ 2
0 (ω)

4π2
n̄ω

1

δ0 + ω0 − ω
≈ 2κ

π

kBT

h̄ω0
≡ �A, (B17)

where we have assumed ω0 � δ0, as is usual in cavity cooling
experiments. Using this result, and noting again that, since the
occupation of the environment at the frequency of the tweezer
is negligible, i.e., exp(h̄ω0/kBT ) � 1, we can finally write the
dissipator DA in Eq. (B14) as

DA[μ̂] ≈ 2κDĉ[μ̂] − i[�Aĉ†ĉ, μ̂]. (B18)

The above dissipator contains a frequency shift of the cavity
and a Lindblad-type dissipation, which adds an exponential
decay of the cavity photon occupation at rate 2κ . Note that this
frequency shift is not measurable independently or, in other
words, a measurement of the frequency of the cavity in the
absence of the NP would yield ωc + �A, this being the true
frequency of the bare cavity.

The remaining contributions are calculated in the same
fashion. First, the contribution DB1 can be shown to have a
form similar to Eq. (B18), as the operator V̂B1 also couples the
cavity modes to the free EM field. This results again in both
a frequency shift of the cavity and a Lindblad dissipation, this
time induced by the presence of the NP,

DB1[μ̂] = −i[�B1ĉ†ĉ, μ̂] + 2κB1Dĉ[μ̂] + 2κ ′
B1Dĉ† [μ̂],

(B19)

where

�B1 =
∑
kε

|gεk|2
(
2n̄ωk + 1

)
P

1

δ0 − �k
, (B20)

κB1 = π
∑
kε

|gεk|2
(
n̄ωk + 1

)
δ(δ0 − �k ), (B21)

κ ′
B1 = π

∑
kε

|gεk|2n̄ωkδ(δ0 − �k ). (B22)

By substituting above the expression for the couplings (71)
and transforming the sum into an integral, we can determine
the above coefficients as

�B1 = −
(

εcV cos φ

2π

)2
ωc

3Vcc3
P
∫ cKc

0
dω(2n̄ω + 1)

× ω3

ω − (ω0 + δ0)
, (B23)

κB1 =
(

εcV cos φ

2π

)2
πωc

3Vc

(
ω0 + δ′

c

)3(
n̄ω0+δ0 + 1

)
, (B24)

κ ′
B1 = κB1

n̄ω0+δ0

n̄ω0+δ0 + 1
. (B25)
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For the usual parameter values [43], n̄ω0+δ0 ∼ 10−13 and
κB1 ≈ 2π × 100 cos2 φ Hz, which allows us to neglect κ ′

B1
and express

κB1 ≈
(

εcV cos φ

2π

)2
πωc

3Vc

(
ω0 + δ0

c

)3

. (B26)

The final contribution DB1 thus reads

DB1[μ̂] = −i[�B1ĉ†ĉ, μ̂] + 2κB1Dĉ[μ̂]. (B27)

Regarding the contribution DB2, its calculation involves
the approximation that both the coupling rates gjεk and the
occupation numbers n̄ω are smooth enough functions to ap-
proximate their values at ω0 ± � j by their values at ω0. This
approximation is extremely good in the regime � j � ω0 and
has been checked numerically to be accurate up to eight digits
in the final dissipation rates, for the parameters in Ref. [43].
By further neglecting the terms n̄ω0 ≈ 0 as done above, the
resulting contribution reads

DB2[μ̂] = −i
∑

j j′
� j j′ [q̂ j q̂ j′ , μ̂] −

∑
j

� j j[q̂ j, [q̂ j, μ̂]]

−
∑
j �= j′

� j j′ (2q̂ jμ̂q̂ j′ − {q̂ j q̂ j′ , μ̂}), (B28)

with q̂ j ≡ b̂†
j + b̂ j , dissipation rates

� j j′ = π
∑
kε

(n̄ωk + 1)δ(�k )g∗
jεkg j′εk, (B29)

and frequency shifts

� j j′ = −
∑
kε

(n̄ωk + 1)P
1

�k
g∗

jεkg j′εk. (B30)

Although Eq. (B28) has an apparent off-diagonal structure, by
explicitly performing the angular integrals in the above rates
we find that

� j j′ ,� j j′ ∝ δ j j′ . (B31)

Thus, we might write the contribution DB2 in the more com-
pact way

DB2[μ̂] = −i
∑

j

� j[q̂ j q̂ j′ , μ̂] −
∑

j

�
(r)
j [q̂ j, [q̂ j, μ̂]],

(B32)

which includes a frequency shift of the c.m. oscillations and
a dissipation of the Brownian Motion form [52] which we
identify with the photon recoil heating and thus label with the
superscript (r). This kind of noise, different from the Lindblad
dissipation appearing in DA and DB1, induces heating without
modifying the rate at which the c.m. occupations decay. The
recoil heating rates are given by⎡

⎢⎣
�(r)

x

�(r)
y

�(r)
z

⎤
⎥⎦ = πε0

30h̄

(
εcV E0

2π

)2

k5
0

⎡
⎢⎣

x2
0

2y2
0

7z2
0

⎤
⎥⎦ (B33)

and as expected are larger for the motion along the tweezer
axis. The frequency shifts, on the other hand, read⎡

⎢⎣
�x

�y

�z

⎤
⎥⎦ = ε0

30h̄c5

(
εcV E0

2π

)2

× P
∫ cKc

0
dω

ω3

ω0 − ω

⎡
⎢⎣

ω2x2
0

2ω2y2
0(

2ω2 + 5ω2
0

)
z2

0

⎤
⎥⎦. (B34)

Finally, let us focus on the contribution DB12. Under the
same approximations undertaken above, this term can be
shown to be

DB12[μ̂] = −i
∑

j

[g̃ j ĉ
†q̂ j + H.c., μ̂]

+
∑

j

[ϒ j (2q̂ jμ̂ĉ† − {ĉ†q̂ j, μ̂}) + H.c.], (B35)

i.e., it contains a dissipative interaction between the c.m. and
cavity, with rate

ϒ j = π
∑
kε

gεkg jεkδ(�k ) = iωcC0 cos φ cos �δ jz, (B36)

and a coherent interaction at rate

g̃ j = −
∑
kε

gεkg jεkP
1

�k

= iωcC0 cos φ cos �δ jz
1

πk3
0

P
∫ Kc

0
dk

k3

k0 − k
, (B37)

where we have defined the adimensional constant

C0 = ε2
c

12π
(k0z0)(V k3

0 )

√
V

Vc

ε0V E2
0

2h̄ωc
. (B38)

The contribution DB12 is therefore simplified to

DB12[μ̂] = −i[g̃zĉ
†q̂z + H.c., μ̂]

+ [ϒz(2q̂zμ̂ĉ† − {ĉ†q̂z, μ̂}) + H.c.]. (B39)

For typical experimental values [43], C0 ≈ 10−13 so ϒ ∼
2π × 100 Hz.

After combining all the terms of this Appendix into the
von Neumann equation (76) and transforming back into the
Schrödinger picture, we find that we can regroup all the terms
into the equation

μ̇ = −i[ĤS + �Ĥ , μ̂] + D[μ̂]. (B40)

The coherent part �Ĥ contains all the coherent interactions
and frequency renormalizations

�Ĥ = (�A + �B1)ĉ†ĉ + g̃zĉ
†(b̂z + b̂†

z ) +
∑

j

� j (b̂ j + b̂†
j )

2.

(B41)

The first two terms in this equation can be reabsorbed into the
frequencies and the couplings of ĤS , i.e., we define

δ′ ≡ δ0 + �A + �B1, (B42)

gt j = g j + g̃zδ jz. (B43)
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For the third term, we can do the same by redefining the
phonon operators, i.e., we extract from ĤS the Hamiltonian
of the oscillators and add it up to this term, writing

h̄
∑

j

[� j b̂
†
j b̂ j + � j (b̂ j + b̂†

j )
2]

=
∑

j

[
P̂2

j

2m
+ 1

2
m�2

j

(
1 + 4� j

� j

)
R̂2

j

]

=
∑

j

�′
j
ˆ̃b†

j
ˆ̃b j . (B44)

From this equation we can see that this term results in a renor-
malization of the c.m. oscillator frequencies, which now read

�′
j = � j

√
1 + 4� j

� j
. (B45)

We have also defined new bosonic operators ˆ̃b j relative
to this frequency, so the physical meaning of the position
and momentum operators remains unchanged. In terms of
these operators, every time a term b̂†

j + b̂ j appears in the
Hamiltonian, an extra multiplying factor

χ j =
√

� j

�′
j

=
(

1 + 4� j

� j

)−1/4

(B46)

must be added. This substitution allows us to write the full
coherent part as

Ĥs + �Ĥ = δ′ĉ†ĉ +
∑

j

�′
j
ˆ̃b†

j
ˆ̃b j +

∑
j

g′
j ĉ

†( ˆ̃b†
j + ˆ̃b j ) + H.c.,

(B47)

where g′
j ≡ gt jχ j and we have explicitly written the

expression for V̂0. In the main text, we removed the tildes
from the operators in order to simplify the notation.

Regarding the dissipators in Eq. (B40), we can write
them as

D[μ̂] = 2κ ′Dĉ[μ̂] + [ϒ(2q̂zμ̂ĉ† − {ĉ†q̂z, μ̂}) + H.c.]

−
∑

j

�
(r)
j [ ˆ̃b†

j + ˆ̃b j, [ ˆ̃b†
j + ˆ̃b j, μ̂]], (B48)

where we have defined κ ′ ≡ κ + κB1, ϒ = ϒzχz, and the
recoil heating �

(r)
j ≡ � jχ

2
j . Again, in the main text we re-

moved the tildes from the operators to obtain the master
equation (77).

APPENDIX C: EQUATIONS OF MOTION AND
MOTIONAL PSD

In this Appendix we detail how to solve the equation of
motion (88) for the compound cavity-c.m. system

μ̇ = − i

h̄
[Ĥ ′

S, μ̂(t )] + D′[μ̂], (C1)

where Ĥ ′
S is given by Eq. (78) and the dissipator reads

D′[μ̂] = 2κ ′
[

ĉμ̂ĉ† − 1

2
{ĉ†ĉ, μ̂}

]
−

∑
j

� j[q̂ j, [q̂ j, μ̂]]

+ γ

4

∑
j

[q̂ j, { p̂ j, μ̂}]. (C2)

Here we have neglected the incoherent interaction propor-
tional to ϒ since, in the cases we consider in the main text, it is
negligible. Otherwise, including this term is straightforward.
In principle, one could aim at solving Eq. (C2) for the full
density matrix μ, but this is not necessary in the present case.
Indeed, we note that the above master equation is quadratic,
i.e., it only contains quadratic combinations of creation and
annihilation operators. This property implies that the Gaussian
character of any initial state is preserved, i.e., if the initial state
is Gaussian, any system observable will be determined exclu-
sively by the first- and second-order momenta (〈ĉ〉, 〈ĉ†〉, . . .
and 〈ĉ†ĉ〉, 〈ĉ2〉, . . ., respectively) at all times [52]. We thus
can derive a closed system of differential equations containing
only the expected values of single creation and annihilation
operators and their quadratic combinations.

In order to obtain the desired system of equations, we start
by determining the time evolution of the expected value for a
general operator Ô in the Schrödinger picture, given by

d

dt
〈Ô〉 = d

dt
Tr[Ôμ] = Tr[Ôμ̇]. (C3)

Introducing Eq. (C1) and using the cyclic invariance of the
trace, we can write

d

dt
〈Ô〉 = i〈[Ĥ ′

S, Ô]〉 + 2κ ′〈[c†Ôc − {c†c, Ô/2}]〉

−
∑

j

� j〈[q̂ j, [q̂ j, Ô]]〉 − γ

4

∑
j

〈{ p̂ j, [q̂ j, Ô]}〉.

(C4)

This relation allows us to substitute any operator Ô and get its
equation of motion, by using the fundamental commutation
relations [c, c†] = 1 and [bi, b†

j] = δi j . In this way, we obtain
two independent systems of equations, namely, one for the
single-operator expected values and a second for the quadratic
combinations. The first one is given by the equations

d

dt
〈c〉 = (−iδ′ − κ ′)〈c〉 − i

∑
j

g′
j〈b†

j + b j〉, (C5)

d

dt
〈bk〉 = (−i�′

k −γ /2)〈bk〉 − ig′
k〈c†〉 − ig∗

k
′〈c〉 + (γ /2)〈b†

k〉
(C6)

and their Hermitian conjugates, which together form an 8 × 8
system of equations. Note that all the expected values de-
cay with time and, since there is no independent term for
these equations, the steady-state value of the single-operator
expected values will be zero. On the other hand, the second
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system of equations is given by

d

dt
〈c†c〉 = −2κ ′〈c†c〉 +

⎛
⎝i

∑
j

g∗
j
′〈(b†

j + b j )c〉 + c.c.

⎞
⎠,

(C7)

d

dt
〈cc〉 = (−2iδ′ − 2κ ′)〈cc〉 − 2i

∑
j

g′
j〈(b†

j + b j )c〉, (C8)

d

dt
〈b†

kbl〉 = −i(�′
l − �′

k )〈b†
kbl〉 + 2�kδkl − ig′

l〈b†
kc†〉

− ig∗
l
′〈b†

kc〉 + ig′
k〈blc

†〉 + ig∗
k
′〈blc〉

+ (γ /2)(pl b
†
k − pkbl ), (C9)

d

dt
〈bkbl〉 = −i(�′

l + �′
k )〈bkbl〉 − 2�kδkl − ig′

l〈bkc†〉
− ig∗

l
′〈bkc〉 − ig′

k〈blc
†〉 − ig∗

k
′〈blc〉

+ (γ /2)(pl bk + pkbl + δkl ), (C10)

d

dt
〈bkc†〉 = [−i(�′

k − δ′) − κ ′ − γ /2]〈bkc†〉 + (γ /2)〈b†
kc†〉

− ig′
k〈c†c†〉 − ig∗

k
′〈c†c〉 + i

∑
j

g∗
j
′〈(b†

j + b j )bk〉,

(C11)

d

dt
〈bkc〉 = [−i(�′

k + δ′) − κ ′ − γ /2]〈bkc〉 + γ /2〈b†
kc〉

− ig∗
k
′〈cc〉 − ig′

k〈cc†〉 − i
∑

j

g′
j〈(b†

j + b j )bk〉

(C12)

and their Hermitian conjugates (here c.c. stands for complex
conjugate). This second system contains 36 equations and has
to be solved numerically.

The above equations of motion allow us to calculate the
power spectral density of the c.m. motion, defined as

S j j (ω) = 1

2π

∫ ∞

−∞
dτ 〈x̂ j (t + τ )x̂ j (t )〉sse

iωτ

= r2
0 j

2π

∫ ∞

−∞
dτ 〈q̂ j (t + τ )q̂ j (t )〉sse

iωτ , (C13)

where ss refers to the steady state. In order to calculate the
above PSD, we first split the integral into two parts and use the
time-translation invariance of the steady state, i.e., 〈Â(t )B̂(t +
τ )〉ss = 〈Â(t − τ )B̂(t )〉ss, to write in more convenient notation

S j j (ω) = S+
j j (ω) + S−

j j (ω), (C14)

with S−
j j (ω) = [S+

j j (ω)]∗ and

S+
j j (ω) = r2

0 j

2π

∫ ∞

0
dτ eiωτ [〈b̂ j (t )b̂ j (t + τ )〉ss

+〈b̂ j (t )b̂†
j (t + τ )〉ss + 〈b̂†

j (t )b̂ j (t + τ )〉ss

+〈b̂†
j (t )b̂†

j (t + τ )〉ss]. (C15)

Expressed in this form, the PSD can be calculated directly
by applying the quantum regression theorem. We start by
defining the vector containing the single operators of our
equation of motion

v̂ ≡ (ĉ, ĉ†, b̂x, b̂†
x, b̂y, b̂†

y, b̂z, b̂†
z ), (C16)

whose expected value is governed by the matrix equation

d

dt
〈v̂(t )〉 = M0〈v̂(t )〉, (C17)

where the matrix M0 can be directly extracted from Eqs. (C5)
and (C6). According to the quantum regression theorem [66],
any two-time correlation function involving a general operator
Â obeys the equation

d

dτ
〈Â(t )v̂(t + τ )〉 = M0〈Â(t )v̂(t + τ )〉, (C18)

which can be easily solved. For the steady-state values appear-
ing in Eq. (C15), we find

〈Â(t )v̂(t + τ )〉ss =
∑

l

c0l (Â)λl e
λl τ , (C19)

where we have defined the eigenvalues and eigenvectors of the
matrix M0,

M0λl = λlλl , (C20)

and the vector of coefficients c0 obeys the equation

�c0(Â) = 〈Âv̂〉ss. (C21)

Here � is the matrix whose columns are the eigenvectors
λ j . Although the PSD has to be calculated numerically, two
important properties can be noted right away. First, from
Eq. (C19) we see that any two-time correlation function can
be written as a sum of exponential functions which, after
integration in τ , yield a sum of Lorentzian profiles. Indeed,
if we define the position of the operators b̂ j and b̂†

j inside the
vector v̂ as p j and p̄ j , respectively, we can easily obtain

S+
j j (ω) = − r2

0 j

2π

∑
l

c0l (q̂ j )
λl · (ep j + ep̄ j )

λl + iω
, (C22)

where the vector el represents the length 8 vector with
components e(k)

l = δlk . From this equation we can conclude
that, in general, the motional PSD will be composed of a
set of Lorentzian peaks centered at ω ∝ ±Imλl and with
a linewidth �ω ∝ Reλl . Furthermore, note that the only
system parameters determining the positions and widths of
the peaks are the entries of the matrix M0 or, equivalently,
the coefficients of Eqs. (C5) and (C6). In these equations, the
position diffusion coefficient � j of the dissipator does not
appear and henceforth these two parameters do not depend
on � j . However, the steady-state values of the two-operator
products do depend on � j , which thus influences the relative
weight of the PSD peaks.
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APPENDIX D: SUMMARY OF SYSTEM PARAMETERS

TABLE III. Summary of the most relevant parameters defined in the main text. The corresponding primed symbols denote the same
parameters after the re-normalization induced by tracing out the free EM modes.

Symbol Physical meaning Definition and related parameters

� j (�′
j ) Bare (renormalized) c.m. motional frequencies Eq. (25) (Eqs. (B45), (B34))

κ (κ ′) Bare (renormalized) c.m. motional frequencies Sec. II, main text (Eqs. (B48) and (B26))
δ′ Renormalized detuning between cavity and tweezer Eq. (B42) (see also Eqs. (52), (56), (B8), (B17), (B23))
β j (αc ) Displacements of the c.m. operators (of the cavity

operators)
Eq. (60) (Eq. (61)) Appendix A

αcgc j Bare OM coupling induced by cavity occupation Eqs. (34) and (35)
G Bare OM coupling induced by photon scattering from

the tweezer into the cavity
Eq. (46)

gj (g′
j ) Total bare (renormalized) optomechanical coupling Eq. (65) (Eq. (B47), see also Eqs. (B43), (B46), and

(B37))
γ Gas pressure damping coefficient Eq. (87)
�

(r)
j / �

(p)
j / �

(d )
j Heating rates associated to photon recoil / gas pressure /

trap displacement noise
Eq. (B33) / Eq. (91) / Eq. (83)

� j Total heating rate Eq. (90)
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