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Gabriel Cáceres-Aravena and Rodrigo A. Vicencio
Departamento de Física and Millennium Institute for Research in Optics (MIRO), Facultad de Ciencias Físicas y Matemáticas,

Universidad de Chile, Santiago, Chile

(Received 1 March 2019; published 2 July 2019)

We can generate the conditions for observing flat bands on initially trivial lattices by, for example, exciting
a given system simultaneously with different orthogonal states. In this work, we demonstrate that a one-
dimensional binary lattice supports always a trivial flat band, which is formed by isolated single-site vertical
dipolar states. These flat-band modes correspond to the highest localized modes for any discrete system, without
the need of any additional mechanism like, e.g., disorder or nonlinearity. By fulfilling a specific relation between
lattice parameters, an extra flat band can be excited as well, with modes composed by fundamental and dipolar
states that occupy only three lattice sites. Additionally, by inspecting the lattice edges, we are able to construct
analytical Shockley surface modes, which can be compact or present staggered or unstaggered tails. We believe
that our proposed model could be a good candidate for observing transport and localization phenomena on a
simple one-dimensional linear photonic lattice.
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I. INTRODUCTION

The propagation of waves in periodical systems are the
natural framework to explore transport and localization phe-
nomena in diverse fields of physics [1–3]. For example, the
first experimental observation of Anderson-like localization
in disordered linear systems [4] was made in 2007, in two-
dimensional (2D) induced photonic lattices [5] and, subse-
quently, in fabricated one-dimensional (1D) waveguide arrays
[6]. More recently, an important theoretical and experimental
interest on flat-band (FB) systems has emerged [7–13], show-
ing interesting localization and transport properties on linear
lattices. The current experimental techniques allow direct and
indirect excitation of flat-band phenomena [14–25], which
is associated with destructive interference on specific lattice
geometries. Specificaly, a Lieb photonic lattice was chosen to
demonstrate, for the first time in any physical system, the exis-
tence of FB localized states [14,15]. A FB lattice geometry al-
lows a precise cancellation of amplitudes outside the FB mode
area, which effectively cancels the transport of energy across
the system. Flat-band systems possess a linear spectrum
where at least one band is completely flat or thin compared
to the next energy gap. This implies the need to have a system
with a unit cell composed of at least two sites and, therefore,
at least two bands [8,26]. In this sense, the existence of flat
bands in simple one-dimensional systems is generally thought
to be physically impossible. However, quasi-1D systems (i.e.,
systems possessing a one-dimensional extension plus some
ramifications away from the main axis) naturally present
unit cells composed of more than one site, becoming good
candidates for this kind of phenomenology [18–20,25,27]. In
general, light propagating in FB lattices will experience zero
or very low diffraction, when exciting some specific sites at
the unit cell, as has been shown experimentally [18,28].

A very interesting feature of flat-band systems is the possi-
bility to construct highly localized eigenmodes by means of a

destructive linear combination of extended linear wave func-
tions [7,29]. These FB states are spatially compact, occupy
only few lattice sites, and rapidly decay to a completely zero
tail as soon as a destructive interference condition is fulfilled
[8]. This is a very remarkable property because FB lattices
naturally generate localized structures in a linear regime,
with a localization length of the order of a single unit cell.
Moreover, as these linear localized modes posses all the same
frequency, they are completely degenerate and any linear com-
bination of them will also be a stable propagating solution.
This can be used to achieve a nondiffractive transmission of
optically codified information [14,16,17,20,21,29,30].

Almost all studies on photonic lattices have considered
single-mode excitation only. This has been reinforced due
to the experimental complexity in the excitation of higher-
order modes on a given lattice system, which has found a
partial solution only by the implementation of a selective
p-band population in cold-atom systems [31,32] and mi-
cropillar arrays [33]. But, optical waveguides can also host
higher order modes, depending on the specific experimental
parameters used to perform the experiment (waveguide arrays
are typically fabricated considering single-mode waveguides
at a given wavelength; however, by reducing this parame-
ter higher-order modes can be excited as well). Their ex-
citation could promote richer dynamics and new interesting
phenomena, as has been suggested for cold atoms loaded
in optical potentials [34–37]. However, a precise excitation
of dipolar states became possible very recently in optical
waveguide lattices by using an image generator setup based
on spatial light modulators [21,38]. There, a well-defined
contrast between the transport of fundamental and dipolar
states was shown clearly. The possibility to experimentally
excite and control higher band excitations, in optical lattice
systems, creates a venue in which the study of remark-
able properties of correlated systems—such as superfluidity,
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superconductivity, organic ferromagnetic, antiferromagnetic
ordering, among others—could become a concrete possibility
[34–37,39].

As is well known, diverse mechanisms have been proposed
over several years to achieve stable energy localization on
a lattice; for example, disorder [5,6], impurities and defects
[40,41], and even nonlinearity [42–44]. However, all these
mechanisms necessarily destroy the periodicity of the system,
which finally has important consequences on the transport of
energy across the lattice. In the present work, we propose
a model for the observation of FB properties. We focus on
a binary 1D lattice, which to our knowledge corresponds to
the simplest physical configuration for studying FB localiza-
tion. We specifically concentrate on proposing a simple—
completely periodic—system which could show the condi-
tions to observe localization and transport of energy on a
linear regime. By exciting a system with different orthogonal
states we effectively increase the dimension of the system
from 1D to quasi-1D, allowing a subsequent increment of the
unit cell. Our model possesses a trivial FB which corresponds
to an effectively isolated dipolar mode. This mode is localized
at a single waveguide corresponding, therefore, to the most
localized FB state. By precisely tuning the model parameters,
we observe that a second FB can be excited as well, with states
occupying only three lattice sites. In addition, we explore edge
localization and find analytical Shockley edge modes with
different decaying properties. At the end, we find an additional
flat band when assuming equal propagation constants on both
orthogonal states.

II. MODEL

We study the propagation of light, in weakly coupled
waveguide arrays, based on a coupled mode approach which
originates from a paraxial wave equation and ends up with
a set of discrete linear Schrödinger-like equations [1,2]. This
approach assumes an evanescent interaction between the
modes of neighboring waveguides, with a coupling coefficient
defined via the superposition integral between both mode
wave functions. Obviously, this interaction is negligible when
waveguides are far away in distance and becomes physically
relevant only when waveguides are close enough. Typical
experiments on laser-written photonic lattices [45] define
a distance of around 20 microns to correctly describe the
system, assuming nearest-neighbor interactions only. In this
work, we model a binary one-dimensional photonic lattice
composed of an alternating configuration of waveguides, as
shown in Fig. 1(a). (Different realizations of binary lattices
have been studied in the context of photonic systems; for ex-
ample, binary lattices with alternating propagation constants
[46,47], alternating coupling coefficients [48], or simultane-
ously both [49].) We assume elliptically oriented waveguides,
which are the standard geometry in laser-written systems
[45], with the propagation coordinate z (dynamical variable)
running perpendicular to the transversal waveguide profile.
Additionally, we consider that each waveguide supports only
two orthogonal modes, the fundamental (s) and the dipolar
(p) ones. In general, a single waveguide possesses always at
least one bound state, which corresponds to the symmetric
s mode [50,51]. However, depending on the experimental

FIG. 1. (a) 1D-binary waveguide array. (b) Coupling interactions
for this model (red represents a positive amplitude while blue a
negative one). (c) Effective ribbon lattice when considering two
modes per waveguide (the shaded area indicates the unit cell).

conditions, it is possible to directly excite higher-order states
as, e.g., p modes [21,38]. For a given waveguide, having a
defined geometry and refractive index contrast, the excitation
wavelength can be tuned experimentally to excite higher-order
states. As different modes have a different spatial configu-
ration, there will be a natural mismatch in their propagation
constants. This implies that βs �= βp [21], where βi is the
longitudinal propagation constant of the i mode at any lattice
waveguide.

The possible interactions between modes at different
neighboring waveguides are depicted in Fig. 1(b). Consider-
ing the symmetry of s and p wave functions, we construct a
general evanescent interaction rule for our binary system: the
coupling between s modes (defined as Vs) is always positive
[52]; the coupling between p modes (Vp) as well as the
coupling between s and vertical p modes (V̄sp) are always zero;
the coupling between vertical s and horizontal p modes (Vsp)
is defined positive when the s mode is at the left-hand side,
if not a minus sign is applied. In general, due to the larger
area occupied by p modes, Vsp > Vs. Having this in mind, we
construct an effective ribbon lattice in Fig. 1(c) and write the
effective dynamical equations as follows:

−i
∂un(z)

∂z
= βsun + Vs(vn + vn−1) + Vsp(wn − wn−1),

−i
∂vn(z)

∂z
= βsvn + Vs(un+1 + un),

−i
∂xn(z)

∂z
= βpxn,

−i
∂wn(z)

∂z
= βpwn − Vsp(un+1 − un). (1)

Here, un and vn (xn and wn) describe the amplitude of fun-
damental (dipolar) modes at the nth unit cell. The alternating
orientation of our 1D binary lattice and the possibility of excit-
ing two modes per waveguide generate a four-state effective
system, which is described by these four coupled equations.
It is important to mention that, in order to have an effective
dynamical interaction between the s and the p modes, �β ≡
βs − βp has to be of the order of Vsp. If not, this detuning
effectively decouples the interaction between these two modes
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and they simply do not interact [21]. �β > 0 for any optical
media where the propagation constants of fundamental modes
are always larger than the ones for excited states [1,21,38].

III. LINEAR SPECTRUM

We solve the linear spectrum of the system by inserting
into (1) a standard plane-wave ansatz [8], of the form

{un, vn, xn,wn}(z) = {A, B,C, D} eiknei(β+βp)z.

With this, we assume that the wave propagation occurs along
the horizontal direction only, k being equal to the normalized
transversal wavector. β represents the longitudinal propa-
gation constant of the lattice eigenmodes (also known as
supermodes), while βi represents the longitudinal propagation
constant of mode i on a single waveguide. Without loss of
generality, we include a gauge transformation on βp, with the
purpose of reducing the model parameters and simplify the
overall description. By doing this, we get a set of four coupled
equations which can be written as follows:

β� =

⎛
⎜⎜⎜⎝

�β Vs(1 + e−ik ) 0 Vsp(1 − e−ik )

Vs(1 + eik ) �β 0 0

0 0 0 0

Vsp(1 − eik ) 0 0 0

⎞
⎟⎟⎟⎠�,

(2)

with � ≡ {A, B,C, D}. By solving this eigenvalue problem,
we obtain four solutions, with three of them being determined
by the following third-order equation:[
β(�β − β )2 − 4V 2

s β cos2 k̄ + 4V 2
sp(�β − β ) sin2 k̄

] = 0,

where k̄ ≡ k/2. These three bands are analytically nontrivial
and have no simple and compact form for arbitrary parame-
ters. Therefore, we show them graphically only in Figs. 2(a)–
2(d), in the first Brillouin zone, using full black and orange
lines. We also show in these figures (using dashed black lines)
a completely constant solution

β2 = 0,

which corresponds to the lattice second band, as defined
below. This trivial and completely flat band is related to the
excitation of isolated vertical p modes only. As these modes
possess no coupling at all with nearest-neighbor waveguides,
once they are excited they remain localized at the input
position as long as the system length. This can be understood
easily by directly integrating the third equation in (1), getting
xn(z) = xn(0) exp{iβpz}; this is, therefore, a trivial stationary
solution. In Fig. 2(e) we show a sketch of this FB state. This
corresponds to the most localized FB state, which occupies
only one site of the lattice. As this mode can be excited in
every vertically oriented waveguide (using arbitrary ampli-
tudes), this trivial band can be used, for example, to transmit
optically codified information through this 1D lattice.

We observe that the linear spectrum is quite symmetric;
therefore, we analyze the four linear bands considering an
increasing order denoted by β1, β2, β3, and β4, as indicated
in Fig. 2(a). At kx = 0, band edges become

{0, 0,�β − 2Vs,�β + 2Vs}

FIG. 2. Linear spectrum for the 1D binary lattice. (a) Vsp = 1.5
and (b) 2.5, for �β = 5. (c) Vsp = 1.1 and (d) 2.0, for �β = 1. Full
black, dashed black, dashed orange, and full orange correspond to
β1, β2, β3, and β4 bands. (e) FB mode amplitude profile at β2 = 0. In
all the figures, we set Vs = 1.

for �β � 2Vs, and

{�β − 2Vs, 0, 0,�β + 2Vs}
for �β < 2Vs. At kx = π , band edges are always⎧⎨
⎩

�β −
√

�β2 + 16V 2
sp

2
, 0,�β,

�β +
√

�β2 + 16V 2
sp

2

⎫⎬
⎭,

as shown for some specific parameters in Figs. 2(a)–2(d). First
of all, we notice that there is no gap between bands β1, β2,
and β3 for �β = 2Vs. Then, there is a gap of size �β −
2Vs, between bands β2 and β3 for �β � 2Vs, and between
bands β1 and β2 for �β < 2Vs, which does not depend on
the interaction between s and p modes. In contrast, the gap
between bands β3 and β4 changes depending on the curvature
of band β4, which strongly depends on coupling Vsp as shown
in Fig. 2. This change in the curvature necessarily implies that
β4 must be flat at some specific value of Vsp. By demanding
that β4(0) = β4(π ), we obtain the following FB condition:

V FB
sp ≡ Vs

√
1 + �β

2Vs
.

This mathematical relation is physical and experimentally
possible due to the fact that Vsp > Vs, as expected considering
the s and p mode profiles. If we fix coupling Vs, V FB

sp grows
monotonically as a function of detuning �β. Once this condi-
tion is fulfilled, the fourth band becomes completely flat with

013803-3



CÁCERES-ARAVENA AND VICENCIO PHYSICAL REVIEW A 100, 013803 (2019)

FIG. 3. Linear spectrum for (a) {�β,V FB
sp } = {5, 1.87} and

(b) {�β,V FB
sp } = {1, 1.22}. Full black, dashed black, dashed orange,

and full orange correspond to β1, β2, β3, and β4 bands, respectively.
(c) Effective amplitude and (d) intensity FB (β4) mode profiles for
�β = 1. In all the figures, we set Vs = 1.

a value

β4 = �β + 2Vs,

as shown in Figs. 3(a) and 3(b) by a straight horizontal
full orange line. We look for the eigenmode profile at this
FB condition. We assume a center site n0 and an arbitrary
amplitude A, obtaining that

un = Aδn,n0 , vn =
(

A

2

)
(δn,n0 + δn,n0−1),

xn = 0, wn =
(

VsA

2V FB
sp

)
(δn,n0 − δn,n0−1).

This profile is composed of both s and p modes simultane-
ously, and a sketch of it, on an effective ribbon lattice, is
presented in Fig. 3(c). We observe that the dipolar mode is
smaller in amplitude with a factor ∼0.4, for the parameters
used in this figure. As coupling V FB

sp is larger than Vs, the
mode amplitudes are compensated in order to satisfy a FB
localization condition, which relies on destructive interference
at specific connector sites [8]. Superposed s and p mode
amplitudes give the FB mode intensity profile sketched in
Fig. 3(d), for the 1D binary lattice system. The amplitudes
beside the center show a shifted intensity with respect to the
center of the waveguide, as expected from the superposition
of fundamental and dipolar profiles at those sites. As a con-
sequence, this localized state is very localized in space and
perfectly compact.

A study of the transport in this lattice, performed by ex-
citing a single vertical bulk site only (a deltalike input condi-
tion) would show a transition between dispersion (transport),
localization (insulation), and transport again, while varying
parameter Vsp. Localization would occur close to the FB con-
dition V FB

sp , while transport would manifest away this value.

This behavior is quite similar to the one found for sawtooth
lattices [18], where a FB is formed only for a very specific
condition between coupling constants. Therefore, our simple
1D binary model could show an insulator transition when
coupling interaction Vsp/Vs is varied along the experiment.
This could be demonstrated by fabricating several lattices
having different refractive index profiles or directly shown by
varying the temperature of a single binary lattice to achieve a
tuning on propagation constants [53].

IV. EDGE STATES

When solving the eigenvalue problem (2), we look for
solutions assuming an infinite lattice. Therefore, finite size
effects, as for example linear edge modes, will not appear
explicitly [18]. However, by numerically diagonalizing a finite
lattice system, we find that an edge with a vertically oriented
waveguide generates an exponentially decaying eigenmode,
while a horizontal edge waveguide does not. In order to
investigate this edge state, we consider a vertical waveguide
at site n = 1 and assume the following ansatz [1,2,18]:

{un, vn, xn,wn}(z) = {A, B,C, D}εn−1eiβez

for n � 1, with |ε| < 1 (which implies an exponentially de-
caying state). A, B, and D correspond to the amplitudes of this
mode to be determined by solving a set of coupled equations.
We assume a zero amplitude for mode xn (C = 0), due to the
noninteraction of this mode with the rest of the system. (By
taking xn �= 0 the frequency of this amplitude will be just zero,
which does not necessarily coincides with the frequency of
the edge mode βe. Additionally, there is always a perfectly
localized edge state xn = Cδn,1, as a trivial FB solution.) We
insert this ansatz into model (1) and write the equations for
sites n = 1 and n = 2. We obtain two sets of three coupled
equations, where the second set is recursively repeated for
n > 2, which validates the proposed ansatz. These equations
are the following:

βeA = βsA + VsB + VspD,

βeB = βsB + VsA(1 + ε), (3)

βeD = βpD + VspA(1 − ε)

and

βeAε = βsAε + VsB(1 + ε) + VspD(ε − 1),

βeBε = βsBε + VsAε(1 + ε), (4)

βeDε = βpDε + VspAε(1 − ε).

By applying some algebra to Eqs. (3) and (4), we obtain that(
D

A

)
=

(
Vs

Vsp

)
γ , ε = 2γ 2 − 1, βe = βs + 2Vsγ ,

with

γ ≡
(

B

A

)
=

√
�β2V 2

s + 16V 2
sp

(
V 2

s + V 2
sp

) − �βVs

4
(
V 2

s + V 2
sp

) .

This expression satisfies that 0 < γ < 1, which implies
that −1 < ε < 1; i.e., this edge state is exponentially lo-
calized at the surface when this surface has a vertically
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FIG. 4. (a) Decaying factor ε, (b) participation ratio R, and
(c) propagation constant βe versus coupling Vsp, for the edge mode
(full blue line). Bands are plotted in (c) as shaded regions. (d1)–
(d3) Effective edge mode amplitude profiles for Vsp :

√
2, V ce

sp =
2.13, 3.43, respectively, labeled by a circle, a diamond, and a triangle
in (a)–(d). �β = 5 and Vs = 1.

oriented first waveguide. Additionally, as Vsp > Vs then
(D/A) < (B/A); therefore, the edge localization is reinforced
with a decreasing profile into the bulk of the system. In
order to study the effective spatial size of these edge states,
we compute an effective participation ratio, defined as R ≡
[
∑

n(|un|2 + |vn|2 + |xn|2 + |wn|2)]2/
∑

n(|un|4 + |vn|4 +
|xn|4 + |wn|4), obtaining

R = [1 + γ 2 + (Vs/Vsp)2γ 2]2(1 + ε2)

[1 + γ 4 + (Vs/Vsp)4γ 4] (1 − ε2)
.

In order to characterize these states, we plot the decaying fac-
tor ε, the participation ratio R, and the frequency βe versus the
coupling Vsp in Figs. 4(a)–4(c), respectively, for some specific
values of �β and Vs (the same phenomenology persists for
different values). First of all, we observe that when coupling
Vsp → 0, B and D go to zero as well and the edge state
bifurcates at the band center of a standard 1D lattice [1,2],
with ε → −1, R → ∞, and βe → βs. This state coincides
with the π/2 linear mode of a standard 1D lattice and has
an effective spatial profile of only s-mode amplitudes. Once
we increase the coupling Vsp, we observe that the decaying
factor ε decreases in magnitude, being for example −0.5 for
Vsp ≈ √

2. In this case, the edge mode has a staggered profile
every two sites, as shown in Fig. 4(d1). After this, we obtain a
perfectly localized edge state with an exactly zero tail (ε = 0),
as Fig. 4(d2) shows. This compact edge mode is obtained for
the condition

V ce
sp ≡ Vs

√
1 + �β√

2Vs

> V FB
sp .

This state is similar to the edge mode found in sawtooth
lattices [18], when different amplitudes destructively inter-
fere at the connector sites of the lattice, in this case at the
second vertically oriented waveguide. Although this profile
corresponds to a perfectly compact edge state, which occupies
only two sites of the lattice, with a mixed s-p profile, it is not
the most localized edge state in this 1D binary system. In fact,
for the parameters considered in Fig. 4, the perfectly compact
edge state at V ce

sp = 2.13 has a participation ratio of R = 1.92,
while the minimum participation ratio R = 1.89 occurs for
Vsp = 1.98.

After this regime, the decaying factor starts to grow slowly
and profiles become completely unstaggered in their phase
structure, as in the example shown in Fig. 4(d3) for ε ≈ 0.5.
By a further increment of Vsp, ε slowly tends to its upper
bound 1, implying a smooth increment of R. The propagation
constant βe slowly tends to �β + 2Vs, which coincides with
the bottom of band β4. It is important to notice that the FB
condition at V FB

sp = 1.87 [see dashed vertical line in Fig. 4(c)]
produces an exchange on band β4, in which the fundamental
unstaggered mode passes from being at the top of the band
for Vsp = 0 to being at the band bottom for Vsp > V FB

sp , as
shown in Fig. 4(c). Finally, a larger Vsp coefficient implies
that δ → 1, with B/A → 1 and D/A → 0. Therefore, the
lattice effectively transforms into a standard 1D system, with
a homogenous spatial profile of s-mode amplitudes only,
which coincides with a standard unstaggered fundamental
mode. Here, although Vsp is large compared to Vs, there is a
consecutive cancellation of dipolar amplitudes D, due to the
alternated sign of this coupling interaction.

Both limits (Vsp → 0,∞) gives us an extended mode
which coincides with the β4-band modes of standard 1D
lattices, where no surface states exist without distorting the
lattice border [54–56]. As we observe in Fig. 4(c), βe is
only allowed to exist in the region {�β,�β + 2Vs}, and edge
modes behave quite similarly to the one found in a sawtooth
lattice [18], including the band twist at the FB critical pa-
rameter. In that case, authors associated the edge modes to
Shockley-like surface states [57], but they also mentioned that
these states existed due to a reduction of nearest neighbors
at the right surface, which generates an effective defect [28].
We have checked the extended linear modes of our model
for different edge terminations. We have found that, in the
presence of vertically oriented surface waveguides (in one or
both edges), there is always a nonsymmetric termination of
extended states, which appears typically in lattices presenting
edge defects [47,49]. Typical extended modes of standard
lattices have a node at the edges and they are symmetric
with respect to the lattice system. That means that there
is an effective distortion of the lattice at the right border,
which naturally produces Tamm-like edge states [58]. When
considering horizontally oriented waveguides at the border,
we immediately get a node at the right edge, similar to a
standard 1D lattice picture, which has no surface states at
all [54–56].

V. �β = 0 LIMIT

Although the case �β = 0 corresponds to a nonphysi-
cal solution in our photonic system [21,50,51], it becomes
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FIG. 5. (a) Linear spectrum for �β = 0, Vs = 1, and Vsp = 2.0.
Full black, dashed black, dashed orange, and full orange correspond
to β1, β2, β3, and β4 bands, respectively. (b) Effective amplitude and
(c) intensity FB (β3) mode profiles.

interesting to analyze it due to its phenomenology. By ap-
plying this condition, the eigenvalue problem (2) gives four
simple solutions:

β = 0, 0,±2
√

V 2
s cos2 k̄ + V 2

sp sin2 k̄.

We plot the linear spectrum in Fig. 5(a) and observe two oppo-
site dispersive bands, showing a particle-hole symmetry [59]
in which for any value of kx there are two eigenfrequencies
±β(k). Additionally, we found two flat bands at exactly the
same frequency β2 = β3 = 0. The first one is the previously
found trivial FB β2 = 0, which consists on single-site vertical
dipolar states. The second FB is generated by a combination
of horizontal s and p modes, whose mode profiles consist
of four amplitudes different from zero, having the following
structure:

un = 0, vn = A
(
δn,n0 − δn,n0+1

)
,

xn = 0, wn = −
(

Vs

Vsp

)
A
(
δn,n0 + δn,n0+1

)
.

This amplitude profile is sketched in Fig. 5(b), with the
corresponding intensity profile shown in Fig. 5(c). We observe
how a perfect cancellation of amplitudes, at connector sites,

allows the formation of a highly localized pattern, which has
only two sites different from zero. In terms of localization
area, this state is comparable with the one found for diamond
lattices [19], which is the most localized FB state observed
experimentally up to now.

VI. CONCLUSIONS

In conclusion, we have proposed a model for the study of
localization and transport of light in photonic lattices. In par-
ticular, our model consists of a rather simple 1D lattice having
alternating orientation of elliptical waveguides. We found that,
by assuming two modes, s and p, per site, a quasi-1D effective
ribbon system emerges, which describes the light dynamics on
this lattice. We found that there is always a FB on this system,
which corresponds to vertically isolated dipolar states. These
FB modes occupy a single site only, and are therefore the most
localized FB states of any lattice configuration. By fulfilling
a specific relation between lattice parameters, we found that
a second nontrivial FB appears, which is composed of a
hybridized state with s and p modes excited simultaneously.
These FB states occupy only three lattice sites, with a rapidly
decaying and perfectly compact profile. By investigating the
edges of this lattice, we found that Shockley-like surface
states exist on the system for edges having vertically oriented
waveguides. We obtained an analytical expression for them
and found that they could show different properties depending
on the lattice parameters. At the end, we explored the case
�β = 0 and found two dispersive and two flat bands for this
binary 1D system.

We believe that our simple model could show interesting
features for nondiffractive image transmission applications as
well as for presenting different transport properties depending
on the input condition. For example, by exciting a vertically
oriented waveguide with a fundamental state we would simply
observe transport, while using a dipolar excitation would pro-
duce perfect localization, without the need to apply any extra
interaction. This could be useful to excite two completely
different states on the system, which could be of interest for
optical signal processing.
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