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We report on the controlled creation of multiple soliton complexes of the dark-bright type in one-dimensional
two-component, three-component, and spinor Bose-Einstein condensates. The formation of solitonic entities
of the dark-bright type is based on the so-called matter-wave interference of spatially separated condensates.
In all three cases, a systematic numerical study is carried out upon considering different variations of each
system’s parameters both in the absence and in the presence of a harmonic trap. It is found that manipulating
the initial separation or the chemical potential of the participating components allows us to tailor the number of
nucleated dark-bright states. Particularly, the number of solitons generated increases upon increasing either the
initial separation or the chemical potential of the participating components. Similarities and differences of the
distinct models considered herein are showcased, while the robustness of the emerging states is illustrated via
direct numerical integration, demonstrating their long time propagation. Importantly, for the spinorial system,
we unravel the existence of beating dark soliton arrays that are formed due to the spin-mixing dynamics. These
states persist in the presence of a parabolic trap, often relevant for associated experimental realizations.

DOI: 10.1103/PhysRevA.100.013626

I. INTRODUCTION

Among the nonlinear excitations that arise in Bose-
Einstein condensates (BECs) [1,2], matter-wave dark [3] and
bright [4] solitons constitute, arguably, some of the funda-
mental signatures. These structures stem from the balance
between dispersion and nonlinearity and exist in single-
component BECs with repulsive and attractive interparticle
interactions respectively [5,6]. Also, more complex structures
consisting of dark solitons in one component and bright
solitons hosted in the second component of a binary BEC
have been experimentally realized [7–12]. The existence and
robustness of a single dark-bright (DB) soliton as well as
interactions between multiple DB states both with each other
or with impurities have been exhaustively studied in such
settings [10,13–21]. In contrast to single-component setups,
DB solitons are the building blocks that emerge in repulsively
interacting two-component BECs [22]. In such a repulsive
environment (where bright solitonic states cannot exist on
their own), DB states owe their existence to the effective
potential created by each of the participating dark solitons into
which each of the bright solitons is trapped and consequently
waveguided [23–25]. This waveguiding notion was originally
introduced in the context of nonlinear optics [26–34]. Besides
the aforementioned two-component BECs, the experimen-
tal realization of spinor BECs [35–39] offers possibilities
of investigating the different soliton entities that arise in
them [38–52]. In this context, more complex compounds in
the form of dark-dark-bright (DDB) and dark-bright-bright
(DBB) solitons have been theoretically predicted [53,54] and
very recently experimentally observed [55].

There are multiple ways of generating single and multi-
ple dark solitons [56] (with the latter sometimes referred to
as the dark soliton train [57]) in single-component BECs.
Common techniques consist of density engineering [58–60],
phase engineering [7,61–63], and collision of two spatially
separated condensates [64,65] (see also Ref. [66] for an
interesting geometric higher dimensional implementation of
the latter process so as to produce vortices). This latter
generation process can be thought of as a consequence of
matter-wave interference of the two condensates [64,67–69].
Additionally, also known are the conditions under which the
controllable formation of dark soliton trains can be achieved
[57,64,67–69]. In particular, it has been demonstrated that
the number of generated dark solitons depends on the phase
and momentum of the colliding condensates [64,69]. On the
contrary, in multicomponent settings such as two-component
and spinor BECs, the dynamics is much more involved. In this
context, large-scale counterflow experiments exist according
to which also DB soliton trains can be created [9]. However,
to the best of our knowledge, a systematic study regarding
the controllable formation of these more complex solitonic
structures and their relevant extensions in spinorial BECs is
absent in the current literature. Such a controlled formation
process represents the core of the present investigation.

Motivated by recent experimental advances in one-
dimensional (1D) two-component [8–12], and more impor-
tantly spinor BECs [55], here we report on the controllable
generation of multiple soliton complexes. These include DB
solitons in two-component BECs, and variants of these struc-
tures, i.e., DDB and DBB soliton arrays, in three-component
and spinor BECs. For all models under consideration, the
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creation process of the relevant states is based on the so-called
matter-wave interference of separated condensates being gen-
eralized to multicomponent systems. In all cases, the homo-
geneous setting is initially discussed and subsequently we
generalize our findings to the case where an experimentally
motivated parabolic confinement, i.e., trap, is present.

Specifically, for the homogeneous settings investigated
herein, the creation process is as follows. To set up the
interference dynamics, an initial inverted rectangular pulse
(IRP) is considered [6] for the component(s) that will host
later on the dark solitons. The counterflow process relies on
the collision of the two sides of the pulse. For the remaining
component(s) that will host later on the bright solitons, a
Gaussian pulse initial condition is introduced. It is shown
that such a process ensures the formation of dark soliton
arrays, and that the number of solitons can be manipulated by
properly adjusting the width of the initial IRP. Additionally,
the dispersive behavior of the Gaussian used, due to the de-
focusing nature of each system, allows its confinement in the
effective potential created by each of the formed dark solitons
and thus leads to the formation of the desired localized humps.
The latter are trapped and subsequently waveguided by the
corresponding dark solitons. In this way, arrays of robustly
propagating DB, DDB, and DBB solitons in two-component,
three-component, and spinor systems are showcased. Indeed,
and as far as the two-component system is concerned, we
verify among others that during evolution the trajectory of
each of the nucleated pairs follows the analytical predictions
stemming from the exact single DB state. Also, for the three-
component scenario, generalized expressions for the soliton
characteristics are extracted and deviations from the latter
when different initializations are considered are discussed in
detail. In the spinor setting, the controlled nucleation of arrays
consisting of multiple DBB and DDB solitons is demon-
strated, a result that can be tested in current state-of-the-art
experiments [55]. Remarkably enough, in the DDB nucleation
process, the originally formed DDB arrays soon after their
formation transition into beating dark solitons that gradually
arise in all three hyperfine components [11,12,34,70]. This
transition stems, as we will explain in more detail below, from
the spin-mixing dynamics that allows for particle exchange
among the hyperfine components.

After the proof of principle in the spatially homogeneous
case, we turn to the harmonically trapped models, where once
again in order to induce the dynamics, counterflow techniques
are utilized [9,64,69]. Now, the background on top of which
the spatially separated BECs are initially set up asymptotes to
a Thomas-Fermi (TF) profile for all the participating compo-
nents. The counterflowing components are initially relaxed in
a double-well potential, while the other component encounters
a tight harmonic trap. The system is then released and evolves
in a common parabolic potential. It is found that properly
adjusting the initial separation of the condensates or the chem-
ical potential in each of the participating components leads to
the controlled nucleation of a desired number of soliton struc-
tures in this case too, with similar functional dependences of
the soliton number on the system characteristics as above.
For the two- and three-component systems, it is found that
the generated soliton arrays travel within the parabolic trap
oscillating and interacting with one another for large evolution

times. Finally, in the genuine spinor case and for a DDB
formation process again, arrays of oscillating and interacting
beating dark solitons emerge in all hyperfine components. We
find that these states occur earlier in time when compared
to the homogeneous scenario. The spin-mixing dynamics is
explained via monitoring the population of the three hyperfine
states. Damping oscillations of the latter are observed, in line
with the predictions in spinor F = 1 BECs [37,71].

The workflow of this presentation proceeds as follows.
In Sec. II, we present the different models under considera-
tion. In particular, the spinor F = 1 BEC system is initially
introduced and the complexity of the model is reduced all
the way down to the single-component setting. Subsequently,
a brief discussion summarizing prior results regarding the
controllable generation of dark soliton trains emerging in
single-component systems is provided. Finally, here we com-
ment on the initial-state preparation utilized herein in order
to controllably generate multiple soliton complexes of the
DB type in multicomponent BECs. Section III contains our
numerical findings ranging from two-component to spinor
BEC systems. In all the cases presented, the homogeneous
setting is initially investigated, and we next elaborate on the
relevant findings in the presence of traps. To conclude this
work, in Sec. IV we summarize our findings and we also
discuss future directions.

II. MODELS AND SETUPS

A. Equations of motion

We consider a one-dimensional (1D) harmonically con-
fined spinor F = 1 BEC. Such a system can be described
by three coupled Gross-Pitaevskii equations (CGPEs), one for
each of the three hyperfine states mF = −1, 0,+1 of, e.g., a
87Rb gas. In the mean-field framework, the wave functions
�(x, t ) = [�+1(x, t ), �0(x, t ), �−1(x, t )]T of the aforemen-
tioned hyperfine components are known to obey the following
GPEs (see, e.g., Refs. [39,55]):

i∂t�±1 = H0�±1 + gn(|�+1|2 + |�0|2 + |�−1|2)�±1

+ gs(|�±1|2 + |�0|2 − |�∓1|2)�±1 + gs�
2
0�∗

∓1,

(1a)

i∂t�0 = H0�0 + gn(|�+1|2 + |�0|2 + |�−1|2)�0

+ gs(|�+1|2 + |�−1|2)�0 + 2gs�+1�
∗
0 �−1. (1b)

In the above expressions, the asterisk denotes the com-
plex conjugate and H0 = − 1

2∂2
x + V (x) is the single-particle

Hamiltonian. Here, V (x) = (1/2)�2x2 denotes (unless indi-
cated otherwise) the external harmonic potential with fre-
quency � = ωx/ω⊥ and ω⊥ is the trapping frequency in
the transverse direction. Equations (1a) and (1b) were made
dimensionless by measuring length, time, and energy in units
a⊥ = √

h̄/(Mω⊥), ω−1
⊥ , and h̄ω⊥, respectively. Here, a⊥ is

the transverse oscillator length. In this work, we consider
condensates consisting of 87Rb atoms of mass M, and we as-
sume strongly anisotropic clouds having a transverse trapping
frequency ω⊥ = 2π × 175 Hz � ωx that is typically used in
experiments with spinor F = 1 BECs of 87Rb atoms [55].

In general, spinor BECs exhibit both symmetric or spin-
independent and asymmetric or spin-dependent interatomic
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interactions. In particular, gn is the so-called spin-independent
interaction strength being positive (negative) for repulsive
(attractive) interatomic interactions. gs denotes the so-called
spin-dependent interaction strength being in turn positive
(negative) for antiferromagnetic (ferromagnetic) interactions
[72]. Specifically, for a 1D spin-1 BEC, gn = 2(a0+2a2 )

3a⊥
and

gs = 2(a2−a0 )
3a⊥

. Here, a0 and a2 are the corresponding s-wave
scattering lengths of two atoms in the scattering channels
with total spin F = 0 and F = 2, respectively. The measured
values of the aforementioned scattering lengths for 87Rb are
a0 = 101.8aB and a2 = 100.4aB, where aB is the Bohr radius,
resulting in a ferromagnetic spinor BEC [73,74].

Finally, the total number of particles and the total mag-
netization for the system of Eqs. (1a) and (1b) are defined
as N = ∑

mF

∫ |�mF |2dx and Mz = ∫
(|�+1|2 − |�−1|2)dx,

respectively.
Simplified BEC models can be easily obtained from

Eqs. (1a) and (1b). In particular, when the spin degrees of
freedom are frozen, namely for gs = 0, the aforementioned
system reduces to the following three-component one:

i∂t� j = H0� j + gn(|� j |2 + |�k|2 + |�l |2)� j . (2)

The indices j, k, l here refer to each of the three
mF = +1, 0,−1 components, with j �= k �= l . This three-
component system, in the absence of an external confinement
[i.e., for V (x) = 0] and for constant gn which, without loss of
generality, can be set to gn = 1, is said to be integrable and
reduces to the so-called Manakov model [41,49,75]. As such,
it admits exact soliton solutions of the DDB and DBB types
[76]. Accounting for repulsive inter- and intraspecies interac-
tions (up to a rescaling), we will set gn = 1 in our subsequent
results discussion. Additionally, the two-component BEC can
be retrieved by setting, e.g., �l = 0 in Eq. (2). Note that such
a binary mixture consists of two different spin states, e.g.,
one with |F = 1〉 and one with |F = 2〉, of the same atomic
species and is theoretically described by the following GPEs
[77]:

i∂t� j = H0� j + gn(|� j |2 + |�k|2)� j . (3)

Here, the indices j, k refer to each of the two participating
species. Finally, the single-component case is retrieved by
setting in Eq. (3) �k = 0. The corresponding GPE reads
[78,79]

i∂t� = H0� + gn|�|2�. (4)

In the forthcoming section, we will first focus on the inte-
grable version of Eq. (4) and the exact arrays of dark soliton
solutions that it admits.

B. Prior analytical considerations and initial-state preparation

It is well known and experimentally confirmed that mul-
tiple dark solitons can be systematically generated in single-
component BECs, via the so-called matter-wave interference
of two initially separated condensates [64,67–69]. Aiming to
generalize this mechanism to multicomponent systems, below
we briefly discuss previous studies on this topic.

In particular, the problem of determining the parameters
of a dark soliton formed by an initial excitation on a uniform

background has been analytically solved by the inverse scat-
tering method [6]. In this framework, Eq. (4) [with V (x) = 0]
is associated with the Zakharov-Shabat (ZS) [6,80] linear
spectral problem. The corresponding soliton parameters are
related to the eigenvalues of this spectral problem, calculated
for a given initial condensate wave function �(x, 0). Specif-
ically, let us assume that �(x, 0) has the form corresponding
to an IRP

�(x, 0) = u0 at x < −a,

�(x, 0) = 0 at − a < x < a,

�(x, 0) = u1ei�φ at x > a, (5)

with a, u0, u1, �φ denoting respectively the half-width, the
two amplitudes, and the phase difference between the two
sides of the IRP. Subsequently, for the case of |u0| = |u1| =
|u|, it has been shown [6] that the number of dark soliton pairs
depends on the amplitude, |u|, and the phase difference �φ

of the initial IRP. Namely, for �φ = 0, which corresponds
to a symmetric or in-phase (IP) IRP [see Eq. (5)], there exist
n-symmetrical pairs of dark soliton solutions that are given by
the solutions of the (transcendental) eigenvalue equations

|u| cos(2anλn) = ±λn. (6)

Here, λn are the corresponding eigenvalues being bounded
within the interval [0, |u|]. Importantly, solutions of Eq. (6)
exist only within the intervals 2anλn ∈ [(n − 1)π, (n − 1

2 )π ]
with n = 1, 2, 3, . . . . Notice also that for n = 1 Eq. (6) has
at least one root within the interval 0 < 2anλn < π

2 . Thus,
there exists at least one pair of coherent structures. Multiple
roots of Eq. (6) can be found but for appropriate values of
the half-width, an, that lie within the aforementioned interval.
Therefore, there exists a threshold for an above which solitons
can be created. It has been demonstrated that the lower bound
for the width of the IP-IRP in order to obtain n-symmetrical
pairs of soliton solutions has the form

WIP = 2an = (n − 1)π

|u| . (7)

In the above expression, we have defined WIP ≡ 2an. More-
over, as dictated by Eq. (6), the total number of solitons is
always even. Additionally, in order to obtain at least one pair
of soliton solutions, i.e., for n = 1, then WIP > 0 according to
Eq. (7).

On the other hand, for �φ = π [see Eq. (5)], i.e., for an
asymmetric IRP or out-of-phase (OP) initial conditions, the n
pairs of soliton solutions are given by the following eigenvalue
equations:

|u| sin(2anλn) = ±λn. (8)

Here, 2anλn ∈ [(n − 1
2 )π, nπ ] with n = 1, 2, 3, . . . . In the OP

case, the corresponding threshold for the width 2an reads [see
Eq. (8)]

WOP = 2an =
(
n − 1

2

)
π

|u| , (9)

where WOP ≡ 2an is introduced. For both IP- and OP-IRPs,
the amplitude, νn, of each dark soliton pair is defined by
the eigenvalues 0 � |λn| � |u| through the relation νn =√|u|2 − λ2

n. Also each soliton’s velocity is given by vn =
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FIG. 1. Left axes: Profile snapshots of the density, |�|2, at t =
150 showcasing the generated dark solitons for (a) IP-IRP and
(b) OP-IRP initial conditions. In both cases |u| = 1 and a = 5, result-
ing in three pairs of dark solitons being formed in panel (a) and three
pairs and a central black soliton in panel (b). Right axes: Snapshots of
the corresponding phase, φ (see legend) for (a) an IP-IRP and (b) an
OP-IRP, illustrating the characteristic phase jump occurring at each
of the dark soliton minima. Phase shifts 0 < �φ < π correspond
to moving (gray) solitons, and the maximum phase shift �φ = π

belongs to the black soliton centered at x = 0 in the OP case (b).
Note that the quantities shown are measured in transverse oscillator
units (see text).

±λn. From Eq. (9) and for n = 1, we can again obtain the
minimum width to assure the existence of at least a one-pair
solution. The latter reads WOP = π/(2|u|). Although Eq. (8)
gives the solutions for n pairs of solitons, there exists also
an isolated wave for λ = 0 corresponding to a black soliton
with ν = |u| and v = 0. In summary, an odd number of dark
solitons is expected to be generated for OP initial conditions.
We should remark at this point that Eqs. (7) and (9) dictate the
dependence of the generated number of dark solitons not only
on the phase but also on the momenta of the colliding conden-
sates [64,69]. In particular, for larger initial widths the number
of dark solitons generated increases since the two sides of
the IRP acquire, during the counterflow, larger momenta (see
also here the works of Refs. [33,81] and references therein
for relevant studies in nonlinear optics). Importantly, also,
the effective intuition of the number of solitons filling in the
space between the two sides in “units” of the healing length,
namely in dark solitons, is a relevant one to qualitatively bear
in mind. Finally, we must also note that in the BEC context
an initial-state preparation having the form of Eq. (5) can, in
principle, be achieved by standard phase-imprinting methods
and the use of phase masks [7,62,66].

Figures 1(a) and 1(b) illustrate profile snapshots (at t =
150) of the density, |�|2, for IP- and OP-IRPs, respectively.
As per our discussion above, an even number of dark soli-
tons is expected and indeed observed for an IP-IRP [see
Fig. 1(a)]. In particular, for an initial amplitude |u| = 1 and
half-width a = 5, three pairs of dark solitons symmetrically
placed around the origin (x = 0) are clearly generated. On the
other hand, for an OP-IRP, an odd number of solitons occurs,
consisting of three pairs of dark states formed symmetrically
around x = 0 and an isolated black soliton residing at x = 0
[see Fig. 1(b)]. In both cases, by inspecting the relevant phase,
φ, the characteristic phase jump, �φ, located right at the dark
density minima, expected for each of the nucleated dark states

can be clearly inferred [see dashed lines in Figs. 1(a) and
1(b)]. Notice that all the solitons formed for both IP- and
OP-IRPs are gray (moving) ones since 0 < �φ < π , except
for the black one shown in Fig. 1(b), which has a phase shift
�φ = π .

Up to this point, we have briefly reviewed the well-known
results regarding the controllable generation of multiple dark
solitons in homogeneous single-component settings. Below,
we focus on the controllable formation of more complex
solitonic entities that appear in multicomponent BECs. In this
latter context, analytical expressions like the ones provided by
Eqs. (7) and (9) are, to the best of our knowledge, currently
unavailable in the literature for the initial waveforms consid-
ered herein. Thus, in the following we resort to a systematic
numerical investigation aiming at controlling the emergence
of more complex solitonic structures consisting of multiple
solitons of the DB type. In particular, we initially focus on
the simplest case scenario, i.e., a two-component BEC [see
Eq. (3)]. Next, in our systematic progression, we consider a
three-component mixture [see Eq. (2)]; finally, we turn our
attention to the true spinorial BEC system [see Eqs. (1a) and
(1b)]. Additionally, and also in all cases that will be examined
herein, in order to initialize the dynamics, we use as initial
condition for the component(s) that during the evolution will
host multiple dark solitons the IRP wave function given by
Eq. (5). Furthermore, for the component(s) that during the
evolution will host multiple bright states, a Gaussian pulse is
used. The latter ansatz is given by

�(x, 0) =
√

A exp

[
−1

2
κ2(x − X0)2

]
, (10)

with A, κ , and X0 denoting respectively the amplitude, the
inverse width, and the center of the Gaussian pulse. To min-
imize the emitted radiation during the counterflow process,
in the trapped scenarios the following procedure is used. The
multicomponent system is initially relaxed to its ground-state
configuration. For the relaxation process, we use as an initial
guess Thomas-Fermi (TF) profiles for all the participating
components, i.e., �(x) = √

μ − Vi(x). Here, μ denotes the
common chemical potential assumed throughout this work for
all models under consideration. It is relevant to mention in
passing here that the selection of a common μ is a necessity
(due to the spin-dependent interaction) in the spinor system,
but not in the Manakov case (where it constitutes a simpli-
fication in order to reduce the large number of parameters
in the problem). Additionally, i = d, b indicates the different
traps used for the participating species. In particular, the
component(s) that will host during evolution dark solitons is
(are) confined in a double-well potential that reads [67,69]

Vd (x) = V (x) + G exp(−x2/w2). (11)

In Eq. (11), V (x) is the standard harmonic potential, while
G and w are the amplitude and width of the Gaussian bar-
rier used. Tuning G and w allows us to control the spatial
separation of the two condensates. We also note in passing
that the choice of Eq. (11) is based on the standard way to
induce the counterflow dynamics in single-component BEC
experiments [64,65]. The remaining component(s) that during
evolution will host bright solitons are trapped solely in a
harmonic potential Vb(x) = 1

2�2
bx2, with �b > �. The latter
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choice is made in order to reduce the initial spatial overlap
between the components which, in turn, facilitates soliton
generation during the dynamics. After the above-discussed
relaxation process, the system is left to dynamically evolve
in the common harmonic potential V (x) by switching off the
barrier in Eq. (11), i.e., setting G = 0, and also removing Vb

by setting �b = 0.
In all cases under investigation, in order to simulate

the counterflow dynamics of the relevant mixture, a fourth-
order Runge-Kutta integrator is employed, and a second-
order finite-differences method is used for the spatial deriva-
tives. The spatial and time discretizations are dx = 0.1 and
dt = 0.001, respectively. Moreover, unless stated otherwise,
throughout this work we fix |u| = 1, �φ = 0 [see Eq. (5)] and
A = 1, κ = 1, X0 = 0 [see Eq. (10)]. The default parameters
for the trapped scenarios are μ j = μ = 1 (with j denoting
the participating components) G = 5μ, w2 = 5, � = 0.05,
and �b = 30�. We have checked that slight deviations from
these parametric selections do not significantly affect our
qualitative observations reported below. Additionally, for the
spinor BEC system, we also fix gs = −4.6×10−3. Notice that
the chosen value is exactly the ratio a2−a0

a0+2a2
that is (in the range)

typically used in ferromagnetic spinor F = 1 BEC of 87Rb
atoms [73,74]. However, we note that the numerical findings
to be presented below are not altered significantly even upon
considering a spinor F = 1 BEC of 23Na atoms.

Finally, focusing on 87Rb BEC systems, our dimensionless
parameters can be expressed in dimensional form by assuming
a transversal trapping frequency ω⊥ = 2π × 175 Hz. Then,
all timescales must be rescaled by 8.1 s and all length scales
by 100 μm. This yields an axial trapping frequency ωx ≈
2π × 1.1 Hz, which is accessible by current state-of-the-art
experiments [55]. The corresponding aspect ratio is ωx/ω⊥ =
5 × 10−3 and as such lies within the range of applicability of
the 1D GP theory according to the criterion Na4

⊥/a2a2
z � 1

[82]. Here, a⊥ and az denote respectively the oscillator length
in the transversal and axial direction, while a is the three-
dimensional s-wave scattering length.

III. NUMERICAL RESULTS AND DISCUSSION

A. Two-component BEC

In this section, we present our findings regarding the con-
trolled generation of arrays of DB solitons and their robust
evolution in two-component BECs [7–12]. To induce the
counterflow dynamics, we utilize the methods introduced in
Sec. II B. Before delving into the associated dynamics, we
should first recall that in the integrable limit, i.e., gn = 1
and V (x) = 0, the system of Eqs. (3) admits an exact DB
soliton solution. The corresponding DB waveforms read [10,
19–21,76]

�d (x, t ) = [ν tanh[D(x − x0(t ))] + iλ]e−it , (12)

�b(x, t ) = η sech[D(x − x0(t ))]e[ikx+iϕ(t )], (13)

and are subject to the boundary conditions |�d |2 → 1 and
|�b|2 → 0 as |x| → ∞, in the dimensionless units adopted
herein. In Eqs. (12) and (13), �d (�b) is the wave function of
the dark (bright) soliton component. In the aforementioned

FIG. 2. Spatiotemporal evolution of the density |�1|2 (|�2|2) of
the first (second) component upon varying the half-width a of the
initial IRP. From left to right, a = 3, a = 5, and a = 7, allowing
the generation of four [(a)–(d)], six [(b)–(e)], and ten [(c)–(f)] DB
solitons, respectively. In all cases, top (bottom) panels illustrate the
formation of dark (bright) solitons in the first (second) component
of the two-component system. Labels (1)–(3) introduced in panels
(b) and (e) number the DB solitons discussed in Table I. Note that
the quantities shown are measured in transverse oscillator units (see
text).

solutions, ν and η are the amplitudes of the dark and the
bright solitons, respectively, while λ sets the velocity of the
dark soliton. Furthermore, D denotes the common—across
components—inverse width parameter, and x0(t ), which will
be traced numerically later on, refers to the center position of
the DB soliton (see also our discussion below). Additionally,
in the above expressions, k = D(λ/ν) is the constant wave
number of the bright soliton associated with the DB soliton’s
velocity and ϕ(t ) is its phase. Inserting the solutions of
Eqs. (12) and (13) in the system of Eqs. (3) leads to the
following conditions that the DB soliton parameters must
satisfy for the above solution to exist:

D2 = ν2 − η2, (14)

ẋ0 = Dλ

ν
, (15)

where ẋ0 is the DB soliton velocity. Through the normaliza-
tion of �b, we can connect the number of particles of the
bright component, Nb, with η and D:

Nb =
∫

|�b(x, t )|2dx = 2η2

D . (16)

In the following, we will use the aforementioned conditions,
namely Eqs. (14) and (15), not only to verify the nature of
the emergent states but also to compare the trajectories of the
evolved DBs to the analytical prediction provided by Eq. (15).
Moreover, by making use of Eq. (16), we will further estimate
the number of particles hosted in the bright soliton component
of the mixture.

The outcome of the counterflow process for different vari-
ations of the half-width a of the initial IP-IRP is illustrated in
Figs. 2(a)–2(f). In particular, in all cases depicted in this fig-
ure, the spatiotemporal evolution of the densities, |� j |2 (with
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j = 1, 2), of both components for propagation times up to
t = 150 is presented. It is found that from the very early stages
of the dynamics the interference fringes in the first component
evolve into several dark soliton states being generated in this
component. For example, four dark solitons can be readily
seen in Fig. 2(a) for a = 3. The nucleation of these dark states
leads in turn to the emergence, via the confinement of the
spreading Gaussian pulse, also of four bright solitons in the
second component of the binary mixture [Fig. 2(d)]. The latter
bright wave forms are created in each of the corresponding
dark minima and are subsequently waveguided by their dark
counterparts. The robust propagation of the newly formed
array of DB solitons is illustrated for times up to t = 150.
Importantly, here we were able to showcase that by tuning
the half-width of the initial IRP a controllable formation of
arrays of DB solitons can be achieved. In particular, it is found
that increasing the initial half-width of the IP-IRP leads to
a larger number of DB solitons being generated. Indeed, as
shown in Figs. 2(b) and 2(e), six DB states are formed for
a = 5, while for a = 7 the resulting array consists of ten DB
solitons as illustrated in Figs. 2(c) and 2(f). We should remark
also here that since an IP-IRP is utilized only an even number
of DB solitons is expected and indeed observed in all of the
aforementioned cases. This result is in line with the analytical
predictions discussed in the single-component scenario [see
also Eq. (7)].

Moreover, to verify that indeed the entities formed are
DB solitons we proceed as follows. First, upon fitting it is
confirmed that the evolved dark and bright states have the
standard tanh- and sech-shaped wave forms, respectively [see
Eqs. (12) and (13)]. Then, by monitoring during evolution
a selected DB pair, we measure the amplitudes ν and η of
the dark and the bright constituents, respectively. Having at
hand the numerically obtained amplitudes, we then use the
analytical expressions stemming from the single DB soliton
solution, namely Eqs. (14)–(16). In this way, estimates of
the corresponding DB trajectory as well as the number of
particles, Nb, hosted in the selected bright soliton are ex-
tracted. Via the aforementioned procedure and, e.g., for the
closest to the origin (x = 0) right-moving DB solitary wave
labeled as (1) and shown in Figs. 2(b)–2(e), it is found that
Nb = 0.3611 while the numerically obtained value is Nnum

b =
0.3607. Notice that the deviation between the semianalytical
calculation and the numerical one is less than 1%. To have
access to Nnum

b , we simply integrated |�2|2 within a small
region around the center of the bright part of the selected DB
pair. Additionally, for the same DB pair ẋ0 = 0.1467 while
ẋnum

0 = 0.1495.
After confirming that all entities illustrated in Figs. 2(a)–

2(f) are indeed DB solitons, with each of the resulting DBs
following the analytical predictions of Eqs. (14)–(16), we
next consider different parametric variations. In particular, we
will investigate modifications in the DB soliton characteristics
when the number of the nucleated DB states is held fixed.
To this end, below we fix a = 5 and we then vary within the
interval [0.5, 2] one of the following parameters at a time: |u|,
A, κ .

Before proceeding, two important remarks are of relevance
at this point. (i) Fixing a = 5 is not by itself sufficient to
a priori ensure that a fixed number of DB solitons will be

TABLE I. Changes in the DB soliton characteristics upon consid-
ering different variations of the systems’ parameters for fixed a = 5.
Here, (1) [(3)] refers to the innermost [outermost] DB solitons [see
Figs. 2(b) and 2(e)]. The top row indicates the distinct variations,
namely of each |u|, A, and κ , performed separately within the interval
[0.5, 2]. The second row contains the soliton characteristics such as
the dark, ν, and bright, η, amplitudes. Also shown are the inverse
width, D, the normalized number of particles, nb, hosted in each of
the bright solitons formed in the second component of the mixture,
and the velocity, ẋ0, of the DB pair. ↑ (↓) arrows indicate an increase
(decrease) of the corresponding quantity.

[0.5, 2] |u| ↑ A ↑ κ ↑
DB ν η D nb ẋ0 ν η D nb ẋ0 ν η D nb ẋ0

(1) ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↓ ↓ ↓ ↑ ↓ ↑ ↓ ↓
(2) ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↓ ↓ ↓ ↑ ↓ ↑ ↓ ↓
(3) ↑ ↑ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↑ ↓

generated via the interference process. This is because the
number of solitons formed is proportional to a and |u| as
detected by Eq. (7). This is the reason for restricting ourselves
to the aforementioned interval in terms of |u| (|u| ∈ [0.5, 2]).
This selection leads to the formation of an array consisting
of only six DB solitons like the ones shown in Figs. 2(b) and
2(e) for A = κ = 1. (ii) Additionally, here variations of either
A or κ could in principle affect the bright soliton formation;
however, we have not found this to be the case in our intervals
of consideration.

Taking advantage of the symmetric formation of these six
DB structures in the analysis that follows, we will focus our
attention to the three, i.e., (1), (2), and (3), right-moving with
respect to x = 0 DB solitons shown in Figs. 2(b) and 2(e). The
effect that different parametric variations have on the charac-
teristics of these three DB solitons are summarized in Table I.
In particular, in this table, the arrow ↑ (↓) indicates an increase
(decrease) of the corresponding soliton characteristics as one
of the parameters |u|, A, or κ is increased within the chosen
interval. In general, it is found that as the amplitude, |u|, of
the initial IP-IRP increases, the amplitudes, ν and η, of all
three DB structures increase as well (see the second column in
Table I). Also, the resulting DB states are found to be narrower
(larger inverse width D) and faster (larger ẋ0). However, the
normalized number of particles, nb, hosted in each of the
bright soliton constituents is found to increase for the two
innermost DB states [i.e., (1) and (2)] while it decreases for
the outer one [i.e., (3)]. For instance, for the inner DB wave
labeled (1) shown in the first column of Table I, nb is found
to be nb = 0.196 for |u| = 0.5, while nb = 0.204 for |u| = 1.
Thus, the symbol ↑ is used to describe the increasing tendency
of nb (see the second column of Table I). We defined nb

according to nb = Nnum
b /N2 with N2 = ∫ |�2|2dx being the

total number of particles in the second component of the
binary mixture. For comparison here, for the outer DB soliton
labeled (3), nb = 0.092 for |u| = 0.5, while nb = 0.075 for
|u| = 1, and thus a symbol ↓ is introduced (see again the
second column in Table I).

On the contrary, upon increasing the amplitude, A, of the
initial Gaussian pulse [see Eq. (10)] the amplitudes of all dark
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(bright) solitons for all three DB pairs decrease (increase);
thus a decrease of the corresponding inverse width results
in wider and slower soliton pairs (see the third column in
Table I). Moreover, nb is found to decrease for the two inner
DB pairs while it increases for the outer one. Variations of
the inverse width, κ , of the Gaussian pulse have more or less
the opposite of the above-described effect. As κ increases, the
resulting dark (bright) states have larger (smaller) amplitudes
for all three DB pairs but the solitons are narrower and slower
(see the fourth column in Table I). Recall that narrower does
not directly imply faster states since the amplitude of the gen-
erated dark solitons is also involved [see Eqs. (14) and (15)].
Also, in this case nb increases for the outer DB pair (see the
fourth column in Table I). Finally, we also considered different
displacements, X0, of the initial Gaussian pulse within the
interval [0, 7.5]. A behavior similar to the aforementioned
κ variation is observed. However, the produced solitons are
found to be asymmetric for X0 �= 0 due to the asymmetric
positioning of the two components. On the other hand, for
X0 � a (a = 5), we never observe DB soliton generation.

Having discussed in detail the homogeneous system, we
next turn our attention to the harmonically confined one [see
Eq. (3)]. Recall that in this case the initial guesses used
for both components of the binary mixture are TF profiles.
The first component is initially confined in the double-well
potential Vd (x) with the width w of the barrier controlling
the spatial separation of the two parts of the condensate [see
Eq. (11)]. The corresponding second component is in turn
trapped in the harmonic potential Vb(x) (see Sec. II B). After
relaxation, the two-component system is left to dynamically
evolve in the common parabolic trap V (x).

In line with our findings for the homogeneous setting, also
here a desirable number of DB solitons can be achieved by
properly adjusting either w or the chemical potentials μi (with
i = 1, 2) of the binary mixture. Note that in this latter case, the
amplitude of the system is directly related to μ [see Eq. (7)].
In both cases, it is found that an increase of w or μ results in
more DB solitons being generated. In particular, Figs. 3(a)–
3(c) [Figs. 3(d)–3(f)] illustrate the dynamical evolution of the
density, |�1|2 (|�2|2), of the first (second) component of the
mixture upon increasing w. An array consisting of two, four,
and six DB solitons pairs can be observed for w2 = 1, w2 = 5,
and w2 = 10, respectively. In all cases depicted in this figure,
the DB states are formed from the very early stages of the
dynamics. After their formation, the states begin to oscillate
within the parabolic trap. Monitoring their propagation for
evolution times up to t = 450, it is found that while coherent
oscillations are observed for the two DB case [see Figs. 3(a)
and 3(d)], this picture is altered for larger DB soliton arrays.
In the former case, measurements of the oscillation frequency,
ωosc, verify that it closely follows the analytical predictions
for the single DB soliton. Namely, ω2

osc = �2( 1
2 − χ

χ0
), with

χ = Nb/
√

μ and χ0 = 8
√

1 + ( χ

4 )2 [10,83]. For instance,
our semianalytical calculation stemming from the aforemen-
tioned theoretical prediction gives ωosc = 34.3 × 10−3, while
direct measurements from our numerical simulations pro-
vide ωnum

osc = 35.3 × 10−3. This represents a 3% discrepancy,
which can be attributed to the interaction of the solitons both
with one another but also with the background excitations,

FIG. 3. Spatiotemporal evolution of the density |�1|2 (|�2|2) of
the first (second) component in the trapped scenario upon varying
the width of the double-well barrier w used for the preparation of
the initial state. From left to right, w2 = 1, w2 = 5, and w2 = 10,
allowing the generation of two [(a)–(d)], four [(b)–(e)], and six
[(c)–(f)] DB solitons respectively. In all cases, top (bottom) panels
illustrate the formation of dark (bright) solitons in the first (second)
component of the two-component system. Note that the quantities
shown are measured in transverse oscillator units (see text).

with the latter having the form of sound waves. Additionally,
it should be noted that the theoretical prediction is valid in
the large μ limit (which may be partially responsible for the
relevant discrepancy). However, for larger DB soliton arrays,
the number of collisions is higher and the background density
is more excited, as can be deduced by comparing Figs. 3(a)
and 3(d) to Figs. 3(b) and 3(e), and Figs. 3(c) and 3(f).
Importantly, here the generated DB states are of different
masses and thus each DB soliton oscillates with its own
ωosc. It is this mass difference that results in the progressive
“dephasing” observed during evolution. Notice also that in
all cases illustrated in the aforementioned figures, the outer
(faster) DB solitons are the ones that are affected the most.
The above effect is enhanced for larger initial separations w

[compare Figs. 3(b) and 3(e) to Figs. 3(c) and 3(f)], leading
to discrepancies up to 11.6% between ωosc and ωnum

osc observed
for the outermost DB pair shown in Figs. 3(c) and 3(f).

As mentioned above, besides w also the chemical potential,
μ, serves as a controlling parameter. Indeed, by inspecting
the spatiotemporal evolution of the densities, |� j |2 (with
j = 1, 2), shown in Figs. 4(a) and 4(f) for fixed w2 = 5, it
becomes apparent that increasing μ leads to an increased
number of DB solitons being generated. Four, six, and eight
DB solitons are seen to be nucleated for μ = 1, μ = 3, and
μ = 5, respectively, and to propagate within the BEC medium
for long evolution times. Notice that Figs. 4(a) and 4(b)
are the same as Figs. 3(b) and 3(e). Increasing the system
size reduces the impact that the radiation expelled (when
matter-wave interference takes place) has on the resulting
DB states, as can be deduced by comparing Figs. 4(c) and
4(d) to Figs. 3(c) and 3(f). Indeed, further measurements of
ωosc reveal that the maximum discrepancy observed for the
outermost DB solitons when μ = 1 [see Figs. 4(a) and 4(b)]
is of about 8.5%, while upon increasing μ the discrepancy
is significantly reduced. The latter reduction is attributed to
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FIG. 4. Spatiotemporal evolution of the density |�1|2 (|�2|2) of
the first (second) component in the trapped scenario upon varying
the chemical potential μ while fixing w2 = 5. From top to bottom
μ = 1, μ = 3, and μ = 5, leading to the emergence of four [(a), (b)],
six [(c), (d)], and eight [(e), (f)] DB solitons, respectively. In all cases,
left (right) panels illustrate the formation of dark (bright) solitons in
the first (second) component of the two-component system. Note that
the quantities shown are measured in transverse oscillator units (see
text).

the fact that for larger μ the asymptotic prediction of ωosc

is progressively more accurate. More specifically, for μ = 5
we obtain a discrepancy of only 0.3% for the third, with
respect to x = 0, DB soliton pair shown in Figs. 4(e) and
4(f). Yet still, the emergent DB states have different periods
of oscillation, leading in turn to several collision events taking
place during evolution. Nevertheless, in all cases presented
above, a common feature of the solitary waves is that they
survive throughout our computational horizon.

B. Three-component BEC

Now, we increase the complexity of the system by adding
yet another component to the previously discussed two-
component mixture. Namely we consider a three-component
mixture consisting of three different hyperfine states of the
same alkali isotope such as 87Rb. We aim at revealing the
DB soliton complexes that arise in such a system and their
controllable formation via the interference processes intro-
duced in Sec. II B. From a theoretical point of view, such a
three-component BEC mixture is described by a system of
three coupled GPEs [see Eqs. (2) in Sec. II A], i.e., one for
each of the participating mF = +1, 0,−1 components.

To begin our analysis, we start with the integrable version
of the problem at hand. Namely, we fix gn = 1 and we set
V (x) = 0 in the corresponding Eqs. (2). This homogeneous
mixture admits exact solutions in the form of DDB and DBB
solitons as it was rigorously proven via the inverse scattering
method [76]. In the following, we will attempt to produce
in a controlled fashion arrays consisting of these types of

FIG. 5. Spatiotemporal evolution of the density |�+1|2 (|�−1|2)
of the mF = +1 (mF = −1) component upon varying the half-width
a of the initial IRP. From left to right, a+1 = a0 = 3, a+1 = a0 = 5,
and a+1 = a0 = 7, resulting in the nucleation of six [(a), (d)], eight
[(b), (e)], and twelve [(c), (f)] DDB solitons, respectively. In all cases,
top (bottom) panels illustrate the formation of dark (bright) solitons
in the mF = +1 (mF = −1) component of the three-component
system. Since the evolution of the mF = 0 component is the same
as the one depicted for the mF = +1, only the two components that
differ from one another are illustrated. The labels (1)–(4) introduced
in panels (b) and (e) number the DDB solitons that are discussed in
Table II. Note that the quantities shown are measured in transverse
oscillator units (see text).

soliton compounds. We further note that in the numerical
findings to be presented below the abbreviations in the form
XY Z (with X,Y, Z = D or B) reflect the mF = +1, 0,−1
order. For example, a DDB abbreviation indicates that dark
solitons are generated in the mF = +1, 0 components while
bright solitons are generated in the mF = −1 component of
the mixture.

As was done in the two-component setting, in order to
generate a DDB configuration, the counterflow dynamics is
performed by two of the participating hyperfine components.
Recall that dark solitons in each hyperfine state emerge via
the destructive interference that takes place at the origin where
the two spatially separated sides of the initial IP-IRP collide.
Specifically, the initial ansatz used for the mF = +1, 0 states
is provided by Eq. (5) and the corresponding ansatz for the
mF = −1 component is the Gaussian of Eq. (10). It turns out
that we can again tailor the number of nucleated DDB solitons
by manipulating the half-width, amF (with mF = +1, 0), of
the initial IP-IRP. To showcase the latter, in Figs. 5(a)–5(f) we
present the outcome of the distinct variations of amF . Notice
that as amF increases arrays consisting of a progressively
larger number of DDB solitons are formed. Namely, a+1 =
a0 = 3 results in an array of six DDB solitons [Figs. 5(a)
and 5(d)]. Accordingly, when a+1 = a0 = 5 the nucleation of
eight DDB wave forms is observed [see Figs. 5(b) and 5(e)],
while twelve such states occur for a+1 = a0 = 7 [Figs. 5(c)
and 5(f)]. In all of the above cases, the spatiotemporal evo-
lution of the densities |�+1|2 and |�−1|2 is shown in the
top and bottom panels of Fig. 5, respectively. The resulting
propagation of the ensuing DDB states is monitored for
evolution times up to t = 150. Moreover, only the mF = ±1
components are depicted in the aforementioned figure. This is
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FIG. 6. Same as in Fig. 5 but showcasing the generation of DBB
solitons. In this case, from left to right a+1 = 3, a+1 = 5, and a+1 =
7, allowing the generation of four [(a), (d)], six [(b), (e)], and eight
[(c), (f)] DBB solitons respectively. The labels (1)–(3) introduced in
panels (b) and (e) number the DBB solitons that are discussed in
Table III. Note that the quantities shown are measured in transverse
oscillator units (see text).

because the evolution of the mF = 0 component is essentially
identical to the one shown for the mF = +1 component.

The same overall picture is qualitatively valid for the
corresponding DBB soliton formation. Note that in contrast
to the DDB nucleation, to generate DBB soliton arrays the
counterflow dynamics is featured solely by one of the hy-
perfine components, which as per our choice is the mF =
+1 one. The remaining two hyperfine components, namely
mF = 0,−1, share the same Gaussian-shaped initial profile.
In Figs. 6(a)–6(f), the formation of four, six, and eight DBB
soliton complexes is shown for a+1 = 3, a+1 = 5, and a+1 =
7, respectively. Notice that the number of the generated DBB
states appears to be lower when compared to the DDB solitons
formed for the same value of a+1. For instance, four DBB
solitons are formed for a+1 = 3 [Figs. 6(a) and 6(d)] while the
corresponding DDB soliton count is six [Figs. 5(a) and 5(d)].
The observed difference between the number of nucleated
DBB and DDB states can be intuitively understood as follows.
For a DDB production, the total number of particles is N =
2990, while for a DBB one, it is N = 1498, e.g., for the case
examples presented in Figs. 5(a) and 5(d), and in Figs. 6(a)
and 6(d), respectively. Recall that in our simulations we fix the
chemical potential and thus N is a free parameter. The signifi-
cantly lower number of particles in a DBB nucleation process
stems from the fact that two of the participating components
have a Gaussian initial profile and as such host fewer particles.
This decrease of the system size for a DBB realization when
compared to a DDB one may be partially responsible for the
observed decreased DBB soliton count. Moreover, in the DDB
case, the presence of two components (namely mF = +1, 0
components, each one characterized by an amplitude |u|) with
a finite background leads to a total amplitude |ueff | ≈ 2|u|.
Thus, as dictated by Eq. (7), the number of solitons is expected
to be higher as well. Further adding to the above, for a DBB
formation only one component develops, via interference,
dark solitons. These dark solitons are, in turn, responsible
for the trapping of bright solitons in the other two hyperfine

TABLE II. Changes in the DDB soliton characteristics upon con-
sidering different variations of the systems’ parameters and monitor-
ing the four right-moving DDB solitons generated for fixed |u+1| = 1
and a+1 = a0 = 5. Here, (1) [(4)] refers to the innermost [outermost]
DDB state [see Figs. 5(b) and 5(e)]. The top row indicates the distinct
variations, namely |u0|, A−1, and κ−1, performed within the interval
[0.5, 2]. The second row contains the soliton characteristics, i.e.,
the dark, ν+1,0, and bright, η−1, amplitudes, the common inverse
width, D, the normalized number of particles, nb, hosted in the bright
soliton component and the velocity, ẋ0, of the DDB pair. ↑ arrows
(↓) indicate an increase (decrease) of the corresponding quantity.
� arrows indicate that within the above interval a nonmonotonic
tendency of the respective quantity is observed.

[0.5, 2] |u0| ↑ A−1 ↑ κ−1 ↑
DDB ν+1 ν0 η−1 D nb ẋ0 ν+1 ν0 η−1 D nb ẋ0 ν+1 ν0 η−1 D nb ẋ0

(1) ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↓ ↓ � ↑ ↑ ↓ ↑ ↓ ↓
(2) ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↓ ↓ � ↑ ↑ ↓ ↑ ↓ ↓
(3) ↑ ↑ ↑ ↑ ↓ ↑ ↓ ↓ ↑ ↓ ↑ � ↑ ↑ ↓ ↑ ↑ ↓
(4) ↑ ↑ ↑ ↑ ↓ ↑ ↓ ↓ ↑ ↓ ↑ � ↑ ↑ ↑ ↑ ↑ ↓

components. However, since two components develop bright
solitons effectively, the number of particles that have to be
sustained by each effective dark well increases. As such in the
DBB case, the system prefers to develop fewer but also wider
and deeper dark solitons than in the DDB process; this is also
inter-related with the smaller counterflow-induced momentum
in the DBB case. These deeper dark solitons can in turn
efficiently trap and waveguide the resulting (also fewer) bright
solitons. The above intuitive explanation is fairly supported
by our findings. Indeed, both the dark and the bright solitons
illustrated in Figs. 6(a) and 6(d) appear to be wider, having
also larger amplitudes when compared to the ones formed in
the DDB interference process shown in Figs. 5(a) and 5(d).

In all cases presented in Figs. 5(a)–5(f) and Figs. 6(a)–6(f),
we were able to showcase upon fitting that the evolved dark
and bright states have the standard tanh- and sech-shaped
wave forms, respectively [see Eqs. (12) and (13)]. Moreover,
following the procedure described in the two-component set-
ting (see Sec. III A), we verified that the number of particles
hosted in each of the bright solitons formed follows Eq. (16),
with the common inverse width, D, satisfying the generalized
conditions

D2 = ν2
j + ν2

k − η2
l , (17)

D2 = ν2
j − η2

k − η2
l , (18)

for the DDB and the DBB cases, respectively. The indices
j, k, l in the above expressions denote the three (distinct)
hyperfine components. As a case example, for one of the DDB
states shown in Figs. 5(b) and 5(e), Nnum

b = 0.3715, while the
semianalytical prediction gives Nb = 0.3721. Notice that the
deviation is again smaller than 1%.

As a next step, we attempt to appreciate the effects that
different initial configurations have on the characteristics of
the resulting DDB and DBB soliton compounds. Our findings
are summarized in Tables II and III, respectively. Specifically,
for a DDB nucleation process, |u+1| = 1 and a+1 = a0 = 5
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TABLE III. Same as Table II but for the three right-moving DBB solitons generated for fixed a+1 = 5. (1) [(3)] denotes the innermost
[outermost] DBB structure shown in Figs. 6(b) and 6(e). Other parameters used are A−1 = κ−1 = 1.

[0.5, 2] |u+1| ↑ A0 ↑ κ0 ↑
DBB ν+1 η0 η−1 D n0 n−1 ẋ0 ν+1 η0 η−1 D n0 n−1 ẋ0 ν+1 η0 η−1 D n0 n−1 ẋ0

(1) ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↑ ↑ ↓ ↓ �
(2) ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↑ ↑ � ↑ �
(3) ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↓ ↑ ↓ ↓ ↑ ↑ ↓ ↑ ↓ ↑ ↑ � � �

are held fixed. The remaining parameters are varied (one
of them at a time) within the interval [0.5, 2]. The above
selection leads to the appearance of eight DDB solitons sym-
metrically formed around the origin as already illustrated in
Figs. 5(d) and 5(e). Exploiting this symmetric formation only
the four, i.e., (1)–(4), right-moving DDB solitons indicated in
Figs. 5(d) and 5(e) are monitored and shown in Table II.

It becomes apparent, by comparing the DDB results of
Table II with the ones found in the two-component scenario
(see Table I), that the inclusion of an extra mF = +1 com-
ponent prone to host dark solitons leads to the following
comparison of the resulting soliton characteristics. As |u0| is
increased within the interval [0.5, 2], all the generated DDB
states appear to be faster and narrower (see second column in
Table II). Additionally, larger amplitudes are observed for all
the solitons in all the three hyperfine components. The same
qualitative results were also found in the relevant variation but
for the two-component system (see second column in Table I).
It is important to stress at this point that further increase
of |u0| and/or different initial values of |u+1| can lead to a
change in the number of states generated as suggested also by
Eq. (7). This is the reason for limiting our variations to the
aforementioned interval. However, our findings for choices of
|u+1| �= |u0| suggest that, given the same half-width a+1 = a0,
the number of nucleated DDB solitons will be determined by
the larger |umF | value.

On the contrary, upon varying the amplitude, A−1, of the
initial Gaussian pulse the impact of the additional mF =
+1 component is imprinted on the velocity outcome of the
resulting DDB solitons (see third column in Table II). Indeed,
as A−1 increases, a uniquely defined tendency of the velocity
of the resulting states cannot be inferred at least within the
interval of interest here. This result differs from the systematic
overall decrease of the DB soliton velocity observed in the
two-component scenario (see third column in Table I). Notice
also that all the remaining soliton characteristics here are
similar to the ones found in the two-component scenario
(compare the third column in Tables II and I, respectively).
Additionally, the presence of the extra mF = +1 component
leads to no modification on the observed DDB soliton char-
acteristics when considering variations of the inverse width,
κ−1, of the Gaussian pulse (see fourth column in Table II).
Namely, for increasing κ−1 all the resulting DDB states are
narrower and slower. This is an outcome that was also found
in this type of variation but in the two-component setting (see
fourth column in Table I).

Next, we will check the same diagnostics but for the
DBB nucleation process. Along the same lines, the initial
parameters used for a DBB realization are A0 = κ0 = 1 and

a+1 = 5 [as per Eqs. (10) and (5), respectively]. This choice
results in the six DBB solitons illustrated in Figs. 6(d) and
6(e). Again due to symmetry, only the three, i.e. (1)–(3), right-
moving states indicated in Figs. 6(d) and 6(e) are monitored
in Table III. When comparing the relevant findings presented
in Table III to those shown in Table I, the following conclu-
sions can be drawn. For increasing |u+1|, the generated DBB
solitons are found to be narrower and faster, similar to the
evolved DB states observed in the two-component scenario
(see second column in Table I). Alterations occur only upon
varying the characteristics of the initial Gaussian pulse. In
particular, the effect of adding an extra bright component upon
increasing the amplitude, A0, of the initial Gaussian pulse is
the observed increased amplitude of all bright solitons formed
in this component (see third column in Table III). Yet, all the
resulting DBB states are found to be wider and slower for
increasing A0, an outcome which is similar to that found in the
two-component setting (see third column in Table I). Lastly,
upon increasing κ0, the impact that the extra mF = 0 compo-
nent has on the resulting DBB solitons is the following (see
fourth column in Table III). Besides the observed decreased
amplitude of all bright solitons formed in this component, the
outermost DBB states, i.e., (2) and (3), are the ones that are
affected the most. Notice that a nonmonotonic response of
the normalized number of particles, n0, hosted in this mF = 0
component is found as κ0 increases within the interval [0.5, 2].
Additionally, the velocity of all three DBB solitons shows a
nonmonotonic tendency as κ0 is increased. It is relevant to
note that this result is in contrast to the decrease observed in
the two-component scenario (see fourth column in Table I).

It is worth commenting at this point that in both of the
above-discussed processes we also considered variations of
the relevant in each case amF . Recall that a+1,0 and a+1 are
the associated half-widths of the initial IP-IRP for a DDB and
DBB nucleation process, respectively. In particular, by fixing
all parameters to their default values (see here Sec. II B),
we varied the relevant amF within the interval [1, 10]. The
general conclusion for such a variation, in both processes,
is that increasing amF results in more states which become
narrower and slower as their number is increased. Differences
here mostly refer to the relevant amplitudes of the resulting
solitons and the normalized number of particles hosted in each
bright soliton constituent. Importantly, and referring solely
to the DDB process, it is found that given the same initial
amplitude, |umF |, the number of solitons generated depends
on the smallest initial amF . For this latter case (a+1 �= a0), a
spatially modulated density background occurs for the com-
ponents hosting the dark states. Finally, and also in both
processes, we were able to verify that for displacements, X0,
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FIG. 7. Evolution of the densities |�+1|2, |�−1|2 showcasing the
generated DDB solitons in a harmonic trap with � = 0.05. Increas-
ing the width w of the double-well barrier allows the generation
of DDB soliton arrays consisting of two [(a), (b)], four [(c), (d)],
and six [(e), (f)] DDB solitons respectively for w2 = 1, w2 = 5, and
w2 = 10. In all cases, top (bottom) panels illustrate the formation of
dark (bright) solitons in the mF = +1 (mF = −1) component. Since
the evolution of the mF = 0 component is identical to the one shown
for the mF = +1 component, it is omitted. Note that the quantities
shown are measured in transverse oscillator units (see text).

of the initial Gaussian pulse X0 � a generation of DDB and
DBB solitons is absent. This is in line with our findings in the
two-component system.

We now turn to the trapped three-component DDB and
DBB case, in analogy with the corresponding two-component
one. As in the latter, for the systematic production of multiple
DDB and DBB solitons, we use as a control parameter the
width, w, of the double-well potential [see Eq. (11)]. Fig-
ures 7(a)–7(f) illustrate the formation of two, four, and six
DDB solitons for w2 = 1, w2 = 5, and w2 = 10, respectively.
In all cases presented in this figure, top (bottom) panels depict
the evolution of the density, |�+1|2 (|�−1|2), of the mF =
+1 (mF = −1) component. Notice the close resemblance of
the dynamical evolution of the DDB states when compared
to the relevant evolution of the DB soliton arrays shown
in Figs. 3(a)–3(f). We remark here that the above-observed
evolution holds equally for the corresponding DBB states
(results not shown here for brevity).

Furthermore, below we briefly report on the systematic
production of the desired number of DDB and DBB soli-
tons upon varying the common chemical potential μ of the
confined three-component system. In Figs. 8(a)–8(f), a direct
comparison of the resulting DDB and DBB soliton com-
pounds is provided for three different values of μ. Evidently,
the number of DDB and DBB soliton complexes generated
in each different initialization is exactly the same, and as
expected, it increases for increasing μ. For example, for
μ = 3 illustrated in Figs. 8(c) and 8(d) for the DDB and
DBB processes, respectively, the nucleated states at t = 45
are six. Note also that in all cases the mF = 0 component
overlaps either with mF = +1 component (DDB nucleation
process) or with the mF = −1 (DBB nucleation process) and
as such it is not shown in the relevant profiles. In conclusion,
the dynamical evolution of both types of soliton arrays is

FIG. 8. Profile snapshots of the density |�mF |2 with mF = ±1
at t = 45, illustrating the generated DDB (left) and DBB (right)
solitons in the trapped scenario. In all cases, w2 = 5 and we vary
the corresponding chemical potential. From top to bottom, μ = 1,
μ = 3, and μ = 5, resulting in four [(a), (b)], six [(c), (d)], and eight
[(e), (f)] DDB-DBB solitons, respectively. The mF = 0 component is
omitted since it shows the same profile as the mF = +1 (mF = −1)
for the DDB (DBB) nucleation process. Note that the quantities
shown are measured in transverse oscillator units (see text).

qualitatively the same and closely resembles the one observed
in the two-component setting. Also, in all the different para-
metric variations and for both nucleation processes studied
above, the resulting arrays of DDB and DBB solitons remain
robust, while oscillating and colliding with one another, for
evolution times up to t = 450 that we have checked.

C. Spinor BEC

Up to now, the controlled formation of multiple soliton
complexes of the DB type in two- and three-component BECs
has been established. In what follows, we turn our attention
to the spinor F = 1 BEC [55]. In this way, we will be able to
address the fate of the generated DDB and DBB soliton arrays
when spin degrees of freedom are taken into account. Recall
that the evolution of this system is dictated by Eqs. (1a) and
(1b). In order to induce the dynamics, we will utilize once
more the counterflow processes introduced in Sec. II B.

As usual, we start our analysis by considering the ho-
mogeneous system. As in the previous section, for a DDB
generation process the initial ansatz used for the mF = +1, 0
[mF = −1] components is given by Eq. (5) [Eq. (10)]. Ac-
cordingly, to dynamically produce DBB soliton arrays, the
corresponding initial conditions are provided by Eq. (10)
[Eq. (5)] for the mF = 0,−1 [mF = +1] hyperfine compo-
nents. Figures 9(a)–9(j) and Figs. 10(a)–10(j) summarize our
numerical findings. In particular, Figs. 9(a)–9(i) illustrate the
evolution of the density, |�mF |2, of all three mF = +1, 0,−1
components. The controlled generation of four, six, and eight
DBB soliton arrays can be readily seen as a+1 is increased
from a+1 = 3 to a+1 = 7 [see Figs. 9(a), 9(d), 9(g); Figs. 9(b),
9(e), 9(h); and Figs. 9(c), 9(f), 9(i), respectively]. Comparing
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FIG. 9. Spatiotemporal evolution of the density |�mF |2 of the
(a)–(c) mF = +1, (d)–(f) mF = 0, and (g)–(i) mF = −1 components,
respectively, for varying a+1. From left to right, a+1 = 3, a+1 = 5,
and a+1 = 7, allowing the generation of four [(a), (d), (g)], six [(b),
(e), (h)], and eight [(c), (f), (i)] DBB solitons respectively for the
homogeneous spinor setting. In all cases, (a)–(c) illustrate the forma-
tion of dark solitons in the mF = +1 component and (d)–(f) [(g)–(i)]
depict the formation of bright solitons in the mF = 0 [mF = −1]
component of the spinor system. (j) Evolution of the population, nmF ,
of each hyperfine component, and of the total magnetization, Mz(t )
for a+1 = 5. Notice that n0 and n−1 are three orders of magnitude
smaller than n+1, which is why a second axis is introduced. Note that
the quantities shown are measured in transverse oscillator units (see
text).

the dynamical evolution of the spinor system to the one
observed in the corresponding three-component setting [see
Figs. 6(a)–6(f)], it becomes apparent that the inclusion of
the spin interaction has a minuscule effect on both the nu-
cleation and the long-time evolution of the DBB states. To
appreciate the latter, in Fig. 9(j) we monitor the temporal
evolution of the population, i.e., nmF (t ) = 1

N

∫ |�mF (x, t )|2dx,
of each hyperfine component, as well as the total magnetiza-
tion Mz(t ) = ∫

(|�+1(x, t )|2 − |�−1(x, t )|2)dx of the spinor
system for a+1 = 5 (see also Sec. II A). Note that n0(t ), n−1(t )
have their own axis in order to be visible and that the same
picture holds equally for all the distinct variations of a+1

presented in Fig. 9. As can be deduced, oscillations of n+1(t ),
n0(t ), and n−1(t ) occur during the evolution. Recall now that
a spinor condensate is subject to the so-called spin relaxation
process. The latter allows for collisions of two mF = 0 atoms
that can in turn produce a pair of particles in the mF =
+1 and mF = −1 component and vice versa [37]. It is this
continuous exchange of particles that leads to the oscillatory
trajectories observed for the bright soliton constituents of the
resulting DBB arrays. Notice that n+1(t ) is significantly larger
when compared to n0,−1(t ) ∼ 10−3 and due to the rescaling
used appears almost constant [n+1(t ) ≈ 1] during evolution.

FIG. 10. Same as in Fig. 9 but showcasing the generation of DDB
solitons. In all cases, panels (a)–(c) [(d)–(f)] illustrate the formation
of dark solitons in the mF = +1, 0 components and panels (g)–(i)
illustrate the formation of bright solitons in the mF = −1 component
of the spinor system. [(a.1), (d.1), (g.1)] Trajectory of the closest
to the origin right moving originally formed DDB soliton shown in
panels (a), (d), and (g) transitioning during evolution into beating
dark states. (j) Evolution of the population, nmF , of each hyperfine
component, as well as of the total magnetization, Mz(t ), for a+1 =
a0 = 5. Note that the quantities shown are measured in transverse
oscillator units (see text).

However, we must stress that also not discernible oscillations
of the population of this hyperfine component are present and
are similar to the ones observed for the n−1(t ) component.
Therefore, Mz(t ) remains constant during the evolution while
being of order unity.

Contrary to the DBB nucleation process investigated
above, for a DDB realization the spin-mixing dynamics plays
a crucial role. As in the previous scenario, Figs. 10(a)–10(i)
show the spatiotemporal evolution of the densities, |�mF |2,
of all three mF components. Also here, by manipulating
a+1 = a0 = a, we were able to controllably generate arrays of
DDB solitons in this homogeneous spinor setting. From left to
right in this figure, six, eight, and twelve solitons are formed,
corresponding to a = 3, a = 5, and a = 7, respectively. In
particular, Figs. 10(a)–10(c) [Figs. 10(d)–10(f)] depict the
dark solitons formed in the mF = +1 [mF = 0] component.
Additionally, Figs. 10(g)–10(i) illustrate the bright states
formed in the respective mF = −1 component. Strikingly
enough, as it is observed in all of the aforementioned figures,
as time evolves, the background density gradually changes
(notice the change in the color gradient). This result, as we
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will show later on, is attributed to the spin-mixing dynamics
that significantly alters the evolution of the DDB soliton
arrays formed. To shed light on the observed dynamics, below
let us focus our attention on Figs. 10(a), 10(d), and 10(g) for
a = 3. Here, also an enlargement is provided in Figs. 10(a.1),
10(d.1), and 10(g.1) to elucidate our analysis. In the latter
figures, the closest to the origin DDB pair is monitored.
As time evolves, the background density of the mF = +1
component increases, which suggests that transfer of particles
from the lower hyperfine components takes place. The latter
can indeed be confirmed by inspecting the evolution of the
mF = 0 component. Evidently, the background density of this
component gradually decreases. The corresponding density
of the mF = −1 component is also seen to increase. Mon-
itoring the evolution of the respective populations, nmF (t ),
shown in Fig. 10(j), delineates the above trend. Indeed,
at t = 0, n+1(0) = n0(0) = 0.5 while n−1(0) ∼ 10−3. How-
ever, during evolution n+1(t ) increases, reaching the value
of n+1(t = 200) ≈ 0.66. Accordingly, n0(t ) decreases drasti-
cally during propagation, acquiring a similar value with n−1(t )
at later evolution times, i.e., n0(t = 200) ≈ n−1(t = 200) ≈
0.16. Note also that the total magnetization of the system is
preserved with Mz(t ) = 0.5 throughout the evolution. Return-
ing now to the relevant densities, since the background density
of the mF = 0 component decreases, the dark states formed
in this component begin to deform. At later times (t > 150),
the solitonic states developed in this hyperfine component
have both a dark and a bright component [see Fig. 10(d.1)].
Similarly, at early times, the mF = −1 component hosts bright
solitons. Since the number of particles in this case increases,
a finite background slowly appears [45,51]. As such, also
the bright solitons of this component begin to deform. The
latter deformation leads in turn to the formation of solitonic
structures that again have both bright and dark parts, involving
a breathing between the two, and are formed also faster in
this mF = −1 component when compared to the mF = 0 one
[see Fig. 10(g.1)]. The same deformation occurs also in the
mF = +1 component but at propagation times even larger
than the ones depicted in Fig. 10(a). Indeed, by inspecting
the evolution of the closest to the origin dark soliton of the
originally formed DDB state shown in Fig. 10(a.1), the dark
soliton is also deformed in this case, yet the beating pattern
of Fig. 10(g.1) [and even that of Fig. 10(d.1)] is not as
straightforwardly discernible. Nevertheless, close inspection
indicates that the evolved states in all three mF components
bear similar characteristics to the so-called beating dark soli-
tons that were experimentally observed in two-component
systems [12]. As such, these states can be thought of as the
generalization of the beating dark solitons in spinor BECs.

Before proceeding to the harmonically confined spinor
BEC system, a final comment is of relevance here. Inves-
tigating the current setting, we also considered different
initializations in which the symmetric, with respect to the
mF = 0, hyperfine states have the same initial conditions.
In this way, we were able to generate symmetric variants
of the DDB and DBB states discussed above, namely, DBD
and BDB soliton arrays. In these cases, our simulations in-
dicate that the resulting states show all features found in
the three-component setting. Although the spin interaction
is present, the conversion of particles from one component

FIG. 11. Spatiotemporal evolution of the densities |�mF |2 of the
(a)–(c) mF = +1, (d)–(f) mF = 0, and (g)–(i) mF = −1 components
upon varying the width, w, of the double-well barrier. From left to
right, w2 = 1, w2 = 5, and w2 = 10, allowing the generation of two
[(a), (d), (g)], four [(b), (e), (h)], and six [(c), (f), (i)] DDB solitons
respectively in the spinor system. In all cases, panels (a)–(c) [(d)–(f)]
illustrate the formation of dark solitons in the mF = +1 [mF = 0]
component and (g)–(i) the generated bright solitons, transitioning
into beating dark states, in the mF = −1 component. (j)–(l) Vertical
cuts of |�−1|2 for the three distinct values of w (see legend). In
panel (j), solid rectangle indicates a beating dark soliton. Note that
the quantities shown are measured in transverse oscillator units (see
text).

to another is six orders of magnitude smaller than the total
number of particles. As such, the spin interaction is negligible.
For these systems, also the total magnetization is zero, in
contrast to the finite one observed for the asymmetric, in
the above sense, DDB and DBB soliton arrays addressed
herein. In that light, it appears as if the drastic effect of
the spin-interaction contribution in the previous realization
is able to excite the beating dark soliton generalizations.
On the other hand, following the approach of Ref. [12] in
the three-component Manakov case, it is also possible to
excite beating solitons in the latter (spin-independent) case.
However, a more systematic theoretical analysis of the beating
states is deferred for a separated work. In the trapped scenario,
we exclusively present our findings for a DDB generation
process. This is because only this nucleation process entails
new features stemming from the spin-mixing dynamics. The
initial-state preparation used herein is the one described in the
confined three-component setting (see Sec. III B). Once more,
by properly adjusting the initial width, w, of the double-well
potential [see Eq. (11)], the controlled formation of multiple
DDB soliton complexes is achieved in this harmonically
trapped spinor system. From top to bottom, Figs. 11(a)–11(i)
show the evolution of |�mF |2 (with mF = +1, 0,−1). As w2

is increased from w2 = 1 to w2 = 10, two, four, and six such
solitons are formed [e.g., see Figs. 11(a)–11(c)]. Dark solitons
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emerge in the mF = +1, 0 components [see Figs. 11(a)–11(c),
11(d)–11(f)] while bright states are generated in the mF =
−1 component [see Figs. 11(g)–11(i)]. However, as in the
homogeneous scenario, soon after their formation all states
formed and also in all hyperfine components begin to deform.
This deformation occurs more quickly in the less populated
mF = −1 component and later on in the other two hyperfine
states. This phenomenon is yet again attributed to the spin-
mixing dynamics that allows for particle exchange between
the components. Focusing on Figs. 11(a), 11(d) and 11(g),
the background densities of both the mF = ±1 components
increase while the density of the mF = 0 one decreases. This
exchange in population leads in turn during evolution to a
transition of the soliton states in each component into states
that bear both dark and bright parts. Thus, in line with our
findings in the homogeneous case, beating dark solitons are
progressively formed in all three hyperfine components. Since
these beating structures are more pronounced in the mF = −1
component, in Fig. 11(j) profile snapshots of the density of
this component are illustrated. In particular, |�−1|2 is depicted
for two different time instants, namely t = 100 and t = 500,
during the evolution and for w2 = 1. At initial times, the two
bright solitons originally formed in this component are now
on top of a still small yet finite background. Namely, they
are already deformed into states that are reminiscent of the
so-called antidark solitons [84–86]. At larger evolution times,
instead of the aforementioned antidark solitons, two beating
dark states are seen to propagate. One of them is indicated in
Fig. 11(j) by a black rectangle. Notice that this beating state
has a density dip followed be a density hump.

The above-discussed dynamical evolution of the spinor
system holds equally for all the different variations illustrated
in Figs. 11(a)–11(i). However, the deformation of the DDB
states is found to be delayed as w2 is increased. The latter
result can be deduced by comparing at earlier evolution times
the density profile shown in Fig. 11(l) to the relevant ones
illustrated in Figs. 11(j) and 11(k). Additionally, and also in
all cases depicted in Figs. 11(a)–11(i), the initially formed
DDB structures that evolve later on into beating dark soli-
tons are seen to oscillate and interact within the parabolic
trap. However, while coherent oscillations are observed in
Figs. 11(a), 11(d) and 11(g), incoherent ones occur when the
number of states is increased (i.e., for increasing w2). In these
latter cases, as shown in Figs. 11(b), 11(e) and 11(h), several
collision events between the outer and the inner beating
states take place. Despite the much more involved dynamical
evolution of the spinor system in such cases, these beating
states remain robust for all the evolution examples that we
have checked. Furthermore, we also explored the dynamical
evolution of the spinorial BEC system for different values of
the chemical potential, μ. Similarly to the aforementioned w

variation, a controlled formation of larger DDB arrays as μ

increases can be once more verified. The resulting states in
increasing order, in terms of μ, are presented in Figs. 12(a)–
12(i) for fixed w2 = 5. Notice that since w2 = 5 Figs. 12(a)–
12(c) are respectively identical to Figs. 11(b), 11(e), and
11(h). However, increasing μ increases the system’s size. As
such, arrays consisting of a larger number of DDB solitons
are formed. Indeed, six and eight DDB states are generated
for μ = 3 and μ = 5, respectively. Importantly, here it is

FIG. 12. Same as Fig. 11 but upon varying the chemical potential
μ. From top to bottom, μ = 1, μ = 3, and μ = 5, allowing the
generation of four [(a)–(c)], six [(d)–(f)], and eight [(g)–(i)] DDB
solitons respectively. In all cases, panels (a), (d), and (g) [(b), (e),
and (h)] illustrate the formation of dark solitons in the mF = +1
[mF = 0] component and panels (c), (f), and (i) show the generated
bright solitons in the mF = −1 component of the spinor system.
Notice that the colormap has a 2.5 : 2 : 1 ratio between the columns.
[(j)–(l)] Evolution of the normalized number of particles, nmF (t ), for
each value of μ. The inset in panel (l) shows the total magnetization,
Mz(t ), for each value of μ. Note that the quantities shown are
measured in transverse oscillator units (see text).

found that the presence of the spin interaction has a more
dramatic effect on the resulting states when compared to
the previous variation. Namely, the originally formed DDB
structures transition into beating dark ones much faster when
compared to the w variation. A case example can be seen in
Fig. 12(g), corresponding to μ = 5, where the dark solitons
of the mF = +1 component evolve into beating ones already
at t = 150. Even for the largest w2 = 10 value considered
above, such a transition occurs for this hyperfine component
at evolution times larger than the ones depicted herein [see
Fig. 11(c)]. To appreciate the effect of the spin interaction,
we monitor during evolution the population, nmF (t ) (mF =
+1, 0,−1), of each hyperfine component and for all the
different values of μ considered herein. In particular, from left
to right Figs. 12(j)–12(l) illustrate n+1(t ), n0(t ), and n−1(t )
respectively. Notice that the population of each hyperfine
component is affected more and the value of μ increases.
Evidently, the monotonic increase [n±1(t )] or decrease [n0(t )]
for μ = 1 turns into damping oscillations as μ increases.
Such a coherent spin-mixing dynamics is in line with earlier
predictions in spinor F = 1 BECs [37,71]. Finally, we verified
that the total magnetization, Mz(t ), remains constant during
evolution, acquiring a slightly smaller value as μ is increased
[see the inset in Fig. 12(l)].
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IV. CONCLUSIONS AND FUTURE PERSPECTIVES

In this work, the controlled creation of multiple soliton
complexes of the DB type that appear in one-dimensional
two-component, three-component, and spinor BECs has been
investigated. Direct numerical simulations of each system’s
dynamical evolution have been performed both in the ab-
sence and in the presence of a parabolic trap. In all models
considered herein, the nucleation process is based on the
so-called matter-wave interference of separated condensates
being utilized to study multicomponent systems. In this sense,
this work offers a generalization of earlier findings in single-
component setups to the much more involved multicomponent
ones, enabling the identification of dark-bright solitons in two-
component gases and dark-dark-bright and dark-bright-bright
solitons in three-component (and spinorial) gases. To achieve
control over each system’s dynamical evolution, different
parametric variations have been considered.

In particular, for the homogeneous systems addressed in
this effort, inverse rectangular pulses were employed for the
components featuring interference, and Gaussian ones for the
remaining participating components. Destructive interference
of the two sides of the former pulse leads to the nucleation
of an array of dark soltions. Additionally, the dispersion of
the Gaussian pulse and its subsequent confinement in the
effective potential created by each of the nucleated dark
solitons results in the formation of bright solitons that are
subsequently trapped and waveguided by their corresponding
dark counterparts. It is found that manipulating the width
of the IRP is sufficient to ensure the desired nucleation of
multiple soliton compounds of the DB type. This way, arrays
of DB, DDB, and DBB solitons are dynamically produced in
the two-component and spinor cases, respectively. Moreover,
for the two-component system, it is showcased that each
of the generated DB solitons follows the analytical expres-
sions stemming from the integrable theory of the Manakov
system. The same holds true also for the DBB and DDB
states nucleated in the three-component system. In the latter,
generalized expressions that connect the soliton parameters
are extracted and used to appreciate modifications of the
soliton characteristics under different parametric variations.
While the same overall dynamical evolution is observed for
the two- and three-component systems, a significantly differ-
ent picture can be drawn for the spinorial case. Strikingly,
and for a DDB nucleation process, it is found that during
evolution the originally formed DDB soliton arrays begin to
deform due to the spin-mixing dynamics. The latter allows
for exchange of particles between the hyperfine components.
The aforementioned deformation leads in turn to the gradual
formation of arrays of beating dark states. The latter, once
formed, are seen to robustly propagate for large evolution
times. The existence of beating dark states in spinor systems
has not, to the best of our knowledge, been reported previously
and it is an interesting topic for further exploration.

For the harmonically trapped scenarios, our numerical
findings suggest similar characteristics as in the homogeneous
cases in terms of the nucleation process, although naturally
the dynamics is rendered more complex due to the con-
finement and the induced interactions between the produced
solitary waves. In all cases, it is found that by adjusting the

width of the rectangular pulse or the chemical potential of
the participating components, the desirable number of DB,
DDB, and DBB soliton complexes can be generated. This
provides a sense of dynamical control and design of desired
configurations in our system. The number of the resulting
coherent structures is found to increase upon increasing each
of the above parameters. In the trapped case, the resulting
multisoliton arrays, irrespective of their type, are found to
oscillate and interact within the parabolic trap being robust for
large evolution times. Contrary to the above findings, for the
spinorial BEC system a departure of the initially formed DDB
states to the beating dark ones is showcased. Here, coherent
spin-mixing dynamics is observed when monitoring the pop-
ulation of each hyperfine component. Damping oscillations of
the latter occur, that are found to be enhanced upon increas-
ing, for example, the chemical potential of each component.
Additionally, and also in comparison to the homogeneous
case, the beating dark states are formed faster in the trapped
setting. This formation is further enhanced as the chemical
potential increases. It is found that the beating dark solitons
persist while oscillating and interacting with one another. The
existence of these spinorial beating states can be tested in
current state-of-the art experiments [55], and it is clearly a
direction of interest in its own right for future studies. More
specifically, it would be particularly interesting to generalize
the findings associated with the two-component beating dark
solitons [12] to the spinor case and study in a detailed manner
the formation and interactions of the spinor beating dark states
identified herein.

Yet another interesting perspective would be to compare
and contrast the numerically identified DDB and DBB states
of the three-component system to the analytical expressions
that are available, at least for the integrable version of this
model [76]. More specifically, one could generalize the cri-
teria of the single-component IRP scenario obtained in the
earlier works of Ref. [6] to the formation of both DB and
also DDB or DBB solitons from similar initial data in the
multicomponent case and compare these predictions against
the corresponding numerical computations. Then, one could
depart from the above Manakov limit and also study the fate
of these structures in nonintegrable systems [21], including
the spinor one. The breaking of integrability would allow in
turn for effects such as the miscibility or immiscibility of the
involved components to come into play [87]. The interplay of
the resulting density variations with the potential persistence
of the solitary wave structures is an interesting topic for future
study. Also, in the same context, it would be interesting to
systematically examine interactions between multiple DDB
and DBB states. The role of other effects such as the potential
Rabi coupling between the components could also be of
interest in its own right [82,83].

Lastly, as has been discussed in relevant reviews such
as Ref. [22], many of these ideas, such as the DB solitons
(generalizing to vortex-bright ones), the beating dark solitons,
etc., naturally generalize to corresponding higher dimensional
states. Examining the potential for such states as a result
of interference or possibly other methods more concretely
associated with higher dimensions such as the transverse
instability would be of particular interest in its own right.
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