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Static-response theory and the roton-maxon spectrum of a flattened
dipolar Bose-Einstein condensate
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Important information for the roton-maxon spectrum of a flattened dipolar Bose-Einstein condensate is
extracted by applying a static perturbation exhibiting a periodic in-plane modulation. By solving the Gross-
Pitaevskii equation in the presence of the weak perturbation, we evaluate the linear density response of the
system and use it, together with sum rules, to provide a Feynman-like upper-bound prediction for the excitation
spectrum, finding excellent agreement with the predictions of full Bogoliubov calculations. By suddenly
removing the static perturbation, while still maintaining the trap, we find that the density modulations—as well
as the weights of the perturbation-induced side peaks of the momentum distribution—undergo an oscillatory
behavior with double the characteristic frequency of the excitation spectrum. The measurement of the oscillation
periods could provide an easy determination of dispersion relations.
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I. INTRODUCTION

The quasiparticle energy dispersion ε(k)—for momentum
k—directly underpins the correlations and fluctuations of
quantum fluids. An intriguing example is the excitation spec-
trum of superfluid 4He which exhibits a characteristic local
minimum in a roton region [1,2].

Dilute quantum gases offer many parallels with dense
quantum liquids in highly controllable settings. An exem-
plary system is the dipolar Bose-Einstein condensate (BEC),
now producible with highly magnetic atoms of chromium
[3,4], dysprosium [5,6], or erbium [7]. While remaining in
the weakly interacting regime, these systems possess several
phenomena reminiscent of superfluid 4He thanks to the long-
range and anisotropic nature of dipole-dipole interactions
[8–10]. A remarkable example is the recent production of
dilute self-bound droplets [6,11,12], having liquid properties
and stabilized by quantum fluctuations [13–15]. Another par-
allel is the prediction of a supersolid phase [16–18], whose
experimental realization has been the subject of recent signif-
icant advances [19–21].

An important parallel with superfluid 4He concerns the
roton-maxon dispersion. While the rotons of 4He rely on
strong correlations, it is remarkable that an analogous disper-
sion was predicted in 2003 to occur for weakly interacting
dipolar condensates [22,23]. Over the last year, landmark ex-
periments have produced the first evidence for dipolar rotons
[24], as well as the first glimpses of the roton-maxon spectrum
using Bragg spectroscopy [25] (see related theory [26]). There
has also been intense interest in rotons of other weakly
interacting BECs such as with shaken optical lattices [27],

*russell.bisset@itp.uni-hannover.de

synthetic spin-orbit coupling [28–30], and in the presence
of a cavity [31]. Dipolar rotons are fundamentally different,
though, since they genuinely arise from interactions and are
not induced by external driving.

An important finding of the Bragg-spectroscopy experi-
ment [25] was the confirmation that the roton energy rapidly
vanishes as instability is approached. Crucially, though, the
authors of [25] found significant deviations from the predic-
tions of the prevailing theory, which includes quantum fluc-
tuations in a local density approximation. Such an approach
underpins ongoing studies of self-bound droplets and dipolar
supersolids, and measurements of the roton-maxon spectrum
can furnish a highly sensitive test for the development of
improved theoretical descriptions.

Among the key challenges for measuring the dipolar roton-
maxon spectrum is the requirement for the condensate to
be highly anisotropic, with a short axis along the direction
of dipole polarization. The existence of rotons also creates
a vulnerability to condensate collapse [24], which can even
be triggered by thermal density fluctuations [32]. Previous
proposals to detect rotons were based on applying a one-
dimensional (1D) lattice to either trigger a roton collapse of
the condensate [33,34] or to detect a peak of the momentum
distribution for lattice wavelengths near the roton minimum
[35], but these did not consider how to extract the dispersion
relation itself.

We develop approaches to extract the roton-maxon spec-
trum based on the application of a static 1D lattice in the
plane of a flattened dipolar BEC. To demonstrate their utility,
we focus on the radially unconfined geometry, with a har-
monic trap only along the direction of dipole polarization.
The response of the density is highly sensitive to the lattice
wavelength and, with the help of sum rules, can be used to
provide a rigorous upper bound for the energy dispersion. We
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calculate this upper bound numerically, using a 3D Gross-
Pitaevskii equation (GPE), and compare it with the exact
prediction for the roton-maxon dispersion obtained directly
from Bogoliubov–de Gennes (BdG) calculations, finding an
almost exact agreement. To complement the possibility of
extracting the density response in position space using in situ
imaging, we demonstrate that the side peaks of the momen-
tum distribution—of relevance to expansion experiments—
can also be used to give the dispersion relation. Finally, we
show that if the static lattice is suddenly removed, while the
trap remains on, the system exhibits an oscillatory behavior
in position space, as well as for the momentum side peaks,
which provides a means to extract the dispersion relation
of the excitation spectrum without having to calibrate the
lattice strength or the magnitude of the density response.
Intriguingly, we find a phase inversion of the momentum side
peak oscillations for rotons compared to maxons, which is
quantitatively described by our perturbation theory without
any fitting parameters.

II. FORMALISM

We consider a 3D flattened dipolar BEC that is harmon-
ically trapped only along the z direction, characterized by
frequency ωz. Along the untrapped directions, the components
of the in-plane wave vector kρ = (kx, ky) provide good quan-
tum numbers. No assumptions are made about the density
profile along the z direction and this must be solved numer-
ically. With regard to this last point, it was demonstrated that
accurate treatment of the tight direction can be crucial for
providing qualitatively useful results [36].

The primary motivation for considering the radially un-
trapped regime is that in the presence of harmonic trapping,
rotons are strongly “attracted” to high density, tightly con-
fining them to a small central region [35,37] and reducing
the rotonized portion of the system and the corresponding
observable signal [38]. Nevertheless, as a check, we have also
performed calculations in the presence of harmonic trapping
in all directions (not shown here), and observe qualitatively
consistent results, with the main difference being that each
excitation exhibits a momentum broadening.

The generalized GPE takes the form [11,39–42]

ih̄
∂ψ (x)

∂t
=

[
− h̄2∇2

2m
+ mω2

z z2

2

+
∫

d3x′U (x − x′)|ψ (x′)|2 + γQF|ψ |3
]
ψ (x),

(1)

with the interaction potential being well described by the
pseudopotential U (r) = gsδ(r) + Udd(r). The contact interac-
tion strength is gs = 4πash̄

2/m, for s-wave scattering length
as and mass m. The dipoles are polarized along z and the
corresponding dipole-dipole interactions are described by
Udd(r) = (3gdd/4π )(1 − 3 cos2 θ )/r3, where θ is the angle
between r and the z axis. Their strength is given by gdd =
μ0μ

2
m/3, for magnetic dipole moment μm [43]. The dipolar

Lee-Huang-Yang (LHY) correction is added in the local den-
sity sense, being proportional to γQF = (32gs/3)

√
a3

s /π (1 +
3ε2

dd/2) [40,44], where the ratio εdd = gdd/gs is useful since

εdd > 1 signals the dipole-dominated regime. It should be
noted that the main effect of the LHY term throughout this
paper is to shift the scattering length of the roton instability
downwards by around 8%. The results otherwise remain
qualitatively the same.

To benchmark our approach, we obtain excitation energies
and wave functions by solving the BdG equations. These
can be obtained by linearizing about Eq. (1) in the absence
of any perturbing lattice [45]. Solving these in the present
regime cannot be done analytically, so we use the numerical
techniques outlined in [36] but here we include the LHY term.

III. SUM RULES AND THE STATIC DENSITY RESPONSE

We consider the condensate response to the 1D periodic
lattice perturbation,

Vpert = 2VL cos(kL · x), (2)

where VL is a constant and kL = (kL, 0, 0). To do this, we
solve for ground states of the time-independent GPE including
Vpert. In the limit of small VL, the spatial density oscillation
arising from the perturbation furnishes the static density re-
sponse function,

χ (kL) = lim
VL→0

�n

2VL
, (3)

where the amplitude of the density perturbation is

�n = max{n(x)} − min{n(x)}
2n0

, (4)

for the 2D density n(x) = ∫ |ψ (x)|2dz and its unperturbed
value n0 [46]. A rigorous upper bound for the lowest-energy
band can then be obtained by making use of the sum-rule
result [10],

ε(k) � h̄
√

m1

m−1
=

√
ε0(k)

χ (k)/2
, (5)

where ε0(k) = h̄2k2/2m is the noninteracting dispersion rela-
tion, and mp = ∫

dωωpS(k, ω) are the p moments of the dy-
namic structure factor. Actually, the upper bound (5) provides
a better estimate than the Feynman upper bound εF (k) =
h̄m1(k)/m0(k) = ε0(k)/S(k), where S(k) = m0 is the static
structure factor [10]. Furthermore, at finite temperature, the
knowledge of χ (k) provides important information on the
density fluctuations, embodied by the static structure fac-
tor which obeys the fluctuation-dissipation theorem S(k) �
kBT χ (k) [10]. This becomes an equality for weakly inter-
acting gases when kBT � ε(k), which should be readily
accessible in current dipolar experiments where the maxon
corresponds to a temperature ∼10 nK [25].

IV. ROTON-MAXON DISPERSION

As a realistic example, we focus on a condensate of 164Dy
atoms with a trapping frequency ωz = 2π × 100 Hz, density
of n0 = 300 μm−2, and a scattering length as = 85.5a0, giv-
ing εdd ≈ 1.5. Three-body losses are expected to be minimal
since the unperturbed peak 3D density is only 6.6 × 1019 m−3

and the scattering length is well within the range already
realized in experiments [6,47].
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FIG. 1. (a) GPE prediction for the static density response
[Eq. (3)] versus in-plane momentum, and (b) energy dispersion for
(a1),(b1) a dipolar and (a2),(b2) a nondipolar condensate. The BdG
energy bands appear as blue solid lines, while the sum-rule upper
bound—based on the the density response of the GPE ground state to
a perturbing lattice potential with kρ = |kL| (3)–(5)—is marked with
plus symbols. (b1) The sum rule’s ability to provide an almost exact
prediction for the roton-maxon spectrum of the lowest band is highly
nontrivial given that our 3D GPE calculations inherently account for
contributions from higher bands. (b2) A similar sum-rule prediction
for a nondipolar BEC exhibits good agreement with the lowest
BdG band only for kρ lz � 1. Both regimes have μ = 9.5h̄ωz and
compressibility h̄ωzχ (kρ → 0) = 0.15, and for the static-response
calculations, we use VL = 0.0025h̄ωz. Vertical dashed lines represent
the cases in Figs. 2 and 3.

In Fig. 1(a), we show the static density response function
χ calculated by applying a static periodic perturbation with
wave vector kL and using Eq. (3). For the dipolar condensate
[Fig. 1(a1)], a large response peak dominates, indicative of a
rotonized dispersion relation; see, also, [35]. A similar sharp
peak is known to characterize the static response of superfluid
4He as a consequence of the roton excitations [48]. In contrast,
for the nondipolar condensate [Fig. 1(a2)], the response is two
orders of magnitude lower and monotonically decreases.

Excitation energies calculated from BdG theory (solid
lines) are displayed in Fig. 1(b1) for the dipolar condensate
and in Fig. 1(b2) for a nondipolar one. For the dipolar case, a
roton-maxon character is clearly visible in the lowest band.
The upper bound [plus symbols (5)], involving the static
response χ , provides a very accurate prediction for the lowest
band of the dipolar gas, practically indistinguishable from the
BdG solution. Such a result is highly nontrivial since our 3D
calculations inherently include the contributions from higher
bands [see Fig. 1(b1)]. In contrast, for superfluid 4He, the
Feynman upper bound overestimates the roton energy by a

factor of two [49]. Figure 1(b2) shows that for the nondipolar
condensate, the upper bound exhibits good agreement with the
lowest band of the exact BdG energy only for kρ lz � 1. The
sum-rule upper bound’s success in predicting the roton-maxon
dispersion is partly thanks to the low roton energy—since
the static-response function is directly related to the inverse
energy weighted sum rule—and partly due to the lowest band
experiencing the most attractive interactions at moderate to
large kρ . As an interesting side point, for the nondipolar
condensate [Fig. 1(b2)], the lowest bands tend to become
degenerate in a pairwise fashion at large momentum. This
behavior arises as the excitations become more surfacelike
[50] and the two planar surfaces essentially uncouple.

Determining the static response χ directly using (4) will
likely require high-resolution in situ imaging, which is now
available in dipolar experiments [6]. As an alternative ob-
servable, it is also convenient to profit from the side peaks
of the momentum distribution (particle distribution function)
arising at kρ = k±L from the perturbation. The side peaks are
a consequence of Bose-Einstein condensation, which couples
the density and particle response functions. In the linear re-
sponse and single-mode approximations [51,52], the number
of atoms in these side peaks N±kL relates to the dispersion as

N±kL

N
= χ2(kL)V 2

L

4
=

[
ε0(kL)VL

ε2(kL)

]2

, (6)

where, in deriving the second equality, we have used the
estimate (5) for the excitation energy in terms of the static
response. For sufficiently large values of kL, these peaks can
be accurately measured in experiments via time-of-flight mea-
surements. The momentum space condensate wave function
can be used to numerically calculate N±kL . We have checked,
for the rotonized dipolar condensate, that the numerical pre-
dictions for ε(k) extracted from (6) also agree well with the
ones previously calculated using BdG theory, thereby opening
a complementary approach for the experimental determina-
tion of the roton-maxon excitation spectrum.

V. DYNAMICS AFTER LATTICE REMOVAL

Another approach for extracting the roton-maxon spectrum
is to suddenly remove the perturbing lattice, and then to follow
the ensuing in-trap dynamics either with the position space
observable �n(t ) (4) or with momentum space observable
NkL (t ). A clear experimental advantage of directly measuring
the oscillation frequency is that the dispersion relation can be
extracted without the need for precise calibration of the lattice
strength or the density response amplitude. For reference, the
roton minimum in Fig. 1 corresponds to a wavelength of
4.3 μm, a value that should be reasonably well resolved in
the current generation of experiments with in situ imaging
resolution of around 1 μm [6].

We simulate this starting with a ground state in the pres-
ence of the lattice and then evolve it according to the GPE
(1) with the lattice suddenly removed (i.e., VL = 0 for t >

0). Such GPE dynamics are shown as symbols in Fig. 2(a)
for a lattice near the maxon wavelength (kLlz = 0.4), and in
Fig. 2(b) for a roton (kLlz = 1). Both �n and NkL are seen to
exhibit oscillations at twice the frequency of the dispersion
relation. From an analytic perspective, we can also predict
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FIG. 2. In-trap dynamics of the density contrast �n [Eq. (4)]
and momentum response NkL after sudden lattice removal at t = 0.
Lattices with (a) a maxon and (b) a roton wavelength are considered.
The single-mode predictions (7) and (8)—with ε extracted from
Fig. 1—are shown as solid blue lines, while the time-dependent GPE
results appear as symbols.

these quantities using linear response theory, where in the
single-mode approximation they are

�n(t ) = 4VLε0(kL)

ε2(kL)

∣∣∣∣cos

[
ε(kL)t

h̄

]∣∣∣∣, (7)

NkL (t )

N
= V 2

L

ε2(kL)

[
ε2

0 (kL)

ε2(kL)
cos2 ε(kL)t

h̄
+ sin2 ε(kL)t

h̄

]
. (8)

Equations (7) and (8) are included in Fig. 2 as solid blue lines,
where their excellent agreement with the symbols confirms
that the GPE oscillation frequencies are indeed representative
of the lowest-band dispersion [Fig. 1(b1)].

While, as expected, Fig. 2 shows that �n(t ) always de-
creases immediately after the lattice is removed (at t = 0), it is
interesting to note that the behavior for NkL (t ) is qualitatively
different. Although NkL (t ) initially decreases for the roton
case Fig. 2(b), it instead sharply increases for the maxon
case [Fig. 2(a)]. From a detectability viewpoint, these large
upward oscillations for maxons should more than compensate
for their relatively weak static response (t < 0). This behavior
can be explained by considering (7) and (8) in light of the
effective interactions. For a noninteracting BEC, one has ε =
ε0, which gives the intuitive result that �n(t ) oscillates while
NkL (t ) remains constant. Maxons (as well as phonons) have
ε0/ε < 1 because of an effectively repulsive interaction at
the relevant wave vector. At the moment that the lattice is
removed, the density perturbation is maximal and hence so
too is the interaction energy. A quarter of an excitation period
later, the density is flat and the interaction energy is now min-
imal, with the difference being converted into kinetic energy
which manifests as an increase of NkL . Rotons experience
an effectively attractive interaction, hence ε0/ε > 1, which
explains why their oscillatory behavior is reversed [53].

VI. EXTENT OF THE LINEAR REGIME

Larger perturbations will be easier to detect, but may
deviate from the linear response regime. Additionally, large
perturbations can trigger the rotonized condensate to collapse
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FIG. 3. In-trap oscillation maxima of the density contrast and
the momentum response (see Fig. 2), as a function of the static
lattice strength prior to its sudden removal. As in Fig. 2, here we
consider (a) a maxon and (b) a roton. The linear responses (7) and
(8)—using BdG energies—are shown as solid blue lines, while GPE
results appear as symbols. The vertical dashed lines represent the VL

considered in Fig. 2.

[33,34]. In Fig. 3, we address these issues with the same
two lattice wavelengths as in Fig. 2, i.e., (a) a maxon and
(b) a roton. GPE results are shown as symbols and we
see that max{�n(t )} ∝ VL, while max{NkL (t )} ∝ V 2

L , in good
agreement with the predictions from Eqs. (7) and (8). We
have checked that for all VL considered, the in-trap oscillation
frequencies (see Fig. 2) coincide with high precision (within
1%) to the BdG roton-maxon frequencies in Fig. 1. In fact, the
excellent agreement in Fig. 2(b) is for one of the most nonlin-
ear cases, having a density contrast of max{2�n(t )} ≈ 0.7, as
indicated by the dashed line in Fig. 3(b). This robustness of the
linear response regime is important for the usefulness of our
approaches. Similarly, the GPE energy predictions extracted
from the static density response �n(t = 0) [using (7)] show
excellent agreement with the BdG energies (within 1%), and
the excitation energies inferred from NkL (t = 0) [using (8)]
agree to within 0.025h̄ωz for the regimes considered.

It should be noted that all results shown in Fig. 3 are
within the stable regime. For larger VL, the stationary states
become dynamically unstable and the remaining translational
symmetry breaks, i.e., the high-density stripes break up to
form quantum droplets [6,11,12]. Despite this, the stability
window should be large enough since NkL is sizable and the
density contrast is already quite large, i.e., 2�n ∼ 0.5.

VII. CONCLUSIONS

We have outlined approaches for the quantitative extrac-
tion of dispersion relations in quantum gases, focusing on
the roton-maxon spectrum of dipolar BECs to demonstrate
their effectiveness. By measuring the static density response
in position space—or the corresponding side peaks of the
momentum distribution—a sum-rule upper bound provides an
almost exact prediction for the roton-maxon dispersion of the
lowest band, as well as the phonon spectrum for nondipolar
BECs. This is remarkable given that the Feynman sum-rule
approach for superfluid 4He overestimates the roton energy
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by a factor of two. By suddenly removing the lattice and
observing the ensuing in-trap dynamics, we demonstrated that
both the density and momentum side peaks oscillate in a stable
manner at twice the characteristic frequency of the dispersion
relation. Crucial for experimental observability, the oscillation
frequency remains constant even for large perturbation ampli-
tudes. Interestingly, the side peak weights of the momentum
distribution oscillate oppositely for rotons as compared to
phonons and maxons, presenting a clear signature for the
effectively attractive interactions experienced by the rotons.
We quantitatively explained this behavior using perturbation
theory.
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