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Pair formation in quenched unitary Bose gases

S. Musolino,* V. E. Colussi, and S. J. J. M. F. Kokkelmans
Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

(Received 1 April 2019; published 11 July 2019)

We study a degenerate Bose gas quenched to unitarity by solving a many-body model including three-body
losses and correlations up to second order. As the gas evolves in this strongly interacting regime, the buildup
of correlations leads to the formation of extended pairs bound purely by many-body effects, analogous to the
phenomenon of Cooper pairing in the BCS regime of the Fermi gas. Through fast sweeps away from unitarity,
we detail how the correlation growth and formation of bound pairs emerge in the fraction of unbound atoms
remaining after the sweep, finding quantitative agreement with experiment. We comment on the possible role of
higher-order effects in explaining the deviation of our theoretical results from experiment for slower sweeps and
longer times spent in the unitary regime.
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I. INTRODUCTION

In ultracold quantum gases, precision control of mag-
netically tunable Feshbach resonances makes it possible to
tune the effective interaction strength, characterized by the
s-wave scattering length a [1]. As a becomes much larger than
the interparticle spacing n−1/3, where n is the atomic density,
the gas enters the unitary regime (n|a|3 � 1). At unitarity
(|a| → ∞), interactions between atoms are as strong as al-
lowed by quantum mechanics. Moreover, the macroscopic
properties of unitary quantum gases appear insensitive to
microscopic physics and therefore paradigmatic for other
strongly correlated systems, including the inner crust of neu-
tron stars and the quark-gluon plasma [2,3]. The universality
of the unitary Fermi gas has been both theoretically and
experimentally well established over the past two decades [4].
Under the universality hypothesis, the unitary Bose gas is also
expected to behave similarly, with thermodynamic properties
and relations that scale continuously solely with the “Fermi”
scales constructed from powers of n, including the Fermi wave
number kn = (6π2n)1/3, energy En = h̄2k2

n/2m, and time
tn = h̄/En, where m is the atomic mass [5].

Unlike their fermionic counterparts, at unitarity three
bosons may form an infinite series of bound Efimov trimers
[6] with characteristic finite size set by the three-body param-
eter κ∗ [7–9]. Whereas Pauli repulsion suppresses three-body
losses for fermions, the Efimov effect leads to a catastrophic
a4 scaling of three-body losses near unitarity, and therefore the
unitary Bose gas is inherently unstable. In Refs. [10–13], this
barrier was overcome through a fast quench from the weakly
interacting to the unitary regime, where the establishment of
a steady state was observed before heating dominates. Time-
resolved studies of the single-particle momentum distribution
in Ref. [13] revealed that the theoretically predicted prether-
mal state [14–16] transitions to steady state prior to being
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overcome by heating. Although these findings, combined with
studies of loss dynamics in Refs. [10–12], are consistent
with the universality hypothesis, a macroscopic population
of Efimov trimers was observed in Ref. [11]. Understanding
the role of the Efimov effect [17,18] and dynamics of higher-
order correlations [19–21] in the quenched unitary Bose gas
remains, however, an ongoing pursuit in the community.

The difficulties of probing the system at unitarity re-
quire that experiments return to the more stable and better-
understood weakly interacting regime. During the course of
the experiment, we have to distinguish different types of
atomic pairs: (i) pairs of atoms with opposite momentum,
analogous to Cooper pairs in Fermi gases, (ii) embedded
dimers at unitarity whose size is determined by the mean in-
terparticle separation, and (iii) weakly bound molecules away
from unitarity, whose size is determined by the scattering
length.

According to the experimental procedure of Refs. [10–13],
illustrated in Fig. 1, a Bose gas is initially quenched from
the weakly interacting to the unitary regime, held there for
a variable time thold, and finally probed again in the weakly in-
teracting regime. Here, the size of a molecule is much smaller
than the mean interparticle separation and the distinction
between unbound and bound atoms is physically meaningful
again [22]. In the unitary regime, unbound pairs progressively
localize onto the scale of the interparticle spacing, purely due
to many-body effects [20]. The nature of these embedded
dimers is reflected by a universal time-dependent size aeff , fit
to the universal form

knaeff = 1.58 + 3.44

(
tn

thold

)2

, (1)

which indicates a transition from unbound (aeff → ∞) to
bound (aeff ∼ k−1

n ) on Fermi timescales, as we will discuss
in Sec. II C. It is interesting to note the analogy of pair
formation in the quenched unitary Bose gas to pair formation
in the unitary Fermi gas [23], which is at the center of the
so-called BCS-BEC crossover. When entering this crossover
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FIG. 1. Schematic representation of the experimental protocol
used in Refs. [10–13]. First, the magnetic field B is ramped suddenly
toward the resonant value B0, taking the system from the weakly
interacting (na3 < 1) to the unitary regime na3 � 1 (shaded region).
In the second stage, the system evolves at unitarity for a variable
time thold. In the third and final step, the system is ramped back from
unitarity with a different ramp rate (proportional to the slope of line
3) away from resonance and returns back to the weakly interacting
regime where measurements are made and weakly bound molecules
can be found. Inset: Feshbach resonance with the scattering length
a as a function of B during the sequence represented in the main
figure.

from the Bardeen-Cooper-Schrieffer (BCS) side, fermionic
pairs, loosely bound by the medium, smoothly evolve into
tightly bound molecules that are stable even without the
medium, when passing through to the Bose-Einstein con-
densation (BEC) side, while the effective atomic interaction
changes from attractive to repulsive [4]. For these experi-
ments, a very successful technique was employed utilizing
fast magnetic field sweeps to effectively project the fermionic
pairs onto molecules throughout the whole crossover regime
[24–29].

In this work, we quench an initially pure Bose condensate
to unitarity and track the resultant dynamics up to the level of
two-body correlations, while including universal three-body
losses phenomenologically. We then model the final step
shown in Fig. 1 by a fast-sweep projection technique in the
spirit of Ref. [26], count the number of remaining unbound
atoms, and compare quantitatively our results with the ex-
perimental findings of Ref. [12]. Unlike in the experiment,
in our model, we are able to distinguish between three-body
losses and formation of molecules when determining the
number of remaining unbound atoms. Through this ability,
we estimate the universal three-body loss-rate coefficient by
refitting the experimental data of Ref. [12]. We also compare
the predictions of our model for the number of unbound atoms
with the results of that work, finding generally good agree-
ment for fast ramp rates and for slower ramp rates at earlier
times (thold � 0.5tn). As correlations grow and the condensate
becomes increasingly depleted for longer times spent in the
unitary regime, we highlight the dominant contribution of the
embedded dimers in the number of unbound atoms detected
after fast-sweep projection away from unitarity.

The organization of this work is as follows. In Sec. II,
we outline our many-body model (Sec. II A), adapt the tech-
nique of fast-sweep projection from Ref. [26] (Sec. II B) for
Bose gases, and develop the theory of bound pairs in the
unitary regime discussed in Ref. [20] (Sec. II C). In Sec. III,
three-body losses are introduced phenomenologically into our
many-body model, and in Sec. IV, we discuss the results of
our model and compare them with the experimental findings
of Ref. [12]. We conclude in Sec. V and comment on prospects
for future study.

II. MODEL

A. Many-body equations

We model a uniform gas of identical spinless bosons
interacting via pairwise interactions described by the single-
channel many-body Hamiltonian

Ĥ =
∑

k

h̄2k2

2m
â†

kâk +
∑

k,k′,q

Vk,k′,qâ†
k+qâ†

k′−qâk′ âk, (2)

where Vk,k′,q = (g/2)ζ (k − k′ + 2q)ζ ∗(k − k′) is a nonlocal
separable potential with interaction strength g, step-function
form factor ζ (k) = θ (� − |k|/2), and finite cutoff �, giving
rise to a finite-range interaction both in momentum and posi-
tion space. This model is suitable for describing open-channel
dominated Feshbach resonances, which includes all degener-
ate unitary Bose gas experiments to date [10–13,30]. To fix
the free parameters of the separable potential, we first set
the strength of the potential, g = U0�, where U0 = 4π h̄2a/m
and � = (1 − 2a�/π )−1, to reproduce the exact two-body T
matrix in the zero-energy limit [20,31]. To fix �, we follow
Ref. [20] and set � = 2/π ā to obtain finite-range correc-
tions to the binding energy of the Feshbach molecule Eb �
−h̄2/m(a − ā)2, valid only to first order in 1/�a, and where
ā = 0.955rvdW is the mean scattering length that depends on
the van der Waals length rvdW, for a particular atomic species
[1]. Consequently, at unitarity we obtain a finite interaction
strength g = −π3h̄2ā/m for a → ∞.

To model the condensate and excitations, we make the
Bogoliubov approximation [32] and decompose the operator
âk = ψk + δâk with 〈δâk〉 = 0. We assume that only the
atomic condensate is macroscopically occupied so that 〈âk〉 =
ψ0δk,0 and consider only fluctuations of the excitations. These
assumptions are valid provided the excited modes are not
macroscopically occupied. Furthermore, we build our many-
body theory from the cumulant expansion [19,20], which
separates clusters of correlated particles within an interacting
many-body system. Here, we consider only up to second-
order clusters (correlations), described by the condensate
wave function ψ0 and the one-body ρk ≡ 〈â†

kâk〉 and pairing
κk ≡ 〈â−kâk〉 density matrices for excitations [33].

We derive the Hartree-Fock Bogoliubov (HFB) equations
[33] from the Heisenberg equation of motion for one or
two â-operator products and evaluate the expectation val-
ues in cumulant expansion, neglecting clusters of three or
more particles. Summarily, if Ô is a specific operator, using
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ih̄ 〈dÔ/dt〉 = 〈[Ô, Ĥ ]〉 one has

ih̄ψ̇0 = g

⎛
⎝|ζ (0)|2|ψ0|2 + 2

∑
k �=0

|ζ (k)|2ρk

⎞
⎠ψ0

+ gψ∗
0

∑
k �=0

ζ (0)ζ ∗(2k)κk, (3)

h̄ρ̇k = 2Im[�kκ
∗
k ], (4)

ih̄κ̇k = 2hkκk + (1 + 2ρk )�k, (5)

where

hk = h̄2k2

2m
+ 2g

⎛
⎝|ζ (k)|2|ψ0|2 +

∑
q �=0

|ζ (k − q)|2ρq

⎞
⎠ (6)

and

�k = gζ (2k)

⎛
⎝ζ ∗(0)ψ2

0 +
∑
q �=0

ζ ∗(2q)κq

⎞
⎠ (7)

are the Hartree-Fock Hamiltonian and the pairing field, re-
spectively [33]. The HFB theory results in a mean-field de-
scription, typically suitable for the weakly interacting regime
where n|a|3  1. However, here we formulate a finite-range
HFB theory, which yields a finite mean-field energy g at
unitarity, as discussed above. We argue that this theory is ap-
plicable for strong interactions since g remains small respect
to En, or equivalently nr3

vdW  1. Note that this condition is
well satisfied for all experiments in the unitary regime to date
(nr3

vdW < 10−5) [10–13,20,34].
To simulate the first two steps of the experimental sequence

illustrated in Fig. 1, Eqs. (3)–(5) are solved at fixed initial
density nin = Nin/V , where Nin ≡ N (t = 0) with total atom
number N (t ) in a volume V [35]. In particular, we consider
experiments done in a box-trap, modeled as a uniform system
[36]. We begin at t = 0 from a pure condensate with |ψ0|2 =
nin. The scattering length is then ramped over 2 μs to unitarity,
where the system evolves for a varying amount of time, thold.
As the gas evolves at unitarity and in the absence of losses,
the condensate fraction becomes depleted as correlated pair
excitations are generated and counted by ρk as studied in
Ref. [15]. We expect that the increase of ρk beyond unity
makes higher-order cumulants strongly driven and their in-
clusion in the model cannot be justified. Therefore, following
Ref. [20], we restrict our analysis to t � 2tn where ρk < 1
remains valid.

B. Fast-sweep projection away from unitarity

We finally model the third step of Fig. 1 with a projection
of the many-body state at unitarity onto a molecular state at
finite scattering length and count the number of molecules.
Intuitively, in the limiting case of a sudden switch of the
magnetic field, the number of molecules may be calculated,
to good approximation, by simply projecting the state at
unitarity onto molecules at the final magnetic field Bend. For
finite ramp rates R = −dB/dt , this approximation is not valid.
In this case, the number of molecules may be calculated
approximately by projection onto an effective molecular state

φ∗ with scattering length a∗ larger than the final scattering
length aend and intermediate to both the sudden and adiabatic
cases, as detailed in Ref. [26]. This method provides an
indirect measure of the buildup of correlations at unitarity.
The conceptual problem of bound pairs in the unitary regime
is revisited in Sec. II C.

We construct a compound bosonic operator

b̂†
0 ≡

∑
k

φ∗(k)√
2

â†
−kâ†

k, (8)

counting molecules away from unitarity with zero center of
mass and relative momentum k of the constituent atoms,
where φ∗(k) is a molecular wave function with a finite
scattering length a∗ whose value will be specified shortly.
By construction, the b̂ operator satisfies [b̂0, b̂0] = [b̂†

0, b̂†
0] =

0, and the canonical commutation relation [b̂0, b̂†
0] = 1 +∑

k |φ∗(k)|2(â†
kâk + â†

−kâ−k ) is approximately well satisfied
〈[b̂0, b̂†

0]〉 � 1 away from unitarity, where the molecules are
spatially much smaller than the interparticle spacing. We note
also that the approach of counting composite bosons [Eq. (8)]
has been also used extensively for counting fermionic pairs
along the BEC-BCS crossover [26,37,38].

We evaluate the expectation value 〈b̂†
0b̂0〉, which can be

expanded in terms of first- and second-order cumulants, con-
sistently with the theory presented in Sec. II A. Therefore, the
molecular fraction is

2Nmol

Nin
=V

∑
k

|φ∗(k)|2
(

|ψ0|4δk,0+ 2

V
ρ2

k

)
+V

∣∣∣∣∣
∑

k

φ∗(k)κ∗
k

∣∣∣∣∣
2

+V
∑

k

2Re[φ∗(0) [ψ†
0 ]2 κk [φ∗(k)]∗], (9)

where Nin/2 is the total possible number of molecules. At
thold = 0 immediately following the completion of the quench,
|ψ0|2 ≈ n and ρk ≈ κk ≈ 0, and therefore only the first term
on the right-hand side of Eq. (9) contributes. This contri-
bution can be interpreted as the overlap of the molecular
wave function and the atomic mean field [22] and scales as
na3

∗ proportional to the ratio of atomic and molecular vol-
umes. This overlap must be insignificant so that na3

∗ < 1, and
molecules can be separated from the many-body background.
The remaining terms in Eq. (9) measure the overlap between
molecular and pairing wave functions [39] and reflect the
development of correlations as the gas evolves in the unitary
regime. We note that Eq. (9) is in agreement with the first-
quantized multichannel description in position space found in
Ref. [22].

In the evaluation of Eq. (9), the molecular wave function
has the universal form

φ∗(k) =
√
Na3∗

1 + (ka∗)2
, (10)

valid provided a∗ � rvdW [1]. The normalization constant
N = 4π2/{arctan(�a∗) − �a∗/[1 + (�a∗)2]} ensures that∑�

k |φ∗(k)|2 = 1. As mentioned above, Eq. (10) is written in
terms of a∗, whose value depends on R. a∗ represents the point
at which the evolution of the system under the ramp changes
from sudden to adiabatic, and the creation and dissociation of
molecules is halted [26,27]. Quantitatively, this occurs when
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FIG. 2. A qualitative illustration of the variation of a∗ (solid red
lines) with the ramp rate 1/R and of the variation of aeff (solid and
dashed black lines) with increasing thold as indicated by arrows in the
shaded region. The direction of faster ramps is indicated explicitly.
In the insets, the molecular [φ∗(k)] (solid green and blue lines)
and bound pair [φD(k)] (solid, dash-dotted, and dashed lines) wave
functions are compared for increasing thold indicated by arrows.

Eb/h̄ = E−1
b Ėb is satisfied, where Eb = −h̄2/m(a − ā)2 is the

molecular binding energy including finite-range effects [1].
We obtain specific values of a∗ from the real solution of the
third-order polynomial equation

(a∗ − abg)2(a∗ − ā) = h̄�Babg

2mR
, (11)

where abg is the background scattering length and �B is the
width of the Feshbach resonance [1,40]. In the sudden limit,
the initial state is projected onto the final scattering length
aend ≡ a(Bend ) � a∗ which is on the order of abg or ā for
1/R → 0.

The dependence of a∗ on the ramp rate is shown by the
solid red line in Fig. 2. Generally, larger values of a−1

∗ indicate
a faster ramp and the many-body state at unitarity is projected
onto more localized molecules. Consequently, φ∗(k) will be
less pronounced at low momenta than for slower ramps, which
can be seen in the insets of Fig. 2.

C. Embedded dimers at unitarity

To link the buildup of correlations at unitarity with the fast-
sweep production of molecules, it is instructive to introduce
a many-body length scale that can be compared with a∗.
Here, we follow the approach outlined in Ref. [20] and study
embedded two-body bound states at unitarity.

To obtain the spectrum of these dimers embedded in the
unitary Bose gas, the homogeneous part of Eq. (5), includ-
ing only terms dependent on κk, is solved as a two-body
Schrödinger equation in the quasistationary limit [19,20]. This
approach is valid provided κk evolves faster than the den-
sity dynamics and scattering among clusters (inhomogeneous
terms) are neglected, in which case one obtains an eigenvalue

equation

E (ν)
2B φR

ν (k) = 2hkφ
R
ν (k) + (1 + 2ρk )

∑
q �=0

gζ (2k)

× ζ ∗(2q)φR
ν (q), (12)

where E (ν)
2B is a two-body eigenenergy and φR

ν (k) is a right-
handed wave function [19,20]. The left-handed wave func-
tion φL

ν (k) is related via φR
ν (k) = (1 + 2ρk )φL

ν (k), and they
satisfy the usual orthogonality

∑
k[φL

ν (k)]∗φR
μ (k) = δν,μ and

normalization
∑

ν[φL
ν (k)]∗φR

ν (q) = δk,q conditions.
It is illustrative to compare Eq. (12) with the Schrödinger

equation for a Cooper pair in the BEC-BCS crossover,
which depends instead on the Pauli-blocking factor (1−2ρk )
[29,37]. Whereas the blocking factor in the BEC-BCS
crossover theory forbids scattering at occupied intermediate
states [41], the intermediate states for a Bose gas are Bose
enhanced [42]. Both effects may lead to weakly bound pairs
which are held together purely by many-body effects, whose
presence was predicted in the finite-temperature phase dia-
gram of the strongly interacting Bose gas [23].

Following Ref. [20], we track the gradual development in
time of these embedded dimers, solutions of Eq. (12) with
wave function φD(k) and binding energy ED

2B ≡ −h̄2/ma2
eff .

Equation (12) can be solved numerically, yielding ED
2B as a

function of time. The evolution of ED
2B was fit in Ref. [20],

and we quote that result in Eq. (1). Initially, these dimers
are basically unbound (aeff ∼ ∞), but through the subsequent
buildup of correlations and quantum depletion they are local-
ized (aeff ∝ k−1

n ) onto the Fermi scale and behave universally.
Comparing a∗ with aeff provides a convenient way of char-

acterizing the underlying physics of the fast-sweep projection.
These scales are shown in Fig. 2, where the development of
a−1

eff as the gas evolves in the unitary regime is represented
by the progression of horizontal lines in the shaded region.
As discussed in Sec. II B, the fast-sweep projection must be
such that kna∗  1 and therefore outside of the shaded region.
These length scales may also be used to understand how the
buildup of correlations influences the number of remaining
unbound atoms after the fast-sweep projection. The evolution
of φD(k) with thold is shown along with φ∗(k) in Fig. 2 for
two different ramp rates. The gradual localization of φD(k)
onto the Fermi scale leads to increasing overlap with φ∗(k).
This behavior is more pronounced for slower ramps and for
longer thold. Therefore, we intuitively expect that embedded
dimers make an increasing contribution to the overlap term in
Eq. (9) and therefore the number of molecules produced by
the fast-sweep projection.

To determine the role of the embedded dimers at unitarity,
we decompose κk in the basis of φR

ν (k) as

κk =
∑

ν

cνφ
R
ν (k) ⇔ cν =

∑
k

[
φL

ν (k)
]∗

κk, (13)

where the coefficient cν quantifies the relative weight of the
component ν within the total κk. We define the embedded
dimer contribution ND in Eq. (9), by evaluating only the
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FIG. 3. Contribution of the embedded dimers formed at unitarity
to the total number of molecules produced by the fast-sweep projec-
tion away from the unitary regime shown for three ramp rates within
the range of experimental interest. Time is implicit in the inverse
effective scattering length in the sense of Eq. (1). By thold ∼ 2tn when
(knaeff )−1 � 0.4, we obtain a maximum contribution ND/Nmol ≈ 0.6.

component ν = D of Eq. (13)

2ND

Nin
= V

∣∣∣∣∣
∑

k

φ∗(k)
[
φR

D(k)
]∗ ∑

q

[κq]∗φL
D(q)

∣∣∣∣∣
2

+V
∑

k

2Re

{
φ∗(0)[ψ†

0 ]2

(∑
q

[
φL

D(q)
]∗

κq

)

×φR
D(k)[φ∗(k)]∗

}
. (14)

Figure 3 shows the ratio between embedded dimers and
total number of molecules as a function of (knaeff )−1 after
fast-sweep projections for three ramp rates of experimental
interest. We find that by thold ∼ 2tn, when (knaeff )−1 ∼ 0.4,
embedded dimers make up ≈60% of the detected molecules.
Therefore, the fast-sweep projection increasingly converts
embedded dimers into weakly bound molecules away from
resonance, as the gas spends more time at unitarity, agreeing
with the intuitive overlap picture shown in Fig. 2. We note that
the behavior shown in Fig. 3 is reminiscent of the monotonic
conversion of fermions pairs into molecules along the BEC-
BCS crossover as a function of the scattering length [29,43].

III. MODELING THREE-BODY LOSSES

The development of strong correlations at unitarity is also
accompanied by strong losses [10–13,15,18,30]. In Ref. [13],
by focusing on the early-time dynamics of the tail of the
single-particle momentum distribution for k/kn � 0.8, it was
possible to experimentally distinguish between the formation
of a steady-state and long-time heating. However, this sep-
aration was not possible experimentally in Refs. [10,12] for
observables depending on the full range of momentum. In
the present work, we model the findings of Ref. [12] and
study the number of unbound atoms detected following the
completion of the experimental sequence illustrated in Fig. 1.
In particular, the number of unbound atoms decreases in time
because of two main phenomena, which are difficult to dis-

tinguish experimentally: molecular formation and three-body
losses. Therefore, the inclusion of losses is required to make
a quantitative comparison.

We assume a universal form for three-body losses scaling
as n2/3 in degenerate Bose gases, ignoring possible log-
periodicities due to the Efimov effect [18,44]

Ṅ (t )

N (t )
= −A

tn
. (15)

This gives an effective three-body loss coefficient

Keff
3 (n(t )) = Ah̄(6π2)2/3

2m
n(t )−4/3, (16)

that satisfies the standard relation Ṅ (t )/N (t ) =
−Keff

3 N (t )2/V 2 for a uniform system [1]. We treat the
constant A as a free parameter that is varied in Sec. IV in
order to fit experimental data of Ref. [12]. The form of
Eq. (15) was found experimentally in Refs. [11,12] and is
theoretically motivated by the universal substitution a4 → a4

eff
in the scaling law of Keff

3 for shallow dimers as was suggested
in Refs. [17,45]. For clarity, the universal scaling n2/3 was
found to be valid only for thold � 4tn; for longer time, the loss
rate scales as n26/9, consistent with the results for a thermal
gas at unitarity [46,47] and beyond the limit of validity of our
model, as discussed in Sec. II A.

To incorporate three-body losses into the HFB equations,
we consider the time derivative of the atomic density
dn(t )/dt=d (N (t )/V )/dt =d (|ψ0(t )|2)/dt +∑

k �=0 dρk(t )/dt
and in order to satisfy Eq. (15) we only have to modify
Eqs. (3) and (4) with additional terms

ih̄ψ̇0 = · · · − i
h̄

2
Keff

3 (n(t )) n2(t )ψ0, (17)

h̄ρ̇k = · · · − h̄Keff
3 (n(t )) n2(t )ρk, (18)

where · · · represents the lossless terms of the HFB equations.
We note that a similar phenomenological approach has been
used at the level of the Gross-Pitaevksii equation in Ref. [48]
and also to describe the Bosenova in Refs. [49,50]. These
approaches, however, did not include density dependence in
the three-body loss coefficient. We also note that it should
be possible to go beyond this phenomenological approach
through a proper inclusion of third-order correlations into an
extension of the many-body model outlined in Sec. II. These
matters remain the subject of future study.

IV. RESULTS

In this section, we compare the results of our model to
the experimental data in Ref. [12]. We approximate the box
cylindrical trap used in that work as a homogeneous gas [36]
and numerically solve the HFB equations including losses
[Eqs. (5), (17), and (18)] for the 39K Feshbach resonance at
B = 402 G with abg = −29a0, �B = −52 G, and ā = 61.7a0

[1]. To mimic the experimental setup, we fix the initial density
nin and simulate up to thold = 2tn, which is the range of validity
of our model, as discussed in Sec. II. We then calculate the
total number of unbound atoms after the fast sweep away from
unitarity from Eq. (9) for the ramp rates used experimentally.
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FIG. 4. Fraction of unbound atoms remaining after fast-sweep
projection away from unitarity as a function of thold/tn for nin =
2.7×1012 cm−3, where tn = 41 μs. The experimental data points are
taken from Ref. [12]. Assuming that the 0.3 μs/G ramp projects the
gas at unitarity only onto unbound atoms and taking A = 0.28 yields
the solid green line. The different colored theoretical curves corre-
spond to A = {0.28, 0.20, 0.18} (pink dashed, purple dot-dashed, and
red dot-dot-dashed lines, respectively).

We calculate the number of free (unbound) atoms as

Nfree(thold, 1/R) = N (thold ) − 2Nmol(thold, 1/R), (19)

where the ramp-rate dependence is indicated explicitly.
Before discussing the results, we comment on the validity

of our approach. For the 39K Feshbach resonance at B = 402
G, we find that for the ramp rates and initial densities consid-
ered 2.0 � (kna∗)−1 � 6.7, and therefore the fast-sweep pro-
jection method outlined in Sec. II B can be applied. Although
not analyzed in this work, we estimate that this method can
also be applied to model the fast-sweep projection studied in
Ref. [11] with 85Rb [51]. For smaller 1/R and hence smaller
a∗, we follow in the spirit Ref. [27] and check the expression
of Eb used to calculate Eq. (11) against a coupled-channel
calculation [52], finding discrepancies of less than 5%.

Our results for Nfree are compared against the experimental
findings of Ref. [12] as a function of thold for initial density
nin = 2.7×1012 cm−3 and ramp rates 0.3 and 6 μs/G, as
shown in Fig. 4. At thold = 0, the small gap between the
theoretical results for the two different ramp rates is due solely
to the first term on the right-hand side of Eq. (9), which
scales as nina3

∗ and therefore varies with the ramp rate [see
Sec. II B]. At later times, pair correlations begin to develop,
and the overlap between embedded dimers at unitarity [φD(k)]
with molecules away from resonance [φ∗(k)] increases, as
illustrated in Fig. 2. Consequently, the decrease of Nfree shown
in Fig. 5 is due jointly to molecular formation and three-body
losses.

The constant A was estimated in Ref. [12] for 39K as
A = 0.28(3) by assuming that the 0.3 μs/G ramp projects the
gas at unitarity only onto unbound atoms [solid green line
in Fig. 4]. In our model, we separate the contributions of
molecular formation and loss, and it is therefore possible to
test this assumption and provide an independent estimation of
A using the approach outlined in Sec. III. We therefore adjust
A in the HFB equations including losses [Eqs. (5), (17), and
(18)], and refit the 0.3 μs/G experimental data as shown in

FIG. 5. Fraction of unbound atoms produced after a fast-sweep
projection away from unitarity over a range of ramp rates and
fixed thold = 80 μs ≈ 1.9tn and initial density nin = 2.7×1012 cm−3.
Here, we compare theoretical results for A = {0.28, 0.20, 0.18} (pink
dashed, purple dot-dashed, and red dot-dot-dashed lines, respec-
tively) as indicated in the legend. The experimental results from
Ref. [12] are indicated by the data points along with the Landau-
Zener exponential fit with γ −1 = 2.2 μs/G (black solid line) as
discussed in the main text.

Fig. 4. For this specific ramp, we find a molecular fraction
≈10%, which is compatible with the experimental estimate in
Ref. [12]. By comparing three values A = {0.28, 0.20, 0.18}
to the 0.3 μs/G experimental data, we find that A = 0.20
provides the best fit of the experimental results over the full
range of thold considered in this work. For the slower 6 μs/G
ramp, we find that A = 0.20 gives good agreement at early
times until roughly thold � 0.5tn. We discuss possible sources
of this discrepancy at longer thold at the conclusion of this
section.

Our results for Nfree over a range of 1/R are compared
against the experimental findings in Ref. [12] as shown in
Fig. 5. The results shown in Fig. 5 are at fixed thold = 1.9tn,
nearing the limit of validity of our model [see Sec. II A]. The
intuitive picture, discussed in Secs. II B, II C and illustrated in
Fig. 2, provides a way to understand our results, particularly
at this later time where the bound pairs at unitarity play a
dominant role (see Fig. 3). For smaller ramp rates, the largest
values of Nfree shown in Fig. 5 result from the fast-sweep pro-
jection occurring further away from unitarity where the over-
lap between embedded dimers [φD(k)] with molecules [φ∗(k)]
becomes minimal. We find good agreement with experiment
only for the fastest ramps considered using the refitted value
A = 0.20. In Ref. [12], the ramp-rate dependence of Nfree is
fit to a Landau-Zener exponential Nfree = α + β exp(−γ /R)
[25], where they found 1/γ = 2.2(3) μs/G. From fitting the
A = 0.20 theoretical data in Fig. 5 (dot-dashed purple curve),
we find 1/γ = 4.1 μs/G. The possible sources of discrepancy
for slower ramps will be discussed at the end of this section.

In addition, we analyze Nfree over a range of initial
densities, nin, and compare against the experimental results in
Ref. [12]. Taking the refitted value A = 0.20, we follow ex-
periment and vary nin between 1.3×1012 and 4.0×1012 cm−3,
measuring the difference �N (1/R) ≡ Nfree(thold, 0.3 μs/G) −
Nfree(thold, 1/R) as shown in Figs. 6(a) and 6(b). We
note that for fixed A this is equivalent in our model
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FIG. 6. Difference in the fraction of unbound atoms for three
different densities and for two different ramp rates measured by
�N (1/R) over a range of thold. Our theoretical predictions (lines)
are compared against the experimental results (data points) from
Ref. [12]. (a) Behavior of �N (6 μs/G) over a range initial den-
sities nin = 4.0, 2.7, and 1.3×1012 cm−3 [tn = 32, 41, and 66 μs,
respectively] as indicated by color (blue dashed, yellow solid, and
black dot-dashed lines, respectively). (b) Behavior of �N (3 μs/G)
and �N (6 μs/G) for fixed initial density nin = 2.7×1012 cm−3 as
indicated by color (green dot-dot-dashed and yellow solid lines,
respectively).

to the difference �N (1/R) = 2[Nmol(thold, 1/R) − Nmol

(thold, 0.3 μs/G)]. At thold = 0, �N is nonzero due to
the first term of Eq. (9) scaling as nina3

∗ that was also
discussed earlier in connection with Fig. 4. At later times,
the gradual separation of the �N curves shown in Fig. 6(a)
can be understood by comparing the density-dependent and
independent length scales aeff and a∗, respectively. The
many-body length scale aeff ∝ n−1/3

in is sensitive to changes
in the initial density, whereas a∗ remains fixed by the ramp
rate 1/R. Consequently, the overlap between φD(k) and φ∗(k)
increases with nin, which results in the separation of the
theoretical �N curves in Fig. 6(a), where 1/R = 6 μs/G.
In Fig. 6(b), we also compare our results for �N at fixed
nin for ramp rates 3 and 6 μs/G, in order to differentiate
between 1/R and nin dependencies. As before, we attribute
the separation of the theoretical �N curves to the time
dependence of the overlap between φD(k) and φ∗(k) and the
dominance of the bound pairs at unitarity at later times [see
Fig. 3]. This separation is reflected also in the experimental
data shown in Figs. 6(a) and 6(b). In general, our predictions

in Figs. 6(a) and 6(b) match the experimental data well until
we begin to underestimate �N compared to experiment at
times thold � 0.5tn.

We now address the deviation between our theoretical
predictions presented in this section and the experimental
results of Ref. [12] for the 3 and 6 μs/G ramps over longer
timescales thold � 0.5tn. In Ref. [12], it was experimentally
observed that a degenerate Bose gas quenched to the unitary
regime undergoes a universal crossover to the thermal regime
by thold/tn ≈ 4.0. In the thermal regime, the three-body loss
rate Ṅ/N scales as n26/9 [47]. However, the quantitative agree-
ment between theory and experiment for the loss-dominated
0.3 μs/G ramp shown in Fig. 4 is consistent with the 2/3
power law in the degenerate regime [see Eq. (15)].

In Ref. [13], it was experimentally observed that momen-
tum modes with k/kn � 0.8 reach a prethermal steady state
and plateau by thold ∼ tn before long-time heating dominates.
In our model, the momentum modes described by ρk in the
HFB equations (see Sec. II A) do not plateau as function of
thold but oscillate in time, as in Refs. [15,53,54], where the
dynamics at unitarity is described through a time-dependent
coherent-state pairing wave function ansatz equivalent to the
HFB model [55,56]. This would be most apparent for the
slowest 6 μs/G ramp [see Fig. 6(a)] where 2.5 � (kna∗)−1 �
3.2, and therefore it is possible that the physics behind the
plateau are responsible for the deviation between theory and
experiment.

Finally, from the experimental findings in Ref. [11], a
macroscopic population of Efimov trimers, corresponding to
8% of the initial state, was found after performing a fast-
sweep projection away from unitarity. To estimate the po-
tential relevance of Efimov trimers, we follow Refs. [17,18]
and compare the Fermi scale with the size of the nearby
first-excited trimer R(1)

3b = (1 + s2
0)1/2eπ/s0/(3/2)1/2κ∗, where

s0 ≈ 1.00624 and κ∗ = 0.226/rvdW is the universal three-
body parameter [6–8]. For the density range considered in
Fig. 6, we estimate that 1.7 � knR(1)

3b � 2.5. Based on the
qualitative findings in Ref. [18], the first-excited Efimov
trimer population is expected to grow more slowly than the
dimer contribution to the molecular fraction, and this may
be partially responsible for the deviation at later times [57].
However, in that work a breakdown of the Landau-Zener
behavior was found for increasing thold, which qualitatively
disagrees with the experimental and theoretical results shown
in Fig. 5 displaying this behavior. We leave, however, the
possibility of resolving this deviation by either including into
our many-body model three-body correlations or equilibrating
collisions [21] as inspiration for future work.

V. CONCLUSION

In this work, we present a dynamical model of the degener-
ate Bose gas quenched to unitarity, which we compare against
recent experimental results [12] for the number of unbound
atoms remaining after a fast-sweep ramp away from the uni-
tary regime. We adopt the method of Ref. [26] from the study
of Cooper pairs in the BEC-BCS crossover and project the
many-body state in the unitary regime onto molecular states
away from unitarity. As the Bose gas evolves in the unitary
regime, the buildup of correlations and quantum depletion
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leads to the formation of pairs bound purely by many-body
effects, as studied in Ref. [20]. The size of these embedded
dimers sets a new length scale given by the effective scattering
length, and we draw the analogy with Cooper pairing in BCS
theory [29]. We find that this length scale and the develop-
ment of the bound pairs at unitarity provide an intuitive way
to frame both the theoretical results of our model and the
experimental results of Ref. [12] for the number of unbound
atoms remaining after a fast-sweep projection. In order to
make a quantitative comparison with the experiment, we
include three-body losses phenomenologically in our many-
body model by assuming an effective universal three-body
loss-rate coefficient and by refitting the experimental estimate
of this parameter.

We find good quantitative agreement with experimental
data from Ref. [12] for the fastest ramp considered in that
work over the full range of times where our model remains

valid. However, for slower ramps we begin to deviate quan-
titatively from the experimental findings at later times. We
argue that this deviation may be due to the presence of Efimov
trimers or from the equilibrating effect of collisions, both of
which are not described in our model. This motivates further
development of our theoretical model to include higher-order
correlations, which remains a subject of ongoing study.
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