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Three-body constrained bosons in a double-well optical lattice
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We analyze the ground-state properties of three-body constrained bosons in a one-dimensional optical lattice
with staggered hoppings analogous to the double-well optical lattice. By considering attractive and repulsive
on-site interactions between the bosons, we obtain the phase diagram which exhibits various quantum phases.
Due to the double-well geometry and three-body constraint, several gapped phases such as the Mott insulators
and dimer–bond-order phases emerge at commensurate densities in the repulsive interaction regime. Attractive
interaction leads to the pair formation which leads to the pair–bond-order phase at unit filling, which resembles
the valence-bond solid phase of composite bosonic pairs. At incommensurate densities, we see the signatures of
the gapless pair superfluid phase.
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I. INTRODUCTION

Ultracold atoms in optical lattices with tunable interactions
and lattice parameters have opened up a wide area of research
in recent years. The significant progress both in theoreti-
cal and experimental fronts has uncovered a wealth of new
physics which was impossible to achieve in the conventional
solid-state systems. The pathbreaking observation of the su-
perfluid (SF) to Mott insulator (MI) transition [1] following its
theoretical prediction [2] in a system of ultracold bosons in an
optical lattice has paved the path to simulate complex quan-
tum many-body physics [3]. The exquisite control over the
interactions and lattice geometries is the key to achieve such
interesting physics. A new frontier of research has evolved
with the construction of two-color superlattices, which is an
array of double-well potentials [1,4–10]. Recent experiments
on systems of ultracold atoms in these double wells have led
to various interesting phenomena in condensed-matter physics
and also in atom interferometry [9] and quantum informa-
tion [11]. Particularly in one dimension, these double-well
lattices exhibit interesting properties due to the staggered or
dimerized hopping amplitudes. The presence of this staggered
hopping in this system resembles the inversion symmetric
Su-Schrieffer-Heeger (SSH) model for fermions [12] which
possess interesting topological features characterized by the
Zak phase [13–16]. The model has been generalized to inter-
acting fermions [17,18] and bosons [10,19] and explored in
recent experiments [20–24].

On the other hand, the experimental observation of local
higher-order interactions in optical lattices has opened up a
new direction to simulate quantum phase transitions in the
presence of multibody interactions [25]. Several interesting
ideas have been proposed to engineer and tune such inter-
actions in optical lattices [26–30]. One such example is the
possibility to create a situation where the three-body interac-
tion can become extremely large. Under this circumstance, the
bosons experience three-body hardcore constraint [29], which
prohibits more than two atoms from occupying a single lattice

site. This condition facilitates the exploration of the physics
of the attractive Bose-Hubbard model, which otherwise leads
to the collapse of atoms onto a single site. Many novel sce-
narios have been investigated recently by considering three-
body constrained bosons in optical lattices [29,31–39]. The
physics which is manifested by the two-body interaction along
with the large three-body repulsion is one of the simplest
problems to understand, although it has interesting physical
implications. In such a scenario, the system exhibits the usual
SF-MI phase transition for repulsive on-site interaction and
for attractive interactions there exists a superfluid to pair-
superfluid (PSF) phase transition [31].

In this paper, we consider a system of three-body con-
strained bosons in a double-well optical superlattice in one
dimension, which resembles the SSH type model, as shown
in Fig. 1. The presence of double-well potentials creates a
situation with staggered hopping amplitudes. This superlattice
geometry can be created by superimposing two lattices, with
one lattice having double the period of the other.

The physics of ultracold bosons in a double-well optical
lattice can be explained by a modified Bose-Hubbard model
with staggered hopping amplitudes (bosonic SSH model),
which is given as

H = − t1
∑

i ∈ odd

(a†
i ai+1 + H.c.)

− t2
∑

i ∈ even

(a†
i ai+1 + H.c.) + U

2

∑

i

ni(ni − 1), (1)

where a†
i and ai are the creation and annihilation operators

for bosons at site i, and ni = a†
i ai is the number operator at

site i. t1 and t2 are the tunneling rates from odd and even sites,
respectively (compare Fig. 1). The on-site contact interactions
are characterized by the term U . The bosons in the lattice
enjoy three-body constraint, i.e., (a†

i )3 = 0.
At half filling, the single-particle spectrum of the model

given by Eq. (1) exhibits a gap for any imbalance in hopping
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FIG. 1. One-dimensional double-well optical superlattice with
staggered hoppings t1 > t2.

between the unit cells, t1 �= t2 [12]. Hence, the ground state
is a dimer phase or bond-order (BO) phase for spin-polarized
fermions or bosons with very large on-site interactions (hard-
core bosons). The presence of three-body constraint may lead
to interesting phenomena in such a dimerized lattice, which
will be the topic of this paper. In particular, we study the inter-
play between the pairing of particles and dimerization which
gives rise to the emergence of a pair–bond-ordered phases
with a sharp crossover to the bond-ordered phase. We assume
t1 = 1 (unless stated otherwise), which makes other physical
quantities dimensionless. The ground-state properties of this
system are analyzed using the density matrix renormalization
group (DMRG) method. We consider system sizes up to
160 sites and retaining up to 800 density matrix eigenstates.

The rest of the paper is arranged as follows. In Sec. II,
we discuss the limiting cases, focusing on hardcore bosons
in the optical lattice made up of a series of double wells and
the physics in the limit of isolated double wells. In Sec. III,
we present the general phase diagram with different values
of two-body on-site interactions. In Sec. IV, we give a brief
summary of the work.

II. LIMITING CASES

We begin our discussion with a short summary of the
properties of two analytically solvable limits of model (1).
These analysis will help in understanding the physics of the
system discussed in the paper.

A. U = ∞ limit

In the limit of large interactions U → ∞, the bosons are
hardcore in nature and, in this limit, model (1), after a Jordan-
Wigner transformation to free fermions, can be considered as
the topological SSH model as mentioned before. Due to the
staggered hopping amplitudes, the SSH model at half filling
dimerizes naturally due to the Peierls instability and one gets a
dimerized phase of bosons. In this phase, a single boson lives
in one of the unit cells composed of two lattice sites in the
double well with larger hopping strength. Doping away from
half filling breaks this dimer ordering and a critical SF phase
appears. This gapped phase is called the BO phase. Note that
this BO phase, stabilized due to a spin-Peierls-like mechanism
[40], does not exhibit spontaneous symmetry breaking and the
BO order is induced due to the explicitly broken translational
symmetry of the model. In the literature, this phase is, hence,
also called the fractional Mott-insulator phase or similar phase
[19]. The phase diagram of such system is shown in Fig. 2
as a function of t2 and the filling. The gapped phases are
characterized by the finite single-particle gaps, which are

0 0.5 1
t
2

-2

-1

0

1

2

 μ  ρ = 0.5

 ρ = 1

 ρ = 0

FIG. 2. Phase diagram of hardcore bosons in the μ − t2 plane
with t1 = 1.0. The points correspond to extrapolated DMRG data
with L = 300, which accurately lie on top of the analytical curves
(solid lines). The region included by the blue circles is the gapped
bond-ordered (BO) phase at half filling. The gap opens up for any
finite dimerization t2/t1. The black curves represent the empty and
full states.

defined as

EG = μ+ − μ−, (2)

where μ+ and μ− are the chemical potentials. As can be seen
from the phase diagram, any finite hopping imbalance leads to
the gapped phase which is a bond-ordered (BO) phase and this
phenomenon is also evident from the single-particle spectrum.

B. Isolated double wells

It is also instructive to discuss the model for the case of
trivially disconnected double wells, corresponding to the case
t2 = 0. From this limit, one can conveniently explain the finite
hopping case, which is the topic of interest of the paper. In
this limit, the model Hamiltonian can be readily diagonalized
for a fixed particle number: In the n = 1 (n = 3) sector, two
eigenenergies ±t1 (U ± 2t1) are found. For n = 2, the eigen-
values are given by U and 1

2 (U ±
√

16t2
1 + U 2 ). With these

eigenvalues in a grand-canonical ensemble, three gapped
phases at fillings ρ = 0.5, 1, and 1.5 can be observed, as
shown in Fig. 3, in the strong dimerization limit. In this limit,
the gap at unit filling is given by EG = −3t1 +

√
16t2

1 + U 2 .
The ground state in the n = 1 sector is given by |ψ1〉 =

ψ20|2, 0〉 + ψ11|1, 1〉 + ψ02|0, 2〉. Here, |n1, n2〉 denotes a
Fock-state basis of the isolated double well and ψ02 =
ψ20 = 2/

√
16t2

1 + 2Uε , ψ11 = 2ε/
√

16t2
1 + 2Uε , where ε =

U/2 +
√

4t2
1 + U 2/4. For U → ∞, this results in a MI-like

state ∼ |11〉 and a dimer of pairs |20〉 + |02〉 [pair–bond-
ordered (PBO) phase] for strong attractive interactions with
a smooth crossover between both regimes. Indeed, the de-
coupled double-well ground state for U = 0 resembles a
superposition of the MI and PBO states. The features of this
interesting many-body state for finite hopping t1, t2 �= 0 will
be studied in Sec. III.

013627-2



THREE-BODY CONSTRAINED BOSONS IN A … PHYSICAL REVIEW A 100, 013627 (2019)

-3 0 3

-3

0

3

6

ρ=2

ρ=0
ρ=1

ρ=0.5

ρ=1
ρ=1.5

U

 μ

FIG. 3. Phase diagram of isolated double wells showing three
gapped phases at ρ = 0.5, 1, and 1.5.

A finite small hopping 0 < t2 	 1 will couple the double
wells and allow for a melting of the gapped phases due to the
energy gain by delocalization of the excitations, and will sta-
bilize superfluids separating the gapped phases. This process
may be understood as well from a effective model of coupled
dimer states such as recently discussed in Refs. [41,42].

III. GENERAL PHASE DIAGRAM

In this section, we discuss the most general model with
finite on-site interaction and finite hoppings. To start with,
we consider the case of vanishing interaction and then we
switch on interaction to see the effect of dimerized hop-
ping on the physics of the system. As our main finding,
we discuss the emergence and crossover between the vari-
ous gapped phases such as bond-order, pair–bond-order, and
Mott-insulator phases. We show how these phases may be
characterized by their different measurables such as the dimer-
ization and their characteristic parity order.

A. Vanishing two-body interaction (U = 0)

In the limit of vanishing interactions for a softcore boson
without the three-body hardcore constraint, one expects an SF
phase even for very strong hopping imbalance. In the presence
of interaction, the physics of the system is governed by the
competition between the hopping amplitudes and the on-site
interactions, which leads to the nontrivial gapped phases at
intermediate half-integer filling apart from the gapped MI
phases [19] as a function of interaction U . A similar feature
is also present in the case of a usual two-color superlattice
potential where the SF phase becomes gapped MI phases at
half integer and integer fillings for strong interactions [43].
The situation, however, is different in the case of three-body
constrained bosons where a maximum of two bosons can oc-
cupy a single lattice site. Due to the effect of the double-well
superlattice, the motion of particles is restricted to one unit
cell. Interestingly, in such a scenario, two different gapped
phases arise at ρ = 1 and ρ = 1.5 after some critical values
of t2. The gap in the system can be seen as the finite plateaus
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FIG. 4. The behavior of ρ with respect to μ for U = 0 (left red
curve) and U = 5 (right blue curve) for t2 = 0.2. Plateaus indicate
the gapped phases.

in the ρ vs μ diagram, as shown in Fig. 4. The phase diagram
corresponding to this scenario is depicted in Fig. 5 where the
gapped phases at ρ = 1 and ρ = 1.5 appear at t2 ∼ 0.4 and
t2 ∼ 0.9, respectively. The gapped BO regions for ρ = 1 and
ρ = 1.5 are bounded by red circles and blue squares, respec-
tively. The black lines correspond to the empty and full states.
The remaining part of the phase diagram is the SF phase.

B. Finite U and t2 = 0.2 case

As the system is already in the gapped BO phase for U = 0
at commensurate densities except at ρ = 0.5, it is interesting
to see the effect of interactions on the ground state of the
system. The phase diagram for this case is shown in Fig. 6.
As we move away from the U = 0 limit along the positive
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FIG. 5. The phase diagram for three-body constrained bosons as
a function of t2 for U = 0 obtained from polynomial extrapolation of
the gap. The BO phase at ρ = 1 and ρ = 1.5 appears at t2 ∼ 0.4 and
t2 ∼ 0.9, respectively.
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FIG. 6. Phase diagrams for t2 = 0.2. The regions bounded by the
green curves are the gapped phases at ρ = 1(middle) which consists
of the MI (PBO) phases in the strong repulsive (attractive) regimes.
The regions bounded by the blue dashed curves are the gapped BO
phases at ρ = 0.5 (upper) and ρ = 1.5 (lower). On the attractive side,
the PSF is separated from the SF phase by the red circles. Inset: The
phase diagram in the limit of isolated double wells for comparison.

U axis, the gapped phases grow as can be seen from the
enlargement of the plateaus in the ρ vs μ plot for U = 5
shown in Fig. 4. The gapped phases at ρ = 0.5 and ρ = 1.5
are depicted by the region bounded by the blue dashed curves
and the one at ρ = 1 is bounded by the green solid curve
in the phase diagram of Fig. 6. At ρ = 0.5, the gap appears
after a critical point U � 0.4 leading to the BO phase. As
anticipated in the discussion of the decoupled double-well
case, the excitation gap at ρ = 1 remains finite for all U ,
even for a small t2 > 0 leading to a smooth crossover from
the pair–bond-ordered (PBO) phase to the MI phase through
the BO phase, where every site is occupied by one atom due to
large on-site repulsion. The strong on-site repulsion disfavors
the dimerization and prohibits two particles from occupying a
single site. For ρ = 1.5, the system remains in the BO phase,
which becomes wider as a function of U . This BO phase
is similar to the one for the hardcore bosons at ρ = 0.5, as
discussed before. The boundaries for the gapped phases are
obtained by computing the chemical potentials μ+ and μ−
and extrapolating them to thermodynamic limit using system
sizes of L = 20, 40, and 80.

The signatures of the BO and PBO phases can be seen by
plotting the bond operator,

Bi,n = 〈(a†
i )n(ai+1)n + H.c.〉, (3)

for different bonds. Here, the exponent n = 1 and n = 2 for
the BO and the PBO phases, respectively. In Fig. 7, we plot
Bi,n for unit filling, which show finite oscillations in the BO
and PBO phases. The calculations are done by taking 80 sites
and, in the figure, we show only the central part of the system.
Figures 7(a)–7(c) shows the values of Bi,n for U = −4, 0, and
8, respectively. The strong oscillation of the PBO operator
compared to the BO operator for U = −4 shows that the
system is dominantly in the PBO phase. Also it can be seen
that for U = 8, the oscillation of Bi,n has decreased drastically
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FIG. 7. Bond operator Bi,n is shown for the BO (blue circles) and
PBO (red squares) phases for ρ =1 and t2 =0.2. (a) Bi,n for U =−4.
(b) Bi,n for U = 0. (c) Bi,n for U = 8.

due to the MI phase. Similarly, in Figs. 8(a) and 8(b), we plot
the value of Bi,n for ρ = 0.5 and ρ = 1.5, respectively, for the
repulsive values of U where the system is in the BO phase.

Further, we obtain the signature of the BO phases by
computing the bond-bond correlation function and the related
structure factor, which is given as

SBO(k) = 1

L2

∑

i, j

eikr〈BiBj〉, (4)

where r = |i − j| is the distance. In the BO phase, the quantity
Bi oscillates in alternate bonds and the structure factor exhibits
a finite peak at the zone boundaries. It is to be noted that
the BO phases which appear in the phase diagram are not
the true BO phase as the lattice translational symmetry is not
spontaneously broken. However, the signature is similar to
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FIG. 8. Bond operator Bi,n is shown for the BO (blue circles) and
PBO (red squares) phases for t2 =0.2. (a) Bi,n for U =4 and ρ =0.5.
(b) Bi,n for U = 2 and ρ = 1.5.

013627-4



THREE-BODY CONSTRAINED BOSONS IN A … PHYSICAL REVIEW A 100, 013627 (2019)

-3 -2 -1 0 1
 μ

0

1

2

ρ

U =  -1.5
U  =  -4.0

-1.575 -1.55
1.5

1.55

1.6

-1.475 -1.47
0.5

0.55

0.6 -0.7 -0.6
1.2

1.25

1.3PSF

PSF

SF

FIG. 9. Behavior of ρ with respect to μ for U = −4.0 (left red
curve) and U = −1.5 (right blue curve) at t2 = 0.2. Insets: The
enlarged regions of the SF and PSF phases where the density jumps
in steps of one and two particles, respectively.

the BO phase, whose qualitative feature can be seen from the
bond-order structure factor.

The situation becomes interesting in the attractive regime.
Because of the three-body constraint, the system is stable
against collapse and, due to the attractive interaction, the
particles start to form pairs. While there is no gapped phase
at ρ = 0.5 in this side of the phase diagram, the gap at
ρ = 1.5 remains finite up to some finite values of U and then
closes after a critical point of U = −2.6. The closing up of
the gap is due to the competition between the hopping and
attractive interaction which tries to break the dimerization
and the system becomes a superfluid, as shown in Fig. 6.
However, for ρ = 1, the gap survives for very large values of
U extending up to infinity. These features can be seen from
the plateaus in the ρ − μ plot as shown in Fig. 9 for two
different values of U = −1.5 and U = −4.0. For U = −1.5,
the gaps appear at ρ = 1 as well as at ρ = 1.5, whereas for
U = −4, only the gap at ρ = 1 exists. For sufficiently strong
attractive interactions, the particles tend to form pairs and, at
unit filling, it becomes a half-filled system of bosonic pairs. It
is to be noted that these pairs behave like hardcore bosons due
to the three-body constraint. In such a scenario, the ground
state is similar to the dimerization of the hardcore bosons,
as discussed in the section for the U = ∞ case. The gapped
phase for large attractive U is the BO phase of pairs which can
be called the PBO phase. However, in the weak interaction
regime, pair formation is not favored due to the competition
between the interaction and kinetic energy. Therefore, the BO
phase which appears at U = 0 survives up to a finite value of
attractive U and then there exists a smooth crossover to the
PBO phase as the value of U increases.

The characteristic feature of the PBO phase is seen from
the PBO structure factor SPBO(k), which is similar to the BO
structure factor as defined in Eq. (4), with a†(a) replaced by
a†2(a2), which is shown in Fig. 10. It can be seen that the value
of SPBO(k = π ) increases smoothly as the value of U becomes
more and more attractive. At the same time, the BO structure
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FIG. 10. The extrapolated values of the bond-order structure
factor for a single particle (blue circles) and pairs (red squares) for
different values of U at ρ = 1 (see text for details). Here, t2 = 0.2.

factor SBO(k = π ) decreases smoothly after increasing up to
a particular value of attractive interaction, U ∼ −2.5. Note
that the finite value of SPBO(k = π ) for repulsive U and
small attractive U is due to the finite probability of second-
order hopping processes in the BO phase. We would like to
stress that since the BO phases are the manifestation of the
double-well geometry of the lattice, the BO structure factor
remains finite even in the the MI and PBO phase and even
in the thermodynamic limit. It can be seen from Fig. 10
that on the repulsive interaction side, the value of SBO(π )
smoothly decreases after a particular value of U . This signals
the crossover to the MI phase. The onset of the MI phase can
be understood as in the case of large interaction U , where the
system prefers to accommodate one particle in each site which
is also true in the homogeneous lattice systems. This can be
seen from the decreasing trend of the curve shown in Fig. 10.

We may further characterize the position of the phase
crossover by local maximum of the fidelity susceptibility [44],
which is defined as

χFS(U ) = lim
U−U ′→0

−2 ln |〈�0(U )|�0(U ′)〉|
(U − U ′)2

, (5)

with the ground-state wave function |�0〉. While the phase
transitions are often characterized by a peak diverging with
the system size L, here we observe a stable maximum as a
function of several system sizes, as shown in Fig. 11.

The gapped BO phase which continues from the repulsive
side for ρ = 1.5 closes at a critical value U ∼ −2.6. It is
interesting to note that as the interaction becomes more and
more attractive, the pair formation occurs and a PSF phase is
stabilized for all densities around ρ = 1.0 [31,34]. The PSF
and SF phases are separated by the red circles as depicted in
the phase diagram of Fig. 6. The signature of the PSF phase
can be obtained from the ρ − μ plot, where the density jumps
in steps of two particles at a time to minimize the energy. This
is clearly visible in the insets of Fig. 9, where the densities
for two different values of U are plotted. For U = −1.5,
the system is in a PSF phase in the region below the ρ = 1
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FIG. 11. Fidelity susceptibility χFS as function of the interaction
strength U (ρ = 1, t2 = 0.2) for L = 40, 80, and 160.

gapped phase and the rest of the region is in the SF phase for
incommensurate densities.

However, for U = −4, the system is in the PSF phase for
all values of density except ρ = 1. Apart from the ρ − μ

curve, we compute the single-particle and pair correlation
functions and the corresponding momentum distribution to
confirm the existence of the PSF phase. Figure 12 shows the
behavior of �(i, j) = 〈a†

i a j〉 (black circles) and �pair (i, j) =
〈(a†

i )2(a j )2〉 (red squares) with respect to the distance |i − j|
for U = −4 and ρ = 1.5. It can be clearly seen that the
single-particle correlation function decays faster, whereas the
pair correlation function behaves like a power law in the
logarithmic scale, which indicates the presence of the PSF
phase.

We also compute the momentum distribution function as

N (k) = 1

L

∑

i, j

eikr�(i, j) (6)

1 10
|i-j|

0.001

0.01

0.1

Γ

Γ(|i-j|)
Γ

pair
(|i-j|)

FIG. 12. Single-particle correlation function �(|i − j|) (black
circles) and pair correlation functions �pair (|i − j|) for t2 = 0.2 are
plotted for U = −4.0 at ρ = 1.5 for a system of length L = 160 (see
text for details).
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FIG. 13. The peak heights of N (k = 0) (blue circles) and
Npair (k = 0) (red squares) at ρ = 0.5 using L = 160 for t2 = 0.2
show the transition from PSF to SF, and then to BO phases, as
discussed in the text.

to complement the SF phases. Where �(i, j) = 〈a†
i a j〉

(〈a†
i

2
a2

j〉) is the single-particle (pair correlation) function. The
peak heights of the momentum distribution function N (k = 0)
for a single particle and pairs are plotted against U in Fig. 13
for a cut through the phase diagram of Fig. 6 which corre-
sponds to ρ = 0.5. This shows that for a large attractive inter-
action, Npair (k = 0) is dominant, indicating the PSF phase. As
the value of U becomes less attractive, the value of Npair (k =
0) decreases and N (k = 0) increases, showing the signatures
of the SF phase. The SF phase continues until the critical
point for the SF-BO transition on the repulsive side, where
both momentum distribution functions are extremely small.
The SF-BO transitions are a Berezinskii-Kosterlitz-Thouless
(BKT)-type transition, which can be seen from the smooth
opening up of the gap in Fig. 6. The transition points can be
accurately obtained by performing a finite-size scaling of the
single-particle momentum distribution function, which varies
as N (k = 0) ∝ L1− 1

2K [45], where K = 2 is the Luttinger
parameter. In Fig. 14, we plot N (k = 0)L−3/4 for different
lengths (L = 80, 120, 160) and all the curves intersect at the
critical point U ∼ 0.44.

At this point, we analyze the system without the three-
body hardcore constraint to see the effect of finite three-
body interactions (W/6)

∑
i ni(ni − 1)(ni − 2) in the presence

of the double-well potentials. As already mentioned before,
for softcore bosons and vanishing two-body interaction, i.e.,
U = 0, the system is a gapless superfluid for any value of
hopping dimerization, which is in contrast to the case of three-
body constrained bosons. To see the effect of finite W , we
analyze the ρ vs μ plot for different values of W = 0, 5, and
10 considering L = 40 with small on-site interaction U = 1,
which is shown in Fig. 15. Here we can see that for W = 0, the
system is in the SF phase for integer and half-integer densities,
except at half filling where there exists a small plateau. This
is consistent with the result obtained in Ref. [46]. However,
as the value of W increases, the plateaus at other integer
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FIG. 14. Finite-size scaling of N (k = 0) for t2 = 0.2 shows that
the curves for different lengths (L = 40, 80, 120, 160) intersect at
the critical point U ∼ 0.44 for the SF-MI transition at ρ = 0.5.

and half-integer densities appear, indicating various gapped
phases. The plateau lengths increase in size with an increase
in W . Therefore, we would like to highlight that although
the three-body hardcore constraint is essential to stabilize the
gapped phases on the attractive U side, it is not that crucial for
the repulsive U case.

C. Finite U and t2 = 0.6 case

After analyzing the phase diagram for the t2 = 0.2 case
where the effect of staggered hopping is large, we repeat the
calculation for another cut through the phase diagram of Fig. 5
at t2 = 0.6. The motivation to consider t2 = 0.6 lies in the fact
that there is no gap at ρ = 1 for U = 0, as depicted in Fig. 5,
and it will be interesting to see how the system evolves by

0 5 10 15
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ρ

W = 0
W = 5
W = 10

-0.9 -0.6

0.4

0.6
-0.5 0

0.8

1

1.2

FIG. 15. Behavior of ρ with respect to μ for U = 1, t2 = 0.2,
and W = 0 (black curve), W = 5 (red curve), and W = 10 (green
curve) for the case of softcore bosons. Here the maximum number of
particles per site is taken to be 5. Inset: The zoomed-in view of the
ρ = 1 and 0.5 regions.
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FIG. 16. Phase diagrams for t2 = 0.6. The regions bounded by
the continuous green curves are the gapped phases at ρ = 1 and the
regions bounded by the blue dashed curves are the gapped bond-
order phases at ρ = 0.5 (upper) and 1.5 (lower). On the negative U
side, the PSF is separated from the SF phase by the red circles. The
black dot-dashed lines represent the empty and full states.

moving away from this limit. A similar analysis along the line
of the t2 = 0.2 case leads to the phase diagram as shown in
Fig. 16. It can be seen that the overall picture of the phase
diagram is similar to that of t2 = 0.2 for ρ = 0.5 and ρ = 1.5.
However, it is interesting to note that there are clear phase
transitions from the SF phase to the MI phase on the repulsive
side of U and to a PBO phase on the attractive side of U . These
signatures can be clearly seen from various order parameters
plotted in Fig. 17. It can be seen that the PBO structure factor,
gap, and parity order (see Sec. III D for detail) remain finite
in the gapped MI and PBO phases, whereas they vanish in the
SF phase.
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FIG. 17. Order parameters depicting different phases for t2 =0.6.
The red circles, green squares, and black down-triangles show the
values of O2

P,e(i, j), EG(L), and SPBO(k = π ), respectively, for differ-
ent values of U .
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FIG. 18. Parity order O2
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 1 are plotted for different values of t2 with respect to U .
t2 = 0 lines correspond to the analytical results, as discussed in the
main text; t2 = 0.2 and t2 = 0.6 curves depict the data obtained for
L = 160 sites.

D. Parity order

Another physical quantity of interest which can be directly
accessed in the state-of-the art experiment [47,48] is the parity
order parameter, which is defined as

O2
P(i, j) = 〈

ei
∑

i<k< j πnk
〉
. (7)

To complement our findings, we compute O2
P(i, j), which

is finite in the MI phase due to particle-hole excitations. For
small t2 → 0, we may understand the emergence of parity or-
der from the properties of isolated double wells, as discussed
in Sec. II B. For a ground state at ρ = 1 given by a product
of |ψ1〉, one easily estimates the parity order to be exactly
OP,e =1 on even distances |i − j|. For odd distances, however,
one observes an interesting dependence of the parity order on
the interaction strength, OP,o = − U√

16t2
1 +U 2

. We plot the odd

and even distance parity orders as OP,e and OP,o, respectively,
with respect to U for different values of t2 in Fig. 18. The black
and red curves correspond to OP,e and OP,o, respectively. The
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FIG. 19. O2
P,e at ρ = 0.5, 1.0, and 1.5 for t2 = 0.2 is plotted for

different values of U .

solid lines correspond to the limit of isolated double wells, i.e.,
for t2 = 0. The dotted lines are the t2 = 0.2 and the dashed
curves are for t2 = 0.6. It is very clear from this figure that the
odd and even distance parities show two different behaviors
and the parity order is finite in the MI, BO, and PBO phases,
whereas it is zero in the SF phase. Analogously, one also finds,
for the gapped phases at half filling, a finite oscillating parity
order which is 0 for even and ±1 for odd distances. The parity
order parameter also vanishes in the SF phase. This can be
seen from Fig. 19, where O2

P,e is plotted as a function of U for
different fillings.

IV. CONCLUSIONS

We investigated the ground-state phase diagram of a sys-
tem of three-body constrained bosons in a double-well optical
lattice. By analyzing the competition between the dimerized
hopping and on-site interactions, we obtained the complete
phase diagram both in the regime of attractive as well as
repulsive interactions. The phase diagram exhibits various
gapped phases such as the BO and MI phases at commen-
surate densities. At unit filling and small hopping ratios,
the system exhibits a BO phase of pairs in the attractive
interaction regime, which we call the PBO phase, and there
exists a smooth crossover from MI-BO (BO-PBO) on the
repulsive (attractive) side of the phase diagram. For large
values of the hopping ratios, the gapped phases melt for
small values of interactions and there exists an intermediate
SF phase. The appropriate finite-size scaling shows that the
superfluid to gapped phase transitions are of the BKT type.
The findings presented in this work address an interesting
problem which involves the physics of strongly correlated
bosons in a double-well optical lattice both in the attractive
and repulsive regimes. As the double-well optical lattices have
already been created and manipulated using cold atoms, it will
be possible to observe these phases in the experiments.

As mentioned before, this kind of double-well optical
lattice resembles the topological SSH model discussed in the
context of solitons in polyacetylene, which possess two types
of dimerizations depending on the hopping ratios. The SSH
model exhibits a topological phase transition from a trivial to
nontrivial phase through a gapless point. The nontrivial phase
is characterized by zero-energy edge modes. The topological
aspects of this model have been analyzed recently in various
contexts [18,19,49–51]. One interesting phenomenon which
signals these topological phase transitions is the Thouless
charge pumping mechanism [21,23,52,53]. In the present
scenario, the PBO phase consists of hardcore boson pairs and
it is, in principle, possible to map the system to an effective
SSH model for the spinless fermions and study the topological
features in the context of the Rice-Mele model [54–56].
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