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down-conversion of the single-photon frequency
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It is shown that a broad class of cavity quantum electrodynamics (QED) problems—which consider the
resonant propagation of a single photon interacting with quantum emitters (QEs), such as atoms, quantum
dots, or vacancy centers—can be solved directly without application of the second quantization formalism.
In the developed approach, the Hamiltonian is expressed through the ket-bra products of collective (photon +
cavities + QEs) states. Consequently, the S matrix of input-output problems is determined exactly by the
Mahaux-Weidenmüller formula, which dramatically simplifies the analysis of complex cavity QED systems.
First, this approach is illustrated for the problem of propagation of a photon resonantly interacting with N
two-level QEs arbitrary distributed inside the optical cavity. Solution of this problem manifests the effect of
cumulative action of QEs previously known for special cases. Can a similar cumulative action of QEs enhance
the inelastic resonant transmission of a single photon? We solve this problem for the case of an optical cavity
having two modes resonantly coupled to electronic transitions of N three-level QEs. It is shown that the described
structure is the simplest realistic structure which enables the down-conversion of the single-photon frequency
with the amplitude approaching unity in the absence of the external driving field and sufficiently small cavity
losses and QE dissipation. Overall, the simplicity and generality of the developed approach suggest a practical
way to identify and describe new phenomena in cavity QED.
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I. INTRODUCTION

The solution of the majority of equations describing com-
plex quantum systems cannot be found without simplifications
based on additional physical assumptions. For a variety of
systems, the simplification consists in selecting a relatively
small number of states, which the system can populate during
the process under interest, while ignoring all others. For
the input-output problems commonly considered in quantum
electrodynamics (QED) [1–3], this may happen when the
energy of the incident particle is close to the eigenenergies
of one or more localized states of the system. For example,
Fig. 1(a) illustrates a system of two semi-infinite waveguides
weakly coupled to a single state |�1〉 of the cavity. If the
eigenenergy h̄�

(0)
1 of state |�1〉 is close to the input parti-

cle energy h̄� and separated from other eigenenergies, then
the expression for the resonant transmission amplitude from
waveguide 1 to waveguide 2 is reduced to the Breit-Wigner
formula [4,5]:

S12 = 2π iW11W12

� − �
(0)
1 + i

(
πW 2

11 + πW 2
12

) . (1)

Here W1p, p = 1, 2, are coupling parameters between local-
ized state |�1〉 and waveguide states |�p,�〉 and the imaginary
part of the eigenenergy, Im�

(0)
1 , takes into account losses

caused by the interaction with the environment not included
in the model of Fig. 1(a). Equation (1) was used to describe
a wide range of phenomena in nuclear, atomic, and molecular
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scattering [4–7]; propagation of electrons in superlattices and
microstructures [8–13]; and propagation of photons in cavity
QED [1,3,14–16].

Remarkably, Eq. (1) includes just a few parameters de-
scribing a quantum system which may be quite complex. It is
also notable that this equation can describe the elastic as well
as inelastic processes. While for the elastic transmission, the
energy h̄� of the propagating quantum particle is conserved,
it can change in the process of inelastic transmission. In order
to apply Eq. (1) to the case of inelastic transmission, we
assume that states |�1〉 and |�p,�〉 are the collect ive states
of the ingoing particle and other particles interacting with this
particle and forming a closed system all together. Then the
total energy h̄� of all interacting particles is conserved again,
while these particles can exchange energy in the process of
propagation.

Consider, for example, a single photon resonantly propa-
gating through a two-level quantum emitter (QE) positioned in
between two waveguides [Fig. 1(b)]. Here and below a QE is
defined as an elementary quantum system, such as an individ-
ual atom, quantum dot, or a vacancy center, which is capable
of optical transitions with emission or absorption of a single
photon. Assume that, originally, the QE is in the ground state
|g〉 with energy h̄ω(a)

g and the energy of the input photon h̄ω

is close to the difference h̄ω(a)
e − h̄ω(a)

g between the energies
of the excited and ground states of QE, |e〉 and |g〉. We define
the input and output collective states of the photon and QE
as |�p,�〉 = |1〉p|g〉 where |1〉p is the state of the photon with
energy h̄ω in waveguide p. The total energy of these states
is h̄� = h̄ω + h̄ω(a)

g . We define the collective localized state
(excited QE and no photon) as |�1〉 = |0〉|e〉. The eigenenergy
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FIG. 1. (a) Two waveguide states |�1,�〉 and |�2,�〉 coupled to
cavity state |�1〉. (b) Formulation of the input-output problem in
terms of collective states of a photon and a QE. Here the waveguide
states |�1,�〉 = |1〉1|g〉 and |�2,�〉 = |1〉2|g〉 are the collective states
of an input and output photon and a QE in the ground state. The
localized state |�1〉 = |0〉|e〉 is the collective state of a QE in the
excited state and no photon.

of this state is h̄�
(0)
1 = h̄ω(a)

e . The coupling parameters W1p in
this equation are determined by the amplitudes of transition
|g〉 ↔ |e〉 induced by the evanescent fields of waveguides
[17], while Im�

(0)
1 is the dissipation rate of the excited state of

QE. For relatively small dissipation Im�
(0)
1 � W 2

1p and equal
coupling W11 = W12, the transmission amplitude S12 = 1. This
means that a single QE can support the full transmission of
a single photon between weakly coupled waveguides with
the probability equal to unity. This result is similar to that
obtained previously [14,15].

The above arguments, which validate the application of
the Breit-Wigner formula, Eq. (1), to the problem of resonant
propagation of a single photon, are not based on the second
quantization formalism. These arguments suggest significant
simplification of equations commonly used to describe the
resonant propagation of a single photon and, presumably,
a few photons. Instead of separating the Hamiltonian of
the system into the part describing the photons, which is
expressed through the products of creation and annihilation
operators, we can present it in the standard form as H =∑

n h̄�n|�n〉〈�n| where |�n〉 and h̄�n are the eigenfunctions
and eigenenergies of H . Using this presentation, we can
simplify the Hamiltonian by excluding all eigenfunctions,
whose eigenenergies are not in resonance with the energy h̄�

of the input state. To illustrate this approach, consider the
Hamiltonian of identical photons with energies h̄ω(c) and a
two-level QE in an optical cavity:

H = h̄ω(c)b†b + h̄ω(a)
g |g〉〈g| + h̄ω(a)

e |e〉〈e|
=

∑
n

(
h̄�(c)

n |cn〉〈cn| + h̄�(a)
n |an〉〈an|

)
. (2)

The first line in this equation presents H in terms of photon
creation and annihilation operators b† and b. The second
line is the representation of H through the ket-bra products
of its eigenfunctions |cn〉 and |an〉 illustrated in Fig. 2. The

FIG. 2. Illustration of eigenfunctions of the Hamiltonian H of
identical photons and a two-level QE in an optical cavity defined by
Eq. (2). Each of these eigenfunctions is the collective state of several
identical photons localized in the cavity and a QE in its ground or
excited state. The rectangle outlines two states, which should only be
taken into account for the resonant transmission of a single photon.

eigenfunction |cn〉 = |n〉|g〉 is the collective state of n pho-
tons in the cavity and a QE in its ground state |g〉. The
eigenenergy of this state is �(c)

n = h̄ω(c)n + h̄ω(a)
g . Similarly,

|an〉 = |n − 1〉|e〉 is the collective state of n − 1 photons in the
cavity and QE in its excited state |e〉. The eigenenergy of this
state is �(a)

n = h̄ω(c)(n − 1) + h̄ω(a)
e . If only a single photon

participates in the problem of our interest, all the terms in
the second line of Eq. (2) can be neglected except for two
terms with n = 1 outlined by the rectangle in Fig. 2. Then the
Hamiltonian in Eq. (2) is reduced to

H1 = h̄�
(c)
1 |c1〉〈c1| + h̄�

(a)
1 |a1〉〈a1|

= h̄
(
ω(c) + ω(a)

g

)|1〉|g〉〈g|〈1| + h̄ω(a)
e |0〉|e〉〈e|〈0|. (3)

Here we note that the approach based on the reduction
of the Hamiltonian expressed through the creation and an-
nihilation operators [first line in Eq. (2)] to the Hamiltonian
expressed only through its resonant eigenfunctions [Eq. (3)] is
quite general. In this paper, we develop this approach in appli-
cation to the problem of resonant propagation of a single pho-
ton through complex structures of optical cavities and QEs.
This problem is reduced to the input-output problem consid-
ering several localized states coupled to several waveguides
illustrated in Fig. 3, which, as was shown by Mahaux and Wei-
denmüller in 1969, can be solved exactly [18–20]. The cele-
brated Mahaux-Weidenmüller formula introduced in Sec. II
is the generalization of the Breit-Wigner formula, Eq. (1),
to the case of multiple resonant input-output and localized
states. It has been applied previously to a range of problems
in nuclear scattering [18–21], conductance of microelectronic
and nanoelectronic devices [22–24], and transmission of pho-
tonic microstructures [25–28]. However, the applications of
this formula to the cavity QED problems—leading to their
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FIG. 3. A system of localized collective states |�n〉 and waveg-
uide collective states |�p,�〉. Here Vmn are coupling parameters
between localized states and Wnp are coupling parameters between
localized and waveguide states. Generally, the states are multiparticle
and include collective excitations. In this paper, we consider local-
ized and waveguide states composed of a single photon and QEs.

analytical solutions—have not been thoroughly explored. The
reason is presumably in the fact that, conventionally, the QED
Hamiltonians are presented through the creation-annihilation
operators [Eq. (2), line 1] rather than their eigenfunctions
[Eq. (2), line 2]. The latter presentation, however, was the
major assumption of the Mahaux-Weidenmüller theory.

This article is organized as follows. After introducing the
Mahaux-Weidenmüller formalism in Sec. II, we proceed with
its applications. To this end, we reformulate the problems
of resonant propagation of a single photon in terms of the
eigenfunctions of corresponding Hamiltonians. Similar to the
example considered above, these eigenfunctions represent the
collective states of a photon and QEs. In Sec. III, we con-
sider the resonant propagation of a single photon interacting
with two-level QEs in an optical cavity [14,15,29–36]. This
classical problem is reduced to the consideration of N + 1
localized collective states and two semi-infinite waveguide
collective states. We show that, for this case, the Mahaux-
Weidenmüller formula yields the expressions for the S matrix
generalizing those obtained previously using special forms of
QED Hamiltonians. In particular, we show that the resonant
transmission amplitude of a single photon can approach unity
due to the cumulative action of QEs. This result points us to
the question of whether a similar cumulative action of QEs
can enhance the inelastic transmission of a single photon and,
in particular, ensure its complete frequency conversion. In
Sec. IV, we address this question by considering the problem
of inelastic resonant transmission of a single photon through
an optical microcavity with two eigenfrequencies resonantly
coupled to three levels of N QEs. We determine the conditions
of complete frequency conversion of a single photon and
analyze the effect of cumulative action of QEs in this process.
In Sec. V, we discuss and summarize the results obtained.

II. MAHAUX-WEIDENMÜLLER FORMALISM

The Mahaux-Weidenmüller theory [18–20] considers a
general multiparticle system which includes resonantly cou-
pled N localized collective states |�n〉 and P waveguide col-
lective states |�p,�〉, illustrated in Fig. 3. The localized states
|�n〉, n = 1, 2, . . . , N, if assumed uncoupled, have complex
eigenfrequencies �(0)

n . The waveguide states |�p,�〉 with
numbers p = 1, 2, . . . , P are confined along all directions

in the multiparticle configuration space except for the those
which correspond to the propagation of particles along the
waveguide p. The Hamiltonian of this system is [18–20]

H = h̄

[∑
n

�(0)
n |�n〉〈�n| +

∑
p

∫
d��|�p,�〉〈�p,�|

+
∑
m,n

Vmn|�m〉〈�n|

+
∑
n,p

∫
d�(Wnp|�n〉〈�p,�| + H.c.)

]
, (4)

where the couplings between states and waveguides are as-
sumed to be real [19], and direct coupling between the
waveguide states is neglected. The S matrix S = {Spq} of
transmission amplitudes from waveguide p to waveguide q
is expressed through the matrix of eigenfrequencies �(0) =
{�(0)

n δmn} of uncoupled localized states |�n〉 and matrices of
coupling parameters between localized states, V = {Vnm}, and
between localized states and waveguides, W = {Wmp}, by the
Mahaux-Weidenmüller formula [18–20]:

S = I − 2iπW†
(
�I − �(0) − V + iπWW†

)−1
W, (5)

where I = {δmn} is the unity matrix. Generally, Hamiltonian
H in Eq. (4) and the S matrix determined by Eq. (5) describe
the scattering process of several particles. In the resonance
approximation, it is assumed that the separation between
eigenvalues of localized states of H is much smaller than the
separation of these eigenvalues from the eigenvalues of local-
ized states, which are not included in Eq. (4). For N = 1, the
matrix element S12 determined from this equation coincides
with the Breit-Wigner formula, Eq. (1).

III. SINGLE-EIGENFREQUENCY OPTICAL CAVITY
COUPLED TO N TWO-LEVEL QUANTUM EMITTERS

It is instructive to demonstrate the application of the
Mahaux-Weidenmüller formalism to the classical problem of
the resonant propagation of a single photon through a single
eigenstate of an optical microcavity coupled to N two-level
QEs, illustrated in Fig. 4(a) [14,15,29–36]. Similar to the
noninteracting photon and single two-level QE discussed in
the Introduction, this system can be modeled by N + 1 local-
ized collective eigenstates, |c1〉 and |an〉; n = 1, 2, . . . , N ; and
two waveguide states, |�1,�〉 and |�2,�〉, shown in Fig. 4(b).
The collective localized state |c1〉 = |1〉|g1〉|g2〉 · · · |gN 〉 is
composed of a single-photon state |1〉 localized in the cavity
and ground states |gn〉 of N QEs. The total eigenenergy of
this state, if assumed uncoupled to QEs and waveguides, is
h̄�

(c)
1 = h̄ω

(c)
1 + ∑N

n=1 h̄ω(a)
gn

− i
2 h̄�

(c)
1 , where ω

(c)
1 and �

(c)
1

is the eigenfrequency and resonance width of uncoupled
optical cavity and h̄ω(a)

gn
is the energy of the ground state

of QE n. Localized states |an〉 = |0〉|g1〉 · · · |en〉 · · · |gN 〉 are
the collective states of QE n in its excited state |en〉 with
complex eigenenergy h̄(ω(a)

en
− i

2�(a)
en

) (here �(a)
e is the dis-

sipation rate of QE), other QEs remaining in their ground
states, and no photon. In the resonance approximation, the
direct coupling of states |an〉 to the waveguides is ignored.
Couplings between states |c1〉 and |an〉 are denoted by V1n.
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FIG. 4. (a) Illustration of an optical cavity with QEs coupled
to the input and output waveguides. (b) Collective localized states
and semi-infinite collective waveguide states, which describe the
propagation of a single photon resonantly coupled to a single state of
an optical cavity and N two-level QEs positioned inside the cavity. (c)
Schematics of transition between resonant frequencies of collective
states considered, �

(c)
1 ↔ �(a)

n ↔ �
(c)
1 . (d) For identical QEs, the

structure of collective states shown in (b) is reduced to the structure
shown in this figure.

For uncoupled states (V1n = 0), the energy of |an〉 is h̄�(a)
n =

h̄ω(a)
en

− h̄ω(a)
gn

+ ∑N
m=1 h̄ω(a)

gm
− i

2 h̄�(a)
en

. The collective input
and output states |�p,�〉 = |1〉p|g1〉|g2〉 · · · |gN 〉 are composed
of the waveguide state of a photon with energy h̄ω and
localized ground states |gn〉 of QEs with eigenenergies h̄ω(a)

gn
,

n = 1, 2, ..., N , which are distributed inside the cavity. The
total energy of these states is h̄� = h̄(ω + ∑N

m=1 h̄ω(a)
gm

).
The S matrix of the considered structure can be directly

found from Eq. (5) as (see Appendix A)

S11 = 1 − 2iπ
W 2

11

	
, S12 = 2iπ

W11W12

	
,

	 = � − �
(c)
1 − iπ

(
W 2

11 + W 2
12

) −
N∑

n=1

V 2
1n

� − �
(a)
n

. (6)

For identical QEs arbitrary distributed in the cavity, we
have �(a)

n = �(a), ω(a)
gn

= ω(a)
g , and ω(a)

en
= ω(a)

e and Eq. (6) can
be written as

S11 = 1 − 2iπ
W 2

11

	
, S12 = 2iπ

W11W12

	
,

	 = ω − ω
(c)
1 + i

(
1
2�

(c)
1 + πW 2

11 + πW 2
12

)
− NV̄ 2

1

ω + ω
(a)
g − ω

(a)
e + i

2�
(a)
e

,

V̄1 =
[

1

N

N∑
n=1

(V1n)2

]1/2

, (7)

where V̄1 is the root mean square of cavity-QE couplings
V1n. For the case of a single QE, N = 1, and symmetric

FIG. 5. (a) The reduced structure of collective states from
Fig. 4(d) with symmetric coupling to waveguides, W11 = W12 = W .
(b) Spectrogram of transmission probability P = |S12|2 as a function
of dimensionless frequency deviation (ω − ω

(c)
1 )/πW 2 and cumula-

tive cavity-QE coupling N1/2V̄1/πW 2 for symmetric structure shown
in (a) and negligible cavity and QE losses.

waveguide-cavity coupling, W11 = W12, this result coincides
with that found previously [14,15]. It follows from Eq. (7) that
the contribution of N identical QEs to the scattering matrix is
the same as that of a single QE with the cavity-QE coupling
N1/2V 1 [30,37]. For negligible interactions with QEs, V 1 = 0,
S12 in Eq. (7) coincides with that defined by Eq. (1). For
relatively large N1/2V 1, the transmission amplitude has two
resonances separated by Rabi frequency approximately equal
to 2N1/2V 1. Remarkably, Eq. (7) shows that transmission am-
plitude |S12| approaches unity at these resonances if, similar
to Eq. (1), the cavity-waveguide couplings are equal, W11 =
W12 = W ; the internal losses are small compared to the losses
due to the coupling to waveguides, �

(c)
1 , �(a)

e � 4πW 2; and

�(a)
e � NV

2
1

πW 2
. (8)

This equation can be satisfied for large N even if the av-
erage cavity-QE coupling V 1 is small. Since the process of
interaction of a photon with QEs and microcavity is inelastic
and dissipative, the possibility to reach the unity value of
the transmission amplitude of a photon by increasing the
number of QEs is not obvious. Figure 5 shows the behavior
of transmission probability P = |S12|2 as a function of dimen-
sionless frequency deviation (ω − ω

(c)
1 )/πW 2 and cumulative

coupling N1/2V̄1/πW 2 for symmetric waveguide coupling
W11 = W12 = W , and negligible cavity and QE losses. In this
figure, the resonances of transmission amplitude are equal to
unity at frequencies which are separated by Rabi frequency.
The width of these resonances ∼πW 2 is independent of the
number of QEs, while their separation grows proportionally
to N1/2V̄1.

The Mahaux-Weidenmüller theory, which was presented in
Sec. II in application to systems with semi-infinite waveguides
(Fig. 3), can be generalized to the case of infinite waveguides.
For example, Fig. 4(e) illustrates an infinite waveguide where
an input single photon directly interacts with two-level QEs.
To determine the S matrix of this problem, we approximate
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the infinite waveguide by two semi-infinite waveguides with
a cavity similar to those shown in Fig. 4(b) and set W11 =
W12 = W . In the limit of infinite waveguide, coupling W is
large; πW 2 � |� − �

(c)
1 |. Then Eq. (7) can be rewritten as

S11 = 2iπW 2
eff

� − �(a) + 2iπW 2
eff

, S12 = 1 − S11,

W 2
eff = NV

2
1

4π2W 2
, (9)

where Weff is the effective coupling parameter between
the waveguide and QEs. Remarkably, in this approxima-
tion, the reflection amplitude S11 coincides with the Breit-
Wigner formula, Eq. (1), for symmetric waveguide-cavity
coupling, W11 = W22 = Weff . For the particular case of a
single QE, N = 1; this result coincides with that found in
[14]. At exact resonance, ω = ω(a)

e − ω(a)
g , we have S11 =

(1 + πW 2�(a)
e /NV1

2
)−1. From this equation, we find that,

again, under the condition of Eq. (8), which can be satisfied
for sufficiently large number of QEs, the amplitudes S11 →
1 and S12 → 0. Thus, similar to the previous example, the
cumulative action of N QEs distributed in a waveguide can
lead to the complete reflection of a single photon.

IV. DOUBLE EIGENFREQUENCY OPTICAL
MICROCAVITY COUPLED TO N THREE-LEVEL

QUANTUM EMITTERS

It is well known [5] and immediately follows from the
Breit-Wigner formula, Eq. (1), that the resonant transmission
amplitude reaches unity at exact resonance � = Re�(0)

1 for
the symmetric structure with relatively small internal losses
Im�

(0)
1 � W 2

11 = W 2
12. Similarly, as discussed in the previous

section, Sec. III, the resonant interaction with a single QE can
reflect a photon propagating along the infinite waveguide with
the amplitude approaching unity [14]. It is crucial that under
the condition of Eq. (8) the latter effect can be enhanced by
the cumulative action of QEs. It is of great interest to find
out if, similarly, the cumulative action of QEs can support the
inelastic transition of a single photon to the amplitude close to
unity. In the system considered in Sec. III, a photon state in the
optical cavity is set in resonance with transitions between two
levels of QEs. Propagation of a photon through such system
cannot change its frequency due to the energy conservation. In
order to enable the frequency conversion of a single photon, it
is necessary to consider its interaction with QEs having more
than two resonant levels.

As noted in the Introduction, the Breit-Wigner formula,
Eq. (1), can describe the inelastic propagation of a particle.
Then, the input state should be considered as a collective state
of this particle and the environment, which forms a closed
system together with this particle. As an example, Eq. (1) can
describe the inelastic resonant transmission of a single photon
interacting with a three-level QE in an optical waveguide
[38–40]. In this case, the collective states |�1,�〉, |�2,�〉 and
localized state |�1〉 are defined as follows: |�1,�〉 is a state
of a photon with initial energy h̄ω and an atom in the initial
state |g1〉 with energy h̄ω(a)

g1
; |�1〉 is the state of the QE in

the excited state |e〉 with energy h̄ω(a)
e which has acquired this

photon; |�2,�〉 is the state of the output photon with energy
h̄(ω + ω(a)

g1
− ω(a)

g2
) emitted by the QE which is transmitted to

the final state |g2〉 with energy h̄ω(a)
g2

.
However, the realization of the described system, which

performs the inelastic transition of a single photon with
the amplitude close to unity, is challenging. In fact, while
the input photon frequency ω can be set in resonance with
frequency ω(a)

e − ω(a)
g1

of QE transition |g1〉 → |e〉, the QE
transition |e〉 → |g2〉 with converted frequency ω(a)

e − ω(a)
g2

is not resonant. Therefore, transitions from the excited state
|e〉 to states with frequencies other than ω(a)

g1
and ω(a)

g2
can-

not be ignored. Furthermore, while driving with an external
field [41,42] can solve the problem, the required symmetry
(quantum impedance matching) condition W11 = W12 is hard
to achieve for the undriven QED structures suggested to
date [38–40] unless ω(a)

g1
= ω(a)

g2
[43]. The question remains

of whether, in the absence of an external driving field, the
complete conversion of the single-photon frequency is indeed
feasible.

In this section, we describe a simplest realistic system of
an optical cavity and QEs, which exhibits the complete down-
conversion of the single-photon frequency in the absence of
external driving field. In this system, two states of the optical
cavity are in resonance with two transitions between three
different levels of QEs. In contrast to the resonant structures
considered previously [38–40], the frequencies of both QE
transitions are now in resonance with the cavity eigenfrequen-
cies. Therefore, neglecting all other possible QE transitions is
justified. Unlike the interaction with two-level QEs considered
in the previous section, we find that the cumulative effect of
QEs in this case is partial only.

We consider a system consisting of an optical microcavity
with two states, |u1〉 and |u2〉, and N three-level QEs inside.
The optical states are coupled to two waveguides so that state
|um〉 is coupled to waveguide m only. Possible models of such
cavities are illustrated in Fig. 6(a). The model illustrated at the
top of Fig. 6(a) consists of an optical resonator coupled to the
input and output waveguides through weakly transparent mir-
rors. The one-dimensional configuration of the cavity states
shown at the bottom of Fig. 6(a) requires special design of the
optical cavity structure, which is described in Appendix B. For
the application of our concern, the resonant structures shown
in Fig. 6(a) can be fabricated of Fabry-Perot [44–47], photonic
crystal [48,49], toroidal [50], bottle [51], and SNAP [52,53]
microresonators.

It is assumed that QEs are identical and have two ground
states |gm〉, m = 1, 2, with energies h̄ω(a)

gm
, and one excited

state |e〉 with complex energy h̄(ω(a)
e − i

2�(a)
e ) where �(a)

e
determines the state dissipation. At zero temperature, QEs are
initially in their ground state with smallest possible energy
h̄ω(a)

g1
< h̄ω(a)

g2
. In this case, only down-conversion of the

photon frequency is possible. If QEs are initially prepared
in the excited state, then the condition h̄ω(a)

g1
> h̄ω(a)

g2
and the

up-conversion of the photon frequency is possible. The com-
plex eigenfrequencies of optical cavity states h̄(ω(c)

m − i
2�(c)

m ),
where �(c)

m determines the internal cavity loss, are assumed
to be in resonance with QE transition frequencies; i.e., ω(c)

m is
close to ω(a)

e − ω(a)
gm

. A single photon with energy h̄ω, which is

close to energy h̄ω
(c)
1 of state |u1〉, enters the system through
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FIG. 6. (a) Possible configurations of cavities with two states, |u1〉 and |u2〉, which resonantly interact with transitions of QEs situated in
the region where these states overlap in space. (b) Collective localized states and semi-infinite collective waveguide states which describe the
propagation of a single photon resonantly coupled to two states of an optical cavity and N three-level QEs positioned inside the cavity. Index
� in the notations of |�1〉 and |�2n〉 is omitted for briefness. (c) Schematics of transition between resonant frequencies of collective states
considered, �(c)

1 ↔ �(a) ↔ �
(c)
2 . (d) For identical QEs with the same positions and, thus, the same coupling parameters V1n = V1 and V2n = V2,

the structure of the collective states shown in (b) is reduced to the structure shown in this figure. (e) Top: two states of a cavity, |u1〉 and |u2〉,
coupled to a single waveguide; bottom: A waveguide coupled to N three-level QEs.

waveguide 1. After entering the cavity state |u1〉 through
waveguide 1, the photon can be resonantly absorbed by one
of the QEs into excited state |e〉 and bounce between these
states and cavity states |um〉 prior to exiting into one of the
waveguides.

The described system can be presented as a system of 2N +
1 localized collective eigenstates, |c1〉, |c21〉, |c22〉, . . . , |c2N 〉,
and |a1〉, |a2〉, . . . , |aN 〉, and N + 1 collective waveguide
states |�1〉, |�21〉, |�22〉, . . . , |�2N 〉 [Fig. 6(b)]. For brief-
ness, we omit index � in the notations of |�1〉 and |�2n〉.
Collective state |c1〉 has a photon localized in the cavity
state |u1〉 with energy h̄ω

(c)
1 and all QEs in the ground state

|g1〉 with energy h̄ω(a)
g1

. Collective state |c2n〉 has a photon

localized in the cavity state |u2〉 with energy h̄ω
(c)
1 , QE n in

the ground state |g2〉 with energy h̄ω(a)
g2

, and all other QEs
in the ground state |g1〉 with energy h̄ω(a)

g1
. The energies of

states |c1〉 and |c2m〉, if assumed uncoupled to waveguides
and QEs, are h̄�

(c)
1 = h̄(ω(c)

1 + Nω(a)
g1

− i
2�

(c)
1 ) and h̄�

(c)
2 =

h̄[ω(c)
2 + ω(a)

g2
+ (N − 1)ω(a)

g1
− i

2�
(c)
2 ] [Fig. 6(c)]. Collective

state |an〉 has no photon in the cavity, a single QE with
number n in the excited state |e〉, and all other QEs in
their ground states |g1〉. All eigenenergies of states |an〉 have

the same value h̄�(a) = h̄[ω(a)
e + (N − 1)ω(a)

g1
− i

2�(a)
e ]. The

waveguide states |�1〉 and |�2n〉 have equal total energies
h̄� = h̄[ω + Nω(a)

g1
].

In the system described, a photon can either exit from
cavity state |u1〉 through waveguide 1 with the amplitude S1,1

and conserve its original frequency ω, or propagate through
QE n and cavity state |u2〉 and exit through waveguide 2
with the amplitude S1,2n and frequency conversion ω → ω +
ω(a)

g1
− ω(a)

g2
. Direct application of Eq. (5) to the system shown

in Fig. 6(b) yields (see Appendix A)

S1,2m = 2iπW11W22V1mV2m(

ω2
ωa − V 2

2m

)(

ω1 − 
ω2

∑N
n=1

V 2
1n


ω2
ωa−V 2
2n

) ,

(10)


ω1 = ω − ω
(c)
1 + i

(
πW 2

11 + 1
2�

(c)
1

)
,


ω2 = ω − ω
(c)
2 + ω(a)

g1
− ω(a)

g2
+ i

(
πW 2

22 + 1
2�

(c)
2

)
,


ωa = ω − ω(a)
e + ω(a)

g1
+ i

2�(a)
e , (10a)

where V1n is the coupling between states |c1〉 and |an〉, V2n is
the coupling between states |c2n〉 and |a2n〉, W11 is the coupling
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between states |�1〉 and |c1〉, and W22 is the coupling between
states |�2n〉 and |c2n〉 [Fig. 6(b)]. All couplings between states
|�2n〉 and |c2n〉 are equal because they are determined by
the coupling between photon state |u2〉 and waveguide 2.
The full inelastic transmission probability is determined from
Eq. (10) as

P =
N∑

n=1

|S1,2n|2. (11)

V. COMPLETE FREQUENCY DOWN-CONVERSION IN
THE ABSENCE OF LOSSES

We assume that couplings to QEs are independent of their
number as, e.g., for QEs situated near an antinode of the
optical cavity (see, e.g., [33–35]) and set V1n = V1 and V2n =
V2. Then Eqs. (10) and (11) yield

P = 4π2NW 2
11W

2
22V

2
1 V 2

2∣∣
ω1
(

ω2
ωa − V 2

2

) − N
ω2V 2
1

∣∣2 . (12)

Rescaling N1/2V1 → V1 transfers this equation to the case of a
single QE, N = 1, and reduces the problem to the well-known
problem of resonant propagation through three successively
coupled collective localized states illustrated in Fig. 6(d) (see,
e.g., [26]). Remarkably, Eq. (12) shows that coupling V1 can
be effectively enhanced by the increasing the number of QEs
N . This result manifests the partial cumulative action of QEs
when only V1 rather than both V1 and V2 is enhanced. The latter
fact has a simple physical explanation. While the amplitude

of transmission of a photon from the cavity state |u1〉 into
one of the excited states of QE increases with the number
of QEs N , the amplitude of transmission from this state of
QE into cavity state |u2〉 does not depend on the number of
QEs. This situation is different from the cumulative action of
two-level QEs considered in Sec. III where a photon emitted
from an excited QE can return to the same collective state and
be acquired by other QEs.

It follows from Eqs. (12) and (10a) that the cavity losses
and dissipation of QEs can be ignored if

�
(c)
1 � 2πW 2

11, �
(c)
2 � 2πW 2

22, (13a)

and

�(a)
e � 2π

(
W 2

11 + W 2
22

)
, �(a)

e �2
(
NV 2

1 + V 2
2 + π2W 2

11W
2

22

)
π

(
W 2

11 + W 2
22

) .

(13b)

Equation (13a) is similar to the condition of complete reso-
nant transparency of an empty optical cavity discussed in the
Introduction, while Eq. (13b) requires that the dissipation of
QEs was relatively small compared to the cavity-QE and/or
cavity-waveguide couplings. This means that the dissipation
time of QEs should be relatively large compared to the char-
acteristic time of inelastic transition.

Neglecting losses, �(a)
e = �(c)

m = 0, we can find the general
condition when the inelastic transmission probability P deter-
mined by Eq. (12) achieves unity. Specifically, the criterion
of the equality P = 1 derived in Appendix C is given by two
simultaneous equations:

W 2
2 V 2

2

[(
ω − ω

(c)
1

)2 + π2W 4
1

] = NW 2
1 V 2

1

[(
ω − ω

(c)
2 + ω(a)

g1
− ω(a)

g2

)2 + π2W 4
2

]
,

×W 2
1

(
ω − ω(a)

e + ω(a)
g1

)[(
ω − ω

(c)
2 + ω(a)

g1
− ω(a)

g2

)2 + π2W 4
2

]
= V 2

2

[
W 2

1

(
ω − ω

(c)
2 + ω(a)

g1
− ω(a)

g2

) + W 2
2

(
ω − ω

(c)
1

)]
. (14)

Here we limit our consideration by a special case when the cavity eigenfrequencies are tuned to the exact resonance with
frequencies of the QE transitions, ω

(c)
1 + ω(a)

g1
= ω

(c)
2 + ω(a)

g2
= ω(a)

e . Then the inelastic transmission probability P determined
by Eq. (12) can be expressed through four dimensionless parameters: relative cavity-QE couplings ϒ1 = N1/2V1/πW 2

11 and
ϒ2 = V2/πW 2

11, relative cavity-waveguide coupling 	 = W 2
22/W 2

11, and relative frequency deviation 
 = (ω − ω
(c)
1 )/πW 2

11 as

P = P(ϒ1, ϒ2, 	,
) = 4	ϒ2
1 ϒ2

2[

3 − (

	 + ϒ2
1 + ϒ2

2

)



]2 + [
(1 + 	)
2 − ϒ2

2 − 	ϒ2
1

]2 . (15)

For this particular case, Eq. (14) is reduced to

	
(
1 + ϒ2

2

) = 	2 + ϒ2
1 ,


2 = ϒ2
2 (1 + 	) − 	2, (16)

for 
 	= 0 and

ϒ2
2 = 	ϒ2

1 (17)

for 
 = 0. Figures 7(b)–7(e) show characteristic spectro-
grams of inelastic transmission probability P(ϒ1, ϒ2, 	,
)
corresponding to particular relations between ϒm and 	 when
P can achieve unity. It is seen that for the exact resonant struc-
ture the spectrograms are symmetric with respect to 
 (see

Appendix A). Generally, satisfaction of Eq. (17) is sufficient
for P to achieve unity at 
 = 0 as illustrated in Figs. 7(b)
and 7(c) which show P(1, ϒ,ϒ2,
) and P(ϒ, 1, ϒ−2,
),
respectively. Remarkably, for predetermined cavity-QE cou-
plings V1 and V2, satisfaction of Eq. (17) can be achieved
by tuning waveguide-cavity couplings W11 and W22. As fol-
lows from Eqs. (16) and (17), for the symmetric coupling
to waveguides when 	 = 1, the value of P achieves unity
only if ϒ1 = ϒ2 = ϒ . Specifically, P = 1 along the ver-
tical line 
 = 0 and along two symmetrically positioned
lines ϒ = ±2−1/2(
2 + 1)1/2 as shown in the spectrogram of
P(ϒ,ϒ, 1,
) in Fig. 7(d). The ultraflat behavior of inelastic
transmission probability approaching unity is achieved along
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FIG. 7. (a) A system of coupled collective states of a two-level cavity and a single three-level QE, which is equivalent to the system of
N identical QEs with equal couplings to the cavity states, V1n = V1 and V2n = V2. (b–e) Spectrograms of inelastic transmission probability
P(ϒ1, ϒ2, 	, 
) for particular relations between ϒ1, ϒ2, and 	 indicated on the figures. Horizontal white dashed line in (d) corresponds to
ultraflat behavior of P described by Eq. (18).

the white horizontal line of Fig. 7(d) which corresponds to

P(0.5, 0.5, 1,
) = 1

1 + 
6
, (18)

known as the Butterworth filter profile in the theory of sig-
nal processing (see, e.g., [28]). Finally, the sufficient con-
dition ϒ2

1 = ϒ2
2 = 	 for the unity probability P follow-

ing from Eqs. (16) is illustrated in Fig. 7(e) which shows
P(ϒ,ϒ,ϒ2,
). In this case, Eq. (17) is not satisfied and
P = 1 along the lines ϒ = ±
 only. Experimental realization
of complete frequency down-conversion of a single photon
illustrated in Fig. 7 is possible if the cavity loss and QE
dissipation are small enough. Specifically, it is required that
the conditions of Eqs. (13a) and (13b) for the system losses
are satisfied in the regions of surface plots in Figs. 7(b)–7(e)
where P approaches unity. For example, assuming that the
introduced dimensionless parameters of the system have the
same order of magnitude equal to unity, ϒ1 ∼ ϒ2 ∼ 	 ∼
1, these conditions simply require that �(a)

e , �(c)
m � πW 2

11.
Remarkably, the condition ϒ1 ∼ 1 can be achieved for suf-
ficiently large number of QEs N even if V1 � V2.

Of special interest is the situation when only a single
waveguide is coupled to an optical cavity as illustrated in
the top of Fig. 6(e). The model of collective states shown in
Fig. 6(b) is valid in this case as well, though now the inelastic
transmission amplitude calculated in Sec. V corresponds to
the inelastic reflection amplitude back into the same waveg-
uide. Assuming that the waveguide-cavity coupling is a weak

function of wavelength, we set W11 = W22; i.e., 	 = 1. Then
we find from Eqs. (15) and (16) that the inelastic reflection
amplitude P can be equal to unity only if ϒ1 = ϒ2 = ϒ .
Thus, similar to the case of two waveguides, P is equal to
unity along the line 
 = 0 and two symmetric lines ϒ =
±2−1/2(
2 + 1)1/2 shown in Fig. 7(d).

Let us now investigate the direct waveguide-QE resonant
coupling. Without loss of generality, we consider the case
of a single input-output waveguide illustrated in the bottom
of Fig. 6(e). Similar to the derivation of Eq. (9), we assume
large and equal waveguide-cavity couplings W11 = W12 = W ,
so that Eq. (12) is reduced to

P = 4W 2
eff,1W

2
eff,2


ω2
a + (

W 2
eff,1 + W 2

eff,2

)2 , W 2
eff,1 = NV 2

1

πW 2
,

W 2
eff,1 = V 2

2

πW 2
, (19)

where W 2
eff,p are the effective waveguide-QE couplings similar

to that introduced in Eq. (9). Again, as discussed above, in
contrast to coupling to two-level atoms considered in Sec. III,
the cumulative action of atoms can enhance the coupling V1

rather than both V1 and V2.
In a more general case, QEs are situated in different

positions inside the optical cavity. In the absence of losses,
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�
(c)
1 = �

(c)
2 = �(a)

e = 0, and for the exact resonant condition,

ω1 = 
ω2 = 
ωa = 0, Eqs. (10) and (11) yield

P = P0 = 4π2W 2
11W

2
22�V(

W 2
11 + W 2

22�V
)2 , �V =

N∑
n=1

V 2
1n

V 2
2n

. (20)

This equation shows that the complete frequency conversion
takes place if

W 2
11

W 2
22

=
N∑

n=1

V 2
1n

V 2
2n

. (21)

Remarkably, provided that waveguide-cavity couplings
W11 and W22 satisfy this equation, random positions of QEs
(leading to different Vmn for different n) will not reduce the
effect of complete frequency conversion. If the field distribu-
tions of cavity modes |u1〉 and |u2〉 are proportional to each
other in the region where QEs are situated so that u1(r) =
βu2(r), then the ratio V1n/V2n = β does not depend on n and
Eq. (20) is reduced to W 2

11 = Nβ2W 2
22. The top of Fig. 6(a)

shows the configuration of two localized optical states and
QEs positioned in the region where these states overlap. Each
of these states is coupled to only one input-output waveguide.
It is apparent that the mirrors of this cavity can be designed
so that the relation u1(r) = βu2(r) is accurately satisfied near
the antinodes of these states. The design of an alternative
one-dimensional configuration of optical states shown in the
bottom of Fig. 6(a) is less obvious and considered in Ap-
pendix B. We suggest that the experimental realization of
such structure is possible, for example, employing quantum
dots in coupled photonic crystal cavities. In Ref. [49], a
single quantum dot with dissipation rate �(a)

e ∼ 10 MHz and
strong coupling V ∼ 20 GHz to a single-cavity mode was
demonstrated. For quantum dots with similar characteristic
parameters �(a)

e � V and photonic crystal cavities with losses
�

(c)
j � V corresponding to the intrinsic Q factor exceeding

105, the conditions of lossless transmission, Eqs. (13a) and
(13b), can be satisfied. Then, in the simplest case of a single
quantum dot (N = 1) with three resonant levels and quan-
tum dot–cavity coupling parameters with ratio V1/V2 = β,
the waveguide-cavity coupling can be adjusted as described
above.

The analogy of the frequency conversion scheme consid-
ered here and the SPRINT scheme (see Refs. [43,54] and
references therein) should be noted. In fact, for the case
of one atom, N = 1, symmetric coupling, W11 = W22 = W ,
equal cavity losses, �

(c)
1 = �

(c)
1 = �(c), and at the exact res-

onance, ω = ω
(c)
1 = ω

(c)
2 − ω(a)

g1
+ ω(a)

g2
= ω(a)

e , Eqs. (10a) and
(12) yield:

P = 4π2W 4V 2
1 V 2

2(
πW 2 + 1

2�(c)
)2((

πW 2 + 1
2�(c)

)
�

(a)
e + V 2

1 + V 2
2

)2 .

(22)
This result is identical to Eq. (7b) of Ref. [54] derived for the
degenerated states of a three-level atom, ω(a)

g1
= ω(a)

g2
, and an

optical cavity, ω
(c)
1 = ω

(c)
2 , i.e., for the case of no frequency

conversion.

VI. DISCUSSION

The Mahaux-Weidenmüller formalism [18–20], which was
developed here for the resonant propagation of a single photon
in cavity QED, allows one to consider systems consisting of a
large number of quantum particles and collective excitations
distributed inside microcavities without the application of the
second quantization method. In this formalism, the Hamil-
tonian of the system is presented as a linear combination
of ket-bra products of its eigenfunctions [Eq. (4)]. In the
simplest case, these eigenfunctions can be the states of a
single physical particle. In more general cases considered in
this paper, they are the collective states of several particles or
excitations, whose total energy h̄� is conserved in the process
of propagation.

The resonant approximation for the input-output problems
consists in selecting the states of the system whose energy
is close to the energy h̄� of the input collective state and
ignoring all other nonresonant states. It is often favorable to
perform this selection directly in the original Hamiltonian
of the system. An example of replacing the Hamiltonian of
identical photons and a two-level QE in an optical cavity
having infinite number of eigenstates by just two resonant
collective states of a single photon and QE is given in the
Introduction. Developing this approach further, we considered
the input-output problems for a single photon resonantly prop-
agating through optical cavities with two- and three-level QEs
inside. The eigenstates of these systems were selected in the
form of a collective state of a photon and N QEs interacting
with it.

The energy h̄� of the input collective state can be redis-
tributed within the components of this state in the process
of transmission. Then, a particle (being a part of a collective
state) can be transmitted inelastically and, as a result, reso-
nantly acquire or release (respectively, the environment within
the collective state can release or acquire) an energy. It is
worth noting that the exchange of energy between the propa-
gating particle (in our case—a single photon) and environment
is analogous to the exchange of energy between degrees of
freedom of a wave resonantly propagating through a localized
state in three-dimensional space, whose transmission ampli-
tude can be determined by the Breit-Wigner formula, Eq. (1)
[55,56]. While the total energy of the input wave is conserved,
the energy of its transverse degrees of freedom can be trans-
ferred to or acquired by its longitudinal degree of freedom.
Another example analogous to the inelastic transition of a
photon interacting with QEs considered in this paper is the
inelastic transition of an electron resonantly interacting with
an electromagnetic field in a quantum well structure. In fact,
it was shown in Ref. [57] that the amplitude of such transition
can approach unity. Remarkably, the expression for the trans-
mission amplitude derived in Ref. [57] through cumbersome
calculations directly follows from the Mahaux-Weidenmüller
formula.

In Sec. III of this paper, we demonstrated the strength
of the suggested approach considering the classical prob-
lem of resonant propagation of a single photon interacting
with two-level QEs in an optical cavity [14,15,29–36]. The
direct application of the Mahaux-Weidenmüller formula to
this problem allowed us to arrive at the general analytic
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FIG. 8. One-dimensional optical microcavity enabling full con-
version of the single-photon frequency. (a) Illustration of the dis-
tribution of localized optical states and QEs. (b) Three coupled
short-range cavities with strengths α j and separations dj which are
designed to resemble the distributions of localized states illustrated
in the bottom of Fig. 6(a) and proportional to each other in the
region of QEs. (c) Localized states u1(x) and u2(x) which are equal
to each other in the region of QEs. (d) Localized states u1(x) and
u2(x) proportional to each other in the region of QEs with the factor
1.7. The middle plot in (c,d) shows the third localized state of
the microcavity which is strongly coupled to both waveguides and
therefore is not appropriate for our application.

expressions for the transmission and reflection amplitudes
of a single photon, which coincided with previous results
in particular cases. The important effect manifested by the
derived expressions is the cumulative action of QEs. We have

shown that the probability of resonant transmission of a single
photon can approach unity if the number of QEs interacting
with it is sufficiently large. The cumulative action of atoms
was described in several experiments [31–35]. However, not
much has been published regarding the solution of the general
input-output problem for a single photon resonantly inter-
acting with two-level QEs [Eq. (6)]. While the interaction
of a photon and a QE inside the cavity is inelastic in this
problem, the input and output photons have the same energy;
i.e., the total process results in the elastic transmission of the
photon.

The described cumulative action of QEs, which enhance
the resonant elastic transmission probability of a single pho-
ton, led us to the question of whether a similar effect can
increase the probability of inelastic transmission of a single
photon up to the value close to unity and, thus, ensure its
complete frequency conversion. The principal barriers on the
way to demonstrating the complete resonant conversion of the
single-photon frequency in microscopic cavity QED systems
arise from the difficulty to achieve the sufficient resonant
enhancement of interactions between the photon and QEs and,
in addition, to arrive at the condition of symmetric coupling
[e.g., the equality of W11 and W12 in Eq. (1)]. While these
barriers can be overcome by application of the external driving
field [41], the realistic undriven microscopic structure where
all selected transitions of QEs are in resonance with optical
cavity eigenstates and, thus, maximally enhanced to enable
the complete conversion of the single-photon frequency has
not been sufficiently investigated.

In Secs. IV and V of this paper, we described the simplest
resonant cavity QED system, which enables the complete
down-conversion of a single-photon frequency in the ab-
sence of an external driving field. This system consists of
an optical cavity having two states, which resonantly cou-
ple to two electronic transitions of QEs positioned inside
the cavity. Using the Mahaux-Weidenmüller formalism, the
general expression for the inelastic resonant transmission
amplitudes of a single photon through the cavity with N
QEs distributed inside is derived. For identical QEs having
equal couplings V1 to the input cavity state |u1〉 and equal
couplings V2 to the output cavity state |u2〉, the action of
N QEs is reduced to the action of a single QE with effec-
tive couplings N1/2V1 and V2, which are responsible, respec-
tively, for the absorption and emission of a single photon
by QEs. Thus, the cumulative action of QEs enhances the
adsorption of a photon by QEs rather than its emission. It is
shown that, if the cavity losses and QE dissipation are small
enough, the complete frequency conversion can be achieved
in the system with appropriately designed waveguide-cavity
couplings W11 and W22 and cavity eigenfrequencies ω

(c)
1

and ω
(c)
2 .

Overall, the Mahaux-Weidenmüller formalism allowed us
to solve complex input-output problems in a much sim-
pler way as compared to that based on the second quan-
tization formalism for photons. It is of a great interest
to develop a similar approach for the input-output cavity
QED problems with more than one photon and more com-
plex configurations of optical microcavities and quantum
excitations. It is believed that the simplicity and general-
ity of the developed approach suggest a practical way to
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identify and describe new phenomena in cavity quantum
electrodynamics.
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APPENDIX A

Our calculations of the S matrix determined by the
Mahaux-Weidenmüller formula, Eq. (5), are based on the
expression for the inverse of a partitioned matrix [58]:

(
A B
C D

)−1

=
(

F −FBD−1

−D−1CF D−1 + D−1CFBD−1

)
, F =(A − BD−1C)−1. (A1)

The S matrix of the resonant propagation of a single photon through a system of an optical cavity and N two-level QEs, which
is considered in Sec. IV, can be found by setting, in Eq. (5),

�I − �(0) − V + iπW†W =
(

A B
C D

)
, (A2)

with

A = (
� − �

(c)
1 + iπ

(
W 2

11 + W 2
12

))
,

B = (V11 V12 · · · V1N ),

C = BT ,

D =

⎛
⎜⎜⎜⎝

� − �
(a)
1 0 · · · 0

0 � − �
(a)
2 · · · 0

· · · · · · · · · · · ·
0 0 · · · � − �

(a)
N

⎞
⎟⎟⎟⎠, (A3)

where �
(c)
1 = ω

(c)
1 + ∑N

n=1 ω(a)
gn

− i
2�

(c)
1 , �(a)

n = ω(a)
en

− ω(a)
gn

+ ∑N
m=1 ω(a)

gm
− i

2�(a)
en

, and h̄ω(a)
gn

and h̄ω(a)
en

− i
2�(a)

en
are the eigen-

frequencies of two-level QE n. After substitution of Eqs. (A3) into Eq. (A1) and simple calculations, Eq. (5) is reduced to
Eq. (6).

The S matrix of the resonant propagation of a single photon through a system of an optical cavity with two eigenfrequencies
and N three-level QEs, which is considered in Sec. IV, can be found from Eq. (5) using Eqs. (A1) and (A2) with submatrices:

A =

⎛
⎜⎜⎜⎜⎜⎝

� − �
(c)
1 + iπW 2

11 V11 V12 · · · V1N

V11 � − �(a) + i
2�(a)

e 0 · · · 0

V12 0 � − �(a) + i
2�(a)

e · · · 0
· · · · · · · · · · · · · · ·
V1N 0 0 · · · � − �(a) + i

2�(a)
e

⎞
⎟⎟⎟⎟⎟⎠,

B =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0
V21 0 0 · · · 0
0 V22 0 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · V2N

⎞
⎟⎟⎟⎟⎟⎠, C = BT ,

D =

⎛
⎜⎜⎜⎝

� − �
(c)
2 + iπW 2

22 0 · · · 0

0 � − �
(c)
2 + iπW 2

22 · · · 0
· · · · · · · · · · · ·
0 0 · · · � − �

(c)
2 + iπW 2

22

⎞
⎟⎟⎟⎠,

(A4)
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where

� = ω + Nω(a)
g1

, �
(c)
1 = ω

(c)
1 + Nω(a)

g1n
− i

2
�

(c)
1 ,

�
(c)
2 = ω

(c)
1 + ω(a)

g2
+ (N − 1)ω(a)

g1
− i

2
�

(c)
2 ,

�(a) = ω(a)
e + (N − 1)ω(a)

g1
− i

2
�(a)

e , (A5)

and h̄ω(a)
g1

, h̄ω(a)
g2

, and h̄ω(a)
e − i

2�(a)
e are the eigenfrequencies of three-level QE n. Direct calculations yield the following

expression for matrix F in Eq. (A1):

F = (A − BD−1C)−1

=

⎛
⎜⎜⎜⎜⎜⎝

� − �
(c)
1 + iπW 2

11 V11 V12 · · · V1N

V11 � − �(a) + i
2�(a)

e − Q1 0 · · · 0

V12 0 � − �(a) + i
2�(a)

e − Q2 · · · 0
· · · · · · · · · · · · · · ·
V1N 0 0 · · · � − �(a) + i

2�(a)
e − QN

⎞
⎟⎟⎟⎟⎟⎠

−1

,

Qn = V 2
2n

� − �
(c)
2 + iπW 2

22

. (A6)

In order to find the inverse of the matrix in Eq. (A6), we partition it as

F−1 =
(

A1 B1

C1 D1

)
, (A7)

where

A1 = (
� − �

(c)
1 + iπW 2

11

)
,

B1 = (V11 V12 · · · V1N ), C1 = BT
1 , (A8)

D1 =

⎛
⎜⎜⎜⎝

� − �(a) + i
2�(a)

e − Q1 0 · · · 0

0 � − �(a) + i
2�(a)

e − Q2 · · · 0
· · · · · · · · · · · ·
0 0 0 � − �(a) + i

2�(a)
e − QN

⎞
⎟⎟⎟⎠,

and, again, apply Eq. (A1). As the result we find

S1,2m = 2iπW11W22V1mV2m[(
� − �

(c)
1 + iπW 2

11

)(
� − �(a) + i

2�
(a)
e

) − V 2
2m

][
� − �

(c)
1 + iπW 2

11 − (
� − �

(c)
2 + iπW 2

22

)
�

] ,

(A9)

� =
N∑

n=1

V 2
1n(

� − �
(c)
2 + iπW 2

22

)(
� − �(a) + i

2�
(a)
e

) − V 2
2n

.

After substitution of notations from Eq. (A5), this equation coincides with Eq. (10) of the main text.
If couplings to QEs are independent of their number Eq. (A9) is simplified so that the full inelastic transmission probability

P = ∑N
n=1 |S1,2n|2 coincides with Eq. (12) of the main text.

In the absence of losses, �(a)
e = �(c)

m = 0, and at the exact resonance, ω
(c)
1 + ω(a)

g1
= ω

(c)
2 + ω(a)

g2
= ω(a)

e , the equations in (10a)
are simplified to


ω1 = 
ω + iπW 2
11, 
ω2 = 
ω + iπW 2

22, 
ωa = 
ω, 
ω = ω − ω
(c)
1 . (A10)

Substitution of Eq. (A10) into Eq. (12) yields

P = 4π2NW 2
11W

2
22V

2
1 V 2

2[

ω3 − (

π2W 2
11W

2
22 + NV 2

1 + V 2
2

)

ω

]2 + [(
πW 2

11 + πW 2
22

)

ω2 − πW 2

11V
2

2 − πW 2
22V

2
1

]2 . (A11)

As follows from Eq. (A11), the transmission probability is, in general, an asymmetric function of 
ω. However, Eq. (A11)
shows that it is the symmetric function of 
ω for the lossless system satisfying the exact resonance condition indicated.

APPENDIX B

Here we present a model of microcavity illustrated in the bottom of Fig. 6(a). We compose it of three weakly coupled
short-range cavities illustrated in Figs. 8(a) and 8(b). The optical states localized in this cavity are defined by the model wave
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equation:

d2u

dx2
− [κ2 + α1δ(x − d1) + α2δ(x) + α3δ(x + d2)]u = 0, (B1)

where α j are the strengths of cavities. Equation (B1) possesses three localized states. We optimize the parameters of cavities α j

and their separations d j so that two of these states, u1(x) and u2(x), satisfy the conditions of our interest. First, we require that
states u1(x) and u2(x) and, consequently, the corresponding collective states |c1〉 and |c2n〉, are coupled to a single waveguide
only and maximized in the region of QEs as illustrated in Figs. 6(a) and 8(a). To this end, state u1(x) [u2(x)] is designed to be
finite and state u2(x) [u1(x)] is designed to vanish near the input (output) waveguide [Figs. 8(c) and 8(d)]. For the dipole QE-field
interaction, we have Vpn ∼ Dpup(xn), where up(x) is the normalized photon state, xn is the position of QE n, and Dp is the dipole
matrix element between states of QE [17]. In Fig. 8(c), normalized functions u1(x) and u2(x) are approximately equal in the
center area (region of QEs) which corresponds to u1(x)/u2(x) = 1 and couplings V1n/V2n = D1/D2 independent of the position
of QEs. In Fig. 8(d), the values of normalized u1(x) and u2(x) are proportional in the region of QEs with a factor of 1.7 which
corresponds to V1n/V2n = 1.7D1/D2.

APPENDIX C

From Eq. (12) in the absence of losses the condition of unity inelastic transmission probability P = 1 is written as∣∣
ω1
(

ω2
ωa − V 2

2

) − N
ω2V
2

1

∣∣2 = 4π2NW 2
11W

2
22V

2
1 V 2

2 . (C1)

We introduce


1 = ω − ω
(c)
1 , γ1 = πW 2

11, 
2 = ω − ω
(c)
2 + ω(a)

g1
− ω(a)

g2
, γ2 = πW 2

22, 
a = ω − ω(a)
e + ω(a)

g1
. (C2)

Then Eq. (C1) is rewritten as(

1V

2
2 + N
2V

2
1 − 
0
1
2 + 
0γ1γ2

)2 + (
γ1V

2
2 + Nγ2V

2
1 − 
0
1
2 − 
0
2γ2

)2 = 4Nγ1γ2V
2

1 V 2
2 . (C3)

To simplify this condition, we recall that the unity transmission corresponds to its maximum, i.e., to the minimum of the
denominator in Eq. (12) equal to the left-hand side of Eq. (C3). This minimum is determined by zeroing of the partial derivatives
of the left-hand side in Eq. (C3) with respect to 
0, 
1, and 
2:(

V 2
2 − 
0
2

)
� − 
0γ2� = 0,

(
NV 2

1 − 
0
1
)
� − 
0γ1� = 0, (γ1γ2 − 
1
2)� − (
1γ2 − 
2γ1)� = 0, (C4)

where

� = 
1V
2

2 + N
2V
2

1 − 
0
1
2 + 
0γ1γ2, � = γ1V
2

2 + Nγ2V
2

1 − 
0
1
2 − 
0
2γ2. (C5)

From these equations, we have

Nγ1V
2

1

(

2

2 + γ 2
2

) = γ2V
2

2

(

2

1 + γ 2
1

)
, (C6)


0γ1
(

2

2 + γ 2
2

) = V 2
2 (
1γ2 + 
2γ1). (C7)

Substitution of 
0 found from Eq. (C7) into Eq. (C3) leads to Eq. (C6). Thus, satisfaction of Eqs. (C6) and (C7) presents the
criterion for the inelastic transmission probability equal to unity. These equations are equivalent to Eq. (14) of the main text.
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