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Quantum chaos in a Bose-Hubbard dimer with modulated tunneling
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In the large-N , classical limit, the Bose-Hubbard dimer undergoes a transition to chaos when its tunneling
rate is modulated in time. We use exact and approximate numerical simulations to determine the features of the
dynamically evolving state that are correlated with the presence of chaos in the classical limit. We propose the
statistical distance between initially similar number distributions as a reliable measure to distinguish regular from
chaotic behavior in the quantum dynamics. Besides being experimentally accessible, number distributions can be
efficiently reconstructed numerically from binned phase-space trajectories in a truncated Wigner approximation.
Although the evolving Wigner function becomes very irregular in the chaotic regions, the truncated Wigner
method is nevertheless able to capture accurately the beyond-mean-field dynamics.
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I. INTRODUCTION

Chaos is characterized by an exponential sensitivity to
small perturbations in initial conditions (hyperbolicity), non-
integrable dynamics, and a widely traversed phase space (er-
godicity) [1]. Despite its ubiquity in the classical macroscopic
world, chaos is not intrinsic to the underlying quantum de-
scription, except where an effective nonlinearity is introduced
through, e.g., taking a classical limit or mean-field approxima-
tion, or conditioning the dynamics upon the results of a mea-
surement [2]. Nevertheless, the behavior of quantum states in
classically chaotic regimes, referred to as “quantum chaos,”
can mimic features of classical chaos, at least for short times.
Quantum chaos is thus of intrinsic interest for the insight it
brings to the quantum-classical crossover [3,4], in addition to
its connections with ergodicity and thermalization [5].

The sensitivity to initial conditions in classical chaos is
quantified by Lyapunov exponents: a positive Lyapunov expo-
nent indicates an exponential growth in the separation in phase
space between trajectories that are initially close together. A
direct implementation of this measure in quantum systems
is problematic due to the intrinsic quantum uncertainty: it
is not possible deterministically to specify arbitrarily precise
initial conditions in phase space. A naive alternative would
be the overlap of initially similar quantum states; however,
this overlap is time invariant under unitary evolution. For this
reason, the overlap of initially identical distributions but under
slightly perturbed Hamiltonians has been used to distinguish
between quantum chaos and regular dynamics [3]. States
with large support on regular regions of phase space will
retain close to unitary overlap under a small Hamiltonian
perturbation, whereas states that are well-confined to chaotic
regions will exhibit an exponential decay of overlap to around
order 1/N [3], where N is the number of particles. This decay
may be used to extract effective Lyapunov exponents [6].

However, quantum-state overlap is not directly accessible
experimentally. Even theoretically, the quantum state becomes
intractable to calculate or even specify exactly for moderately
sized systems, due to the exponential scaling of Hilbert-space
dimension on the number of modes.

In this paper, we propose and benchmark the use of the
overlap of number distributions, rather than the quantum state
itself, as a measure of quantum chaos. Number distributions
are experimentally accessible in ultracold atom experiments,
and can be calculated without knowing the full quantum
state, such as through the binning of trajectories in a trun-
cated Wigner simulation [7]. In particular, we calculate the
Bhattacharyya distance [8] between number distributions in a
driven, double-well Bose-Einstein condensate, benchmarking
approximate approaches against exact calculations. We find
that the Bhattacharyya distance—even when calculated ap-
proximately using binned truncated Wigner trajectories—is
a reliable indicator of quantum chaos that is consistent with
other measures. The advantage of this method is that it scales
well with system size and so may be applied to a wide range
of systems for which exact calculations are intractable. Our
results also provide further insight into the nature and scope
of quantum chaos in a simple model that can be implemented
and probed experimentally [9].

We note that an alternative solution is possible for
continuously monitored quantum systems [2,10,11], where
individual stochastic quantum trajectories, representing the
dynamics conditioned on measurement, can be used to derive
effective quantum Lyapunov exponents. In this work, we
study exclusively the isolated dynamics of the two-site lattice,
where such an approach based on continuous measurement
readout is not available.

Distributions over phase space provide a powerful way
to connect the evolving quantum state to the dynamical
structure of the corresponding classical system. For example,
the Husimi Q function, besides providing a visualization of
the state [12], is the basis for an approximate treatment of the
quantum dynamics through an ensemble of classical trajecto-
ries [13,14]. Our use of a Wigner function aims to improve on
this approach, since, to obtain classical Liouvillian evolution,
the truncation of terms in the evolution equation is less severe
in the Wigner case than in the Q-function case. Although
the truncated Wigner method has been used extensively in
ultracold atoms, it has not, to our knowledge, been used to
study chaotic dynamics in quantum systems.
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We begin, in Sec. II by introducing the double-well system
and discussing the chaotic dynamics that arises in a semiclas-
sical analysis when the tunneling rate is modulated in time. In
Sec. III we consider the quantum dynamics, calculated exactly
and with the truncated Wigner method. Finally in Sec. IV we
introduce the Bhattacharyya distance as a measure of chaos in
quantum systems and test its performance when used with the
truncated Wigner representation.

II. MODULATED BOSE-HUBBARD DIMER

For a sufficiently tight trapping potential, a Bose-Einstein
condensate in a double-well potential [15] may be modeled as
a two-site Bose-Hubbard model, or quantum dimer:

Ĥ = h̄U (b̂†
1b̂†

1b̂1b̂1 + b̂†
2b̂†

2b̂2b̂2) − h̄J (b̂†
1b̂2 + b̂†

2b̂1), (1)

where J is the tunnel-coupling rate and U is the strength of
the on-site interaction term, which arises from interparticle
collisions treated in the low-temperature s-wave limit. The
canonical boson operators obey the commutation relations
[b̂ j, b̂†

k] = δ jk . To introduce chaos into this system, we will
vary the tunneling rate in time: J (t ) = J0 + μ cos (ωt ), which
could be achieved, for example, through modulation of the
barrier height [16].

Even for thousands of particles, the relevant Hilbert space
of the system is small enough to allow for direct calculation
of the dynamical wave function, affording the opportunity to
benchmark approximate approaches against exact solutions;
yet the interplay between coherent tunneling and particle
interactions leads to rich many-body physics. This physics is
reflected in the nonlinear behavior of the corresponding semi-
classical model, which can undergo macroscopic self-trapping
and, for appropriate modulation of parameters, chaotic
dynamics.

The semiclassical, or mean-field, model describes the dy-
namics of the order parameter under the assumption that two-
body correlations factorise, 〈AB〉 = 〈A〉〈B〉. It is justifiable in
the large-particle limit where fluctuations around the mean
value of observables are small. It is convenient to define
“Bloch-sphere” observables:

x = 〈Ĵx〉 = 〈b̂†
2b̂1〉 + 〈b̂†

1b̂2〉
2

,

y = 〈Ĵy〉 = 〈b̂†
2b̂1〉 − 〈b̂†

1b̂2〉
2i

, (2)

z = 〈Ĵz〉 = 〈b̂†
2b̂2〉 − 〈b̂†

1b̂1〉
2

,

which, in the semiclassical limit, satisfy x2 + y2 + z2 = N2/4.
The dynamics on the Bloch sphere can be mapped to a plane
(z, φ), where z is the population difference between the two
sites and φ = − arg(x + iy) is the relative phase. The semi-
classical dynamics is then given by the coupled equations:

dz

dt
= 2J (t )

√
N2/4 − z2 sin (φ),

dφ

dt
= −2z

(
J (t ) cos (φ)√

N2/4 − z2
+ 2U

)
. (3)

FIG. 1. Semiclassical dynamics. Stroboscopic Poincaré sections
for (a) no driving and (b) driving with amplitude μ = 0.2 and
frequency ω = 1.37J0. Points are plotted at intervals of the driv-
ing period, T = 2π/(1.37J0). The color-scale plot (c) indicates
the finite-time Lyapunov exponents calculated at each point in a
truncated phase-space region for the same driving amplitude and
frequency as (b). For all plots, and throughout the paper, C = 1,
corresponding to the point of bifurcation.

Without modulation of the parameters, this system is in-
tegrable, with solutions given by Jacobi elliptic functions
[15]. The nonlinear dynamics is governed by the ratio of
interaction energy to the tunneling rate, C = UN/J0. As C is
increased through the critical value C = 1, the stable center
at (z, φ) = (0, 0) undergoes a pitchfork bifurcation. The sep-
aratrix that emerges from the resultant saddle point encloses
each of the two new stable centres and prevents trajectories
in one enclosed region from traversing to the other. This
nonlinear suppression of tunneling, known as macroscopic
self-trapping, has been observed experimentally [17].

Modulating the tunneling rate breaks integrability and
gives rise to the possibility of chaos. For example, at the
critical value C = 1, a chaotic sea emerges in the region of the
bifurcating point (see Fig. 1) and continues to persist at C > 1
around the separatrix [16,18]. We note that integrability may
be broken in other ways, such as modulation of the interaction
strength [19,20] or the relative height of the wells [21].

Chaos in phase space can be illustrated by stroboscopic
Poincaré sections, which are constructed by evolving and
periodically plotting a selection of semiclassical trajectories
at intervals of the driving period [3]. Poincaré sections at the
bifurcation point are shown in Figs. 1(a) and 1(b), without and
with driving, respectively. In Fig. 1(b) a chaotic sea emerges
around the bifurcating fixed point, within which sit several
Kolmogorov-Arnold-Moser (KAM) islands [3].
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The maximal Lyapunov exponent at phase-space coordi-
nate z(0) is defined as

λ = lim
t→∞ lim

z′
0→z0

1

t
ln

( ||z(t ) − z′(t )||
||z(0) − z′(0)||

)
, (4)

where the initial values of the two phase-space trajectories
z(0) and z′(0) should in principle be made vanishingly close
to each other. In practice, we implement this numerically by
choosing a small but finite difference and simulate for a time
that is long enough for the maximal exponent to dominate the
rate of divergence (but small enough that this divergence is not
limited by phase-space boundaries) [1,22]. Figure 1(c) was
generated by evolving pairs of perturbed points distributed
across phase space and performing a linear fit on their loga-
rithmic relative divergence, ln ( ||z(t )−z′(t )||

||z0−z′
0|| ), against time, t . The

initial perturbation magnitude was |z − z′| = 10−4 and the
trajectories were evolved for 20 driving periods. The evolution
time of the finite-time Lyapunov exponents was small enough
to avoid saturation of the logarithmic relative divergence. The
darker regions of Fig. 1(c), which represent large positive
Lyapunov exponents, correspond well with the chaotic regions
of phase space shown in the Poincaré section, Fig. 1(b). The
white regions in Fig. 1(c) correspond to nonpositive Lyapunov
exponents.

The extent of chaos in the modulated dimer can be con-
trolled via the driving amplitude μ and frequency ω. Figure 2
quantifies the fraction of phase space occupied by chaotic
regions. For this plot, we calculated the finite-time Lyapunov
exponents for 1600 trajectories distributed across the phase
space and classified each phase-space point as chaotic if its
Lyapunov exponent was greater than the largest Lyapunov
exponent within the unmodulated phase space. The percent-
age of phase space that was chaotic was then determined
and plotted for varying modulation amplitude and frequency.
We note that this approach does not produce exact Lyapunov
exponents, yet is sufficient to distinguish regular and chaotic
trajectories to a high degree of accuracy in all tested parameter
regimes.

Even though the modulation is a requirement for chaotic
behavior in this system, driving at high frequency tends to
diminish the extent of the chaos. We illustrate this Fig. 2 by
plotting several representative Poincaré sections highlighting
the different regimes. For example, a sufficiently rapid modu-
lation (ω � 6J0) will suppress chaos entirely, whereas for low
modulation frequency (ω ∼ 0.5J0) widespread chaos persists
for modulation amplitudes as high as μ = 100J0.

Consistent with the disappearance of chaos at high modula-
tion frequency observed in Fig. 2, an effective static integrable
Hamiltonian [19,23] can be derived under the assumption that
the modulation frequency is much larger than other frequency
scales in the system:

Ĥeff = h̄U

4

[
3 + J0

(
4μ

ω

)]
(b̂†

1b̂†
1b̂1b̂1 + b̂†

2b̂†
2b̂2b̂2)

− h̄U

4

[
1 − J0

(
4μ

ω

)]
(b̂†

1b̂†
1b̂2b̂2 + b̂†

2b̂†
2b̂1b̂1

− 4b̂†
1b̂1b̂†

2b̂2) − h̄J0(b̂†
1b̂2 + b̂†

2b̂1), (5)

FIG. 2. Top left: the fraction of the phase space occupied by the
chaotic sea as a function of driving amplitude μ and frequency ω.
The remaining plots are Poincare sections for the various choices of
modulation parameters (μ, ω) indicated by the symbols. Extensive
chaos is observed in panel �, which gradually disappears with
increasing modulation frequency through panels • and �. Three
roughly equal-sized stable islands appear in panel �, with minimal
chaos about the separatrices. The star � indicates the parameters
used in Fig. 1(b).

where J0 is the zeroth-order Bessel function of the first
kind (see calculations in the Appendix A). As shown in
Figs. 3 and 4, the Poincaré sections corresponding to the
time-periodic and effective Hamiltonians become very similar
for sufficiently large modulation frequency (ω = 10).

III. QUANTUM DYNAMICS

For the two-mode system, the semiclassical results above
can be compared to the exact quantum dynamics, which can
be calculated through a Floquet analysis. Such an approach
was used, for example, to investigate dynamical tunneling
between regular islands in the semiclassical Poincare section
[20,24].

To make a connection with the classical Poincare sec-
tions, we represent the evolving quantum state in phase space
through use of the atomic Q function [25,26]. Figure 5 shows
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FIG. 3. Poincaré sections corresponding to (left) exact Hamil-
tonian (1) and (right) high-frequency effective Hamiltonian (5).
Modulation amplitude is μ = 0.2J0 for all plots and the rows from
the top correspond to modulation frequencies of ω/J0 = 1.37, 5, 10.

the Q function of what are initially Bloch coherent states1

centered at three representative points in phase space.
After 20 driving periods, the Q function initially centered

in the chaotic region has become very irregular and is smeared
out over nearly all of the chaotic sea, reflecting the ergodic
nature of the corresponding classical trajectories [12]. By
contrast, the Q function of the “regular 1” state remains
localised on the KAM island on which it was initially placed.
The “regular 2” state is smeared out, but in a qualitatively very
different way from that seen in the chaotic region; the depen-
dence of the tunneling oscillation period upon its amplitude
causes the distribution to be sheared along the regular classical
trajectories (a two-mode analog of the optical Kerr effect).

When the Q function is no longer well localized, it is
clear that the semiclassical predictions—which neglect fluctu-
ations about the mean—will become unreliable. This neglect
of fluctuations in the chaotic regime is rapidly manifest in

1Bloch coherent states [25] are minimal uncertainty states of the
dimer under the restriction of fixed total particle number. They may
be created experimentally by, for example, forming a condensate of
known number in one well, followed by linear tunneling [9].

FIG. 4. Poincaré sections corresponding to (left) exact Hamil-
tonian (1) and (right) high-frequency effective Hamiltonian (5).
Modulation amplitude is μ = 9.57925J0; all other parameters as in
Fig. 3

discrepancies in the predictions for observables, as illustrated
in Fig. 6. In the chaotic regime, the semiclassical simulation
shows persistent, albeit irregular, tunneling oscillations in the
number difference 〈ẑ〉 whereas in the quantum dynamics this
oscillation rapidly decays. The decay in the mean of z is
associated with a rise in the variance, which supports the
interpretation of the chaotic quantum state as an ensemble
of irregular classical trajectories that get out of phase over
time. On a much longer time scale, the tunneling oscillations
of the “regular 2” state also collapse, but this is due to the
gradual dephasing of regular oscillations at slightly different
frequencies.

The fact that a fairly rapid growth of variance occurs in the
“regular 2” as well as the chaotic regions indicates that the
variance itself is not always a reliable probe of the presence of
chaos [9]. Nevertheless, when growth in variance is driven by
chaotic behavior, it does reveal something about the extent of
the chaotic region.

For the two-mode system, the spreading of the initially
coherent Q function over the Bloch sphere is directly linked
with the fragmentation of the condensate [13]. Fragmentation
occurs when not all particles occupy the same single particle
state—as required for a pure BEC—and is quantified by the
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FIG. 5. Q functions for (a) initial coherent states and (b) after
20 driving periods overlaid on semiclassical Poincaré section. The
total particle number is N = 1000 and the other parameters are as in
Fig. 1(b).

eigenvalues of the one-particle reduced density matrix [27],

ρ̂red =
(

〈b̂†
1b̂1〉 〈b̂†

1b̂2〉
〈b̂†

2b̂1〉 〈b̂†
2b̂2〉

)
. (6)

A fragmented condensate is revealed when ρ̂red has more than
one nonzero eigenvalue, i.e., when λmax < N .

For the two-mode system, the maximum eigenvalue of ρ̂red

can be written in terms of the length of the Bloch spin vector
|〈Ĵ〉| [13], which in turn can be expressed in terms of the
variance of the Bloch variables:

λmax = N

2
+ |〈Ĵ〉|

|〈Ĵ〉| =
√

N (N + 2)

4
− var(Ĵx ) − var(Ĵy) − var(Ĵz ). (7)

Since fragmentation is linked to the growth in the variance of
any of the Bloch variables, it provides a more global picture of

FIG. 6. Population difference z as a function of time for the
regular 1 (top), regular 2 (middle), and chaotic states (bottom), cal-
culated exactly (solid lines), with truncated Wigner method (dashed
red lines) and semiclassically (dotted lines). The exact standard
deviation of the population difference is indicated by grey shading.
The ensemble standard error of all truncated Wigner results, which
used 10 000 paths, is less than the line width.

FIG. 7. Condensate fraction after evolution of initial Bloch states
without modulation [panels (a) and (c)] and with modulation μ =
0.2J0 [panels (b) and (d)]. Upper panels give the condensate fraction
map in phase space after a time of 20T . Lower panels show the
time evolution of the condensate fraction for the three representative
states: regular 1 (blue dotted lines for �), regular 2 (red dashed lines
for •), and chaotic (black solid lines for �)

the spread of the state over the Bloch sphere than the variance
in any one particular variable.

The largest eigenvalue is plotted as a function time in
Fig. 7 for the three representative initial conditions, both
with and without modulation. The first thing to note is that
loss of coherent tunneling oscillations does not mean total
fragmentation: the maximum eigenvalue for the state in the
chaotic sea falls only to about 0.9N , far above the lower
limit of 0.5N . Second, fragmentation is not just a conse-
quence of chaotic behavior. Indeed, the largest fragmentation
occurs in the regular region where the classical dynamics
exhibit large-amplitude tunneling oscillations [14] and for
which the corresponding Q functions are sheared across a
large solid angle on the Bloch sphere. The Q function of
the state in the chaotic region—although it spreads out to
subtend a similarly large angle on the Bloch sphere—actually
corresponds to less fragmentation, since its Q function fills
in the intermediate region of phase space and thus main-
tains a higher level of total average spin. For larger relative
nonlinearity C or larger modulation amplitude μ, where the
chaotic sea occupies a greater fraction of phase space [13]
(see Fig. 2), we see increased fragmentation from the chaotic
dynamics.

Third, perhaps the most striking consequence of the mod-
ulation is the near total suppression of fragmentation in the
Q function of the “regular 1” state. This suppression of
fragmentation is due to the localization enforced by creation
of the KAM islands, and is particularly clear in Fig. 7(b), in
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which the regions of high purity (low fragmentation) match
closely the centers of the KAM islands seen in Fig. 1.

Overall then, in regions of phase space dominated by
chaotic behavior, the structures in the Poincare section de-
termine the level of fragmentation in the quantum dynamics.
Conversely, if the system is known to be chaotic, then frag-
mentation in the quantum system could be used to determine
the presence of KAM islands or to probe the size of the chaotic
sea, even though fragmentation by itself is not an indicator of
the presence of chaos.

By choosing system parameters to precisely alter the size
of the chaotic sea, it is possible to generate states with
arbitrary condensate fraction from initial coherent states on
the timescale of few modulation periods.

Truncated Wigner method

Thus far we have calculated the quantum dynamics through
exact calculation of the state vector, with a subsequent map-
ping to phase space via the Q function. We now use these
results to benchmark the truncated Wigner method as a tool
for investigating quantum chaos. Not only is the truncated
Wigner method an efficient way to simulate many-mode quan-
tum systems (the exact state-vector approach quickly becomes
intractable even for just a few modes), it gives a direct access
to dynamics in phase space, in which much of the classical
analysis of chaotic systems is framed.

In the truncated Wigner method [28], a Fokker-Planck
equation for an approximate Wigner function is obtained
by truncation of the full partial differential equation for the
Wigner function at second order. This approximation is justi-
fied by the relatively small size of the coefficients of the third-
order terms for a system with many particles. The Fokker-
Planck equation is then mapped through standard techniques
[29] onto a set of ordinary differential equations for stochastic
complex amplitudes, β j . Although the Wigner function is
not positive-definite for all states, a positive approximation
to common initial states [30] allows the low-order moments
to be accurately sampled. Any such approximation to the
initial state together with the truncation of the third-order
terms neglects any negativity of the Wigner function, but gives
accurate operator moments up to the collapse timescale of
quantum optics [31].

The truncated Wigner equations for the Bose-Hubbard
dimer are

dβ1

dt
= iJβ2 − 2iU (|β1|2 − 1)β1,

dβ2

dt
= iJβ1 − 2iU (|β2|2 − 1)β2, (8)

which are solved for an ensemble of trajectories. Expectation
values of symmetrically ordered products can be calculated
directly as stochastic averages, for example,

1

2
〈b̂†

i b̂ j + b̂ j b̂
†
i 〉 =

∫
β∗

i β j W (	β∗, 	β ) d4β. (9)

The truncated Wigner simulations used in this work were
implemented with the XMDS2 [32] software package.

The truncated Wigner calculation of the expectation value
of the two-mode number difference, z, is included in Fig. 6.

FIG. 8. Initial coherent state reconstructed W functions (104

truncated Wigner trajectories) before and after 20 driving periods
overlaid on the Poincaré section. Note that the reconstructed W
function, unlike the true W function, is all positive.

The results for the two states in regular regions are indis-
tinguishable from the exact calculations over this timescale.
Some discrepancy is seen for the state in the chaotic region,
but only well after the collapse of the tunneling oscillations.

Binning trajectories allows us to build up a picture of the
phase-space distribution without having to calculate the full
density matrix. For large N , the exact Wigner function on the
Bloch sphere is particularly difficult to calculate, as it requires
generation of high-order spherical harmonics [13]. Figure 8
shows the binned distribution after 20 driving periods for the
three representative states, showing a close correspondence to
the Q functions calculated in Fig. 5.

IV. BHATTACHARYYA DISTANCE

Sensitivity to initial conditions is the hallmark of chaos
in classical systems. Although a direct measure of the diver-
gence of particular phase-space trajectories is not accessible
in unitary quantum dynamics, we have seen above that the
divergence is reflected in the way that Q and Wigner functions
within the chaotic region spread out to cover the whole of the
chaotic sea. Moreover, they evolve in a very irregular way that
contrasts markedly with the regular shearing, for example, that
occurs for the “regular 2” state.

To obtain a quantitative measure of the difference between
the irregular and regular evolution, we calculate the overlap of
number distributions. The irregular evolution of the number
distribution in the chaotic region (see the lower panel of
Fig. 9) can be expected to lead to a loss of overlap between
number distributions that are initially similar, or between
number distributions that are initially identical but which
evolve under slightly different Hamiltonians.

We consider the overlap of number distributions, rather
than the overlap of the entire state [33], since (a) number
distributions are much more experimentally accessible, and
(b) in a theoretical calculation it may be feasible to calculate
the number distribution even when the full state is intractable.
In particular, we benchmark the use of binned truncated
Wigner trajectories [7] to calculate the number distribution
approximately, since this method remains tractable for large
numbers of particles and modes.
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FIG. 9. Number distribution for site 1 for the regular 1 (upper),
regular 2 (middle), and chaotic (lower) states in Fig. 5 after 20 driving
periods. The grey histogram is the exact number distribution and
the red line is an approximate number distribution constructed from
binning 104 truncated Wigner trajectories.

For two states expressed in the number-state basis, |ψ〉 =∑
n cn|n〉 and |ψ ′〉 = ∑

n dn|n〉, the state overlap is

O(ψ,ψ ′) = |〈ψ |ψ ′〉| =
∣∣∣∣∣
∑
n,m

c∗
ndm〈n|m〉

∣∣∣∣∣ =
∣∣∣∣∣
∑

n

c∗
ndn

∣∣∣∣∣,
(10)

whereas the overlap of number distributions Pn = |cn|2 and
P̃n = |dn|2 is given by

B(ψ,ψ ′) =
∑

n

√
PnP̃n =

∑
n

|c∗
ndn|. (11)

The triangle inequality holds that B(ψ,ψ ′) � O(ψ,ψ ′). Al-
though the number distribution overlap is not equivalent to
state overlap, it provides an upper bound and can function as
a practical alternative.

To obtain a quantum analog of the maximal Lyaponuv ex-
ponent, we calculate the Bhattacharyya statistical distance [8],

DB(ψ,ψ ′) = − ln [B(ψ,ψ ′)], (12)

developed as a means of characterizing the divergence
between two probability distributions and which takes the
minimum value of zero when the number distributions are
identical.

Following Ref. [7], we construct the approximate number
distribution for site 1 by calculating the proportion Pn of
truncated Wigner trajectories that fall into bins satisfying

n � |β1|2 < n + 1. (13)

We can expect this binning approach to be accurate when
the Wigner function does not change rapidly over the bin
size and for a large number of particles such that the cor-
rections from symmetric ordering can be neglected. Figure 9
gives a comparison of the exact and reconstructed number
distributions for the three representative states after 20 driving

FIG. 10. Bhattacharyya distances between number distributions
due perturbation of the interaction term, U ′ = (1 + p)U , calculated
from (left) 105 binned truncated Wigner trajectories and (right)
exact state vector. Initial states are as in Fig. 5: “regular 1” (blue
dotted line), “regular 2” (red dashed line), and “chaotic” (black solid
line). The perturbation amplitude for each row is, from the top,
p = 10−3, 10−4, 10−5.

periods. In all cases, the binned reconstructions recover the
overall extent and the coarse features of the distributions. On
the other hand, the fine features of the regular 2 and chaotic
states are lost in the reconstructions, which raises the question
of how sensitive to chaos the Bhattacharyya distance based on
these distributions will be.

We calculate the Bhattacharyya distance between distribu-
tions evolved under Hamiltonians that differ slightly in the
strength of the interaction: U and U ′ = (1 + p)U , for p 
 1.
Figure 10 shows the results for the binned trajectories calcu-
lation (left) and the the direct state-vector calculation (right).
Despite the smoothing effect seen in Fig. 9, the Bhattacharyya
distance for the chaotic state is distinctly larger than that of the
regular states, so long as a sufficiently small perturbation is
chosen. However, the Bhattacharyya distances determined via
the truncated Wigner and exact state methods quantitatively
differ, likely due to the loss of fine features in the number
distribution evident in the truncated Wigner reconstruction
shown in Fig. 9.

Moreover, the truncated Wigner Bhattacharyya distance for
the chaotic state saturates to about DB ≈ 2.4 × 10−3 for per-
turbations of p = 10−4, 10−5; behavior which is not evident
for the corresponding exact state Bhattacharyya distances.
This saturation is consistent with the statistical uncertainty
in the binning process. For an estimate of the saturation
limit, consider a uniform number distribution Pn = 1

N+1 and
a perturbed distribution P̃n = Pn + ε, where ε is a Gaus-
sian random variable with mean zero and standard devia-
tion σ ; the Bhattacharyya distance has analytic value DB =
− ln (1 − (N+1)2

8 σ 2) in the limit of large N . For DB ≈ 2.4 ×
10−3, this estimate gives σ ≈ 1.4 × 10−4, which is approxi-
mately consistent with a Poissonian process sorting Nt = 105
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trajectories into Nb = 103 bins with mean bin occupation p̄ =
102 and occupation standard deviation σp = 10 (Poissonian):

σp

p̄
= 10−1,

σ

P̄n
≈ 1.4 × 10−1. (14)

Choosing 104 trajectories causes the Bhattacharyya distance
to saturate at around DB ≈ 2.4 × 10−2, also consistent with
a Poissonian process for this reduced number of trajectories.
Therefore, we can conclude that the saturation of the Bhat-
tacharyya distance is due to sampling error in the binning
process.

V. CONCLUSIONS

In summary, we have explored the quantum and semiclas-
sical dynamics of the modulated Bose-Hubbard dimer around
the point at which the semiclassical model undergoes a bifur-
cation. In the semiclassical model, the extent of the chaos can
be controlled by variation of both the modulation frequency
and amplitude. Chaotic behavior tends to be suppressed at
high modulation frequency, consistent with the effective static
integrable Hamiltonian that can be derived in this regime.

The diverging semiclassical trajectories in the chaotic re-
gion correspond, in the quantum dynamics, to phase-space
distributions that spread out over time to fill the entire chaotic
sea. For a two-mode system, a broad phase-space distribution
on the Bloch sphere, corresponding to a diminished average
spin vector, correlates directly with fragmentation. We found,
nevertheless, that it was states in the regular region undergoing
nonlinear shearing that had the greatest loss of condensate
fraction (i.e., greater fragmentation).

Despite the complex behavior of the underlying phase-
space distributions, we found that an ensemble of truncated
Wigner trajectories reproduced the behavior of exact quantum
expectation values of chaotic quantum states to a high degree
of accuracy.

To obtain a measure for quantum systems that plays a
similar role that Lyaponuv exponents do in classical chaos,
we considered the divergence of number distributions caused
by perturbations to the Hamiltonian, as quantified by the
Bhattacharyya distance. We benchmarked the use of binned
truncated Wigner trajectories as an approximation to the
number distribution that is extensible to large-N , many site
lattices, where exactly calculating the state overlap becomes
intractable. We found that, for sufficiently small perturbations
to the Hamiltonian, the Bhattacharyya distance reliably dis-
tinguished between quantum states localized in the regular
region from those in the chaotic region. This is in spite of

the lack of quantitative agreement in the values of the Bhat-
tacharyya distance calculated with binned Wigner trajectories
compared with those calculated exactly. We attribute this
discrepancy to the truncated Wigner approach smoothing over
some of the fine features of the true number distribution.

APPENDIX: EFFECTIVE HAMILTONIAN FOR
HIGH-FREQUENCY MODULATION

To derive the effective Hamiltonian (5), we introduce the
pseudospin operators Ĵx,y,z satisfying commutation relations
[Ĵ j, Ĵk] = iε jkl Ĵl , where j, k, l ∈ {x, y, z} and ε jkl is the Levi-
Civita symbol:

Ĵx = â†
2â1 + â†

1â2

2
, Ĵy = â†

2â1 − â†
1â2

2i
,

Ĵz = â†
2â2 − â†

1â1

2
, N̂ = â†

1â1 + â†
2â2. (A1)

The time-independent H0 and time-dependent H1 parts of the
Hamiltonian (1) can then be written as

Ĥ0 = 2UĴ2
z − 2J0Ĵx + U

2
N̂ (N̂ − 2)

Ĥ1 = 2μ cos (ωt )Ĵx. (A2)

The effective Hamiltonian [19,23] under a high-frequency
modulation of period T = 2π/ω is

Ĥeff = 1

T

∫ T

0
eiA(t )Ĵx Ĥ0e−iA(t )Ĵx dt, (A3)

where we have written
∫ t

0 Ĥ1(t ′) dt ′ = A(t )Ĵx, with A(t ) ≡
2μ

ω
sin (ωt ).
To evaluate the self-interaction term in Eq. (A3), we can

use the Baker-Hasdorff lemma [34],

eiA(t )Ĵx Ĵ2
z e−iA(t )Ĵx = cos (2A(t ))

2

(
Ĵ2

z − Ĵ2
y

)
+ sin (2A(t ))

2
(ĴyĴz + ĴzĴy) + 1

2

(
Ĵ2

z + Ĵ2
y

)
,

(A4)

together with the integrals∫ T

0
cos [2A(t )] dt = 2πJ0

(
4μ

ω

)
, (A5)∫ T

0
sin [2A(t )] dt = 0, (A6)

where J0(z) is the zeroth-order Bessel function of the first
kind.
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