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Stable production of a strongly interacting Bose-Einstein condensate via mode matching
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We describe a diabatic protocol to prepare a strongly interacting Bose-Einstein condensate in a regime where
neither an adiabatic ramp nor a direct diabatic quench is desirable. This protocol is expected to achieve a nearly
unit population transfer to the strongly interacting ground state for realistic experimental parameters for 85Rb.
The protocol matches the initial and final density profiles by modifying the trap along with the scattering length
during the quench. The protocol should reveal several properties of the strongly interacting Bose gas and enable
further investigation of beyond-mean-field corrections to the Gross-Pitaevskii equation.
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I. INTRODUCTION

An outstanding goal in the physics of dilute, atomic Bose-
Einstein condensates (BECs) is to track their properties from
the weakly interacting regime to the strongly interacting
regime. For a dilute gas, whose mean interatomic spacing
is far greater than the range of the two-body interaction, the
strength of interaction is conveniently parametrized by the
two-body scattering length a, which can be tuned by means
of magnetic-field Fano-Feshbach resonances. If the scattering
length and the number density n satisfy na3 � 1, then na3 is
a perturbative parameter and the usual methods of quantum
field theory describe the physics quite accurately. However, a
can also be set to large, even infinite values, which calls for a
reappraisal of how these Bose gases behave.

A presumptive experimental procedure for producing a
ground-state BEC at large scattering length would start with a
stable ground-state BEC at some small initial scattering length
ai. The scattering length would then be ramped adiabatically
to the desired final value a f , slowly enough that the gas
remains in the ground state of the trap throughout the ramp.
This effort is limited, however, by the depletion and heating
of the condensate caused by three-body recombination, which
scales as the fourth power of the scattering length. These
circumstances constrain the speed of the adiabatic ramp, for
it must be fast enough to not lose too many atoms but slow
enough to track the ground state along the way.

For sufficiently small scattering lengths, an adiabatic ramp
of a is perfectly reasonable, as in the experiment of Ref. [1].
This experiment measured the beyond-mean-field correction
predicted by Lee, Huang, and Yang [2–4] to the equation of
state up to moderate scattering length of 2000a0, where the
perturbative parameter na3 ≈ 0.049. However, the larger the
final scattering length is, the more impractical an adiabatic
ramp becomes. One partial solution to this difficulty is to
study the large-a thermal Bose gas, where the destructive
effects of three-body recombination are minimized [5,6]. An-
other is to make the transition ai → a f rapidly and to study
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the dynamics before the gas is destroyed. This is in fact
the technique used to explore the unitary BEC, where the
scattering length is infinite [5,7,8].

This kind of diabatic quench of a is not without its prob-
lems. Chief among them is that the initial and final ground
states are not well matched, as illustrated in Fig. 1(a). This
sketch includes a representation of a harmonic trap with
frequency ω f (blue curves), in which the strongly interacting
BEC is prepared. The density profile of the BEC is also
sketched (black lines) for the initial scattering length ai in the
lower panel and the final a f in the upper panel. The density
profile of a f is somewhat wider if a f > ai. It is evident that,
under a diabatic quench that projects the ai wave function onto
the a f wave function, the condensate’s immediate response
is to expand rapidly. It is not in its stationary ground state
and is moreover at a higher density than the ground state,
exacerbating the three-body loss.

As an alternative, we here propose a mode-matching pro-
tocol to offset the effect of jumping to the strongly interacting
regime by also modifying the trap shape during the quench.
This protocol is sketched in Fig. 1(b). We aim to produce a

FIG. 1. Schematic drawing of (a) the single quench of scattering
length in a given trap versus (b) the simultaneous double quench
that projects both scattering length and trap frequency to their final
values.
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BEC with scattering length a f in a trap with frequency ω f ,
i.e., the upper panel of Fig. 1(b) presents the same goal as
the upper panel of Fig. 1(a). In the stable initial state with
low scattering length ai, we instead begin in a larger trap
where the initial wave function is the same width as the final
target BEC [lower panel of Fig. 1(b)]. We then simultaneously
quench both the trap to its final frequency and the scattering
length to its final value. By means of this double quench, one
can prepare a strongly interacting gas whose density profile
closely resembles that of the BEC in its ground state.

In a harmonic trap the initial frequency ωi required to
achieve this protocol is easily estimated in the Thomas-Fermi
(TF) approximation. In this case the radius of the BEC in a
spherically symmetric trap is given by [4]

RTF = aho

(
15Na

aho

)1/5

, (1)

where aho = √
h̄/mω is the oscillator length, N is the total

number of atoms, and a is the scattering length. Since both
traps are harmonic, two states with equal TF radii will have
exactly equal density profiles in this approximation, even
when the trap frequencies are different. For a given final trap
frequency ω f , final scattering length a f , and initial scattering
length ai, the optimal initial trap frequency ωTF is therefore

ωTF =
√

ai

a f
ω f . (2)

In this approximation, the ground-state wave function for
the initial trap φi has perfect overlap with the ground-state
wave function for the strongly interacting gas, in the final
trap φ f , and would therefore produce the ground state of the
strongly interacting BEC exactly. This is in contrast to the
direct quench of scattering length where the trap frequency is
the same before and after the quench. Upon the direct quench
the overlap would instead be

|〈φi|φ f 〉|2 ≈ 225π2

1024

(
ai

a f

)3/5

. (3)

This is valid when a f � ai, since we approximated the final
density as constant where the initial density is nonzero. This
gives about 21% overlap for the case considered in detail in
the next section.

Even if the densities before and after the quench are per-
fectly matched, there may still be correlations created during
the quench, leading to quasiparticle excitations in the final
state [9]. In order to reach the ground state of the strongly
interacting gas exactly, the quench, which is diabatic on the
timescale of trap dynamics, must be adiabatic on the timescale
of quasiparticle excitations and molecular dynamics. The
characteristic timescale on which quasiparticle excitations
develop is τq = h̄/(gn). Thus, for a spherically symmetric trap
in the TF approximation

τq ≈ 1

152/5π

aho

Na
τω, (4)

where τω = 2π/ω is the timescale of the trap. For parameters
given in the next section, τq = 0.003τω in the final trap. Like-
wise, molecular dynamics [10–12] occur on a timescale τm =

ma2/h̄, where for our parameters τm = 0.001τω. Since both
of these timescales are much faster than the trap dynamics,
we approximate the quench as adiabatic for any two-body and
molecular dynamics, but diabatic for the density dynamics.
Consequently, we ignore two-body dynamics in what follows.

The true BEC is described by physics not included in
the Thomas-Fermi approximation, of course. In this paper,
we evaluate the protocol for more realistic BECs that are
described by physics including a correction beyond the mean-
field approximation and that incorporate realistic losses due
to three-body recombination. In general, in projecting from a
harmonic trap to another harmonic trap, the overlap of initial
and final wave functions will not be exactly perfect and the
resulting BEC will contain some residual radial oscillations.
Therefore, an operational goal of the mode-matching proce-
dure is to produce a gas with the minimum residual breathing
excitation, a goal that is generally achievable for an arbitrary
final state. In cases where the final state is expected to have
a known profile, we can improve the method and suggest
a modified initial potential, not necessarily harmonic, that
guarantees unit overlap.

II. STATE PREPARATION BY THE
MODE-MATCHING PROTOCOL

We model a BEC containing N atoms in a spherically
symmetric harmonic-oscillator trap with frequency ω and
scattering length a. Throughout, we model the dynamics of
the condensate using a modified Gross-Pitaevskii equation
[2–4]

ih̄
∂�

∂t
=

[
− h̄2∇2

2m
+ V + g|�|2 + g′|�|3 − ih̄

K3

2
|�|4

]
�,

(5)

where � is the many-body order parameter of the Bose
gas, related to the single-particle wave function φ by � =√

Nφ. Here V (r) = mω2r2/2 is the external potential and
g = 4π h̄2a/m is the coupling constant, with a the two-body
scattering length. The Lee-Huang-Yang (LHY) term is given
by the coefficient g′ = 32/(3

√
π )a3/2g and losses are incor-

porated via the three-body loss coefficient K3, which is a
function of the scattering length and the atomic species and
is defined by the loss it incurs,

d

dt
n = −K3n3. (6)

Here K3 has two components, for a deep quench Kd and a shal-
low quench Ks, depending on the molecular state produced in
the recombination. The total loss rate is K3 = Kd + Ks, where
[13]

Kd = 33.4(1 − e−4η )
h̄a4

m
,

Ks = 134.2e−2η{sin2[s0 ln(aκ ) + 4.3] + sinh2 η} h̄a4

m
, (7)

with s0 = 1.006. For 85Rb, η = 0.057(2) and κ =
39(1) μm−1 [14]. Thus, K3 = 2 × 10−23 cm6/s for scattering
length a f = 5000a0 used in the calculations below. Our
perturbative parameter na3 = 0.025, although the LHY
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FIG. 2. Snapshots of the time evolution of the direct quench
(top) versus the double quench (bottom). In both cases the final
BEC is specified by the following parameters: the number of atoms
N = 105, initial scattering length ai = 100a0, final scattering length
af = 5000a0, final trap frequency ω f = 2π × 10 Hz, loss coefficient
K3 = 2 × 10−23 cm6/s, and perturbative parameter na3 = 0.025. In
the upper panel the initial trap frequency is ωi = ω f = 2π × 10 Hz,
while in the lower panel it is ωi = 2π × 1.1 Hz.

correction to the chemical potential is
√

πna3 = 0.280. We
are in a regime where the LHY correction is appreciable but
the next-order term can be mostly neglected.

A. Harmonic trap

We first contrast the mode-matching protocol to the direct
scattering length quench in Fig. 2. The first row depicts the
direct quench of the scattering length from ai = 100a0 to
a f = 5000a0, in a fixed trap of frequency ω f = 2π × 10 Hz.
This trap was chosen to emulate the trap used in the unitary
gas experiments at JILA [8]. The density profile is shown at
three time intervals after the quench. Upon suffering the direct
quench, the gas rapidly expands and loses atom number due
to its high initial density. Moreover, the density profile is no
longer smooth.

The second row in Fig. 2 shows the density profile at
the same times, for a protocol that also includes a quench
from ωi = 2π × 1.1 Hz to ω f = 2π × 10 Hz along with the
scattering length quench. This initial frequency is chosen
to minimize the breathing excitations after the quench, in
a way to be specified below. This double quench preserves
the general shape of the density profile. Still, the gas is
naturally densest near the center of the trap where r = 0.
Thus, there is more loss near the center, which distorts the
density profile over time. The gas shrinks when the central
density decreases, approximately tracking whatever shape the
ground-state density profile with fewer atoms would take.
This process, however, is not adiabatic and causes a slight
wobble, as seen in the bottom right panel.

The mode-matching double quench also has the advantage
of starting at a lower density than the direct quench and thus
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FIG. 3. Mean density over half the trap period. The direct quench
is only shown for a fraction of the trap period, due to the model’s
difficulty accurately describing the haphazard dynamics of the direct
quench at long times. The parameters are the same as in Fig. 2.

preserving more atoms in the BEC. At ω f t = 0.46, the gas
retains only around 57% of the original atoms in the direct
quench, whereas the gentler double quench retains around
95% of the original atoms.

It is worth noting that the state produced in the double
quench is not the same as the true final ground state (red
dashed curve). Although this slight mismatch is unavoidable
for a harmonic initial trap, the initial frequency is chosen to
minimize oscillatory dynamics, not maximize overlap with
the ground state. The optimal initial frequency is ωopt =
0.78ωTF = 2π × 1.1 Hz, instead of 0.85ωTF = 2π × 1.2 Hz,
the frequency which maximizes overlap onto the ground
state. The overlaps in the two cases are |〈φi|φ f 〉|2 = 0.975
and 0.980, respectively. The dynamical response of the BEC
created in the double quench is a sensitive function of the
initial trap frequency ωi. This is illustrated in Fig. 3, which
shows the time evolution of the mean density 〈n(t )〉, defined as

〈n(t )〉 = 4π

N

∫ ∞

0
r2n2(t )dr. (8)

This figure shows 〈n(t )〉 for four different initial conditions
before the quench. The dotted purple curve corresponds to
the direct quench with ωi = ω f and shows the expected rapid
decrease of the density. Next the dash-dotted yellow line
gives the response if we had selected the initial frequency
ωi = ωTF according to the TF criterion in Eq. (2). This value
of ωi leads to a significantly different density profile from
the gas prepared with ωi = ωopt. Here the overlap squared is
|〈φi|φ f 〉|2 = 0.961. The gas is denser in the center than the
true ground state φ f and so it expands and then contracts,
showing a breathing mode around some overall decaying
density. These oscillations are amplified by the nonlinearity
of Eq. (5) but damped by the loss. Generally, oscillations lead
to an overall decrease in atom number over one oscillatory
period as compared to pure exponential decay, as the loss is
proportional to n3 [13]. Thus, the initial state that minimizes
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FIG. 4. Mode mismatch 
 as a function of initial trap frequency.
The blue curve shows the nominal result for the model parameters in
Fig. 2; the minimum of this curve is used to determine the optimum
initial frequency for the double quench. The red dashed curve is
the same, but for an artificially reduced three-body loss rate. For
comparison, the dotted line shows the direct overlap of the initial
and final wave functions.

oscillatory dynamics also maximizes the number of atoms still
remaining after one oscillatory period.

The solid blue line in Fig. 3 gives the mean density for the
optimal double quench, chosen to minimize the oscillations
in 〈n(t )〉 around an overall decay. The optimal frequency
gives very similar density dynamics to the BEC that starts
in the true ground state of the final trap (red dashed line),
which is unsurprising due to their high overlap. While the
double quench does not produce the exact ground state of the
strongly interacting gas, it nevertheless produces something
very similar.

The behavior of the mean density over time suggests an
operational procedure for optimizing the initial frequency.
Dynamics that do not distort the shape of the density can
be approximated by exponential decay of 〈n(t )〉. Dynamics
beyond this exponential decay are due to the mode mismatch
or loss, both of which contribute to radial breathing modes.
We can effectively use the amplitude of the oscillations around
the exponential profile as a measure of our mode matching.
We first find the best fit to the mean density for a decaying
exponential

f (t ) = f0 exp(−γ t ). (9)

We define the mode mismatch 
, measuring the magnitude of
the oscillatory motion, as the mean-square error of the actual
density profile from the best-fit curve, given by


 = 1

τ

∫ τ

0
[ f (t ) − n(t )]2dt, (10)

where τ is the time for which we observe the dynamics, in this
case one oscillatory period. This 
 is a measure of how well
the mode produced in the double quench matches the sought
ground state. Unlike overlap, this is a model independent and
experimentally observable quantity.

Figure 4 plots 
 over a range of initial frequencies for
two different values of the loss parameter (red and blue

curves). The minimum of 
 was used to determine ωopt =
2π × 1.1 Hz, the initial trap frequency for Figs. 2 and 3. As
a reference, we also show the overlap error (yellow dotted
curve), defined as 1 − |〈φi|φ f 〉|2. The location of the mini-
mum is shifted for 
 as compared to the minimum of overlap
error. This leads to a slightly larger initial gas, offsetting the
wobble caused by increased loss near the center of the trap.
Since overlap, unlike 
, is not a dynamical quantity, it is in-
dependent of loss and thus only plotted once. For comparison,
the red dashed curve shows the same 
 for a hypothetical case
where the loss coefficient K3 is five times smaller. Reducing
the amount of loss leads to a sharpening of the 
 peak.

B. Exact preparation of the ground state

The mode-matching scheme is quite general. A double
quench like that described above should produce a final-state
BEC close to the desired ground state, even when that ground
state is not known ahead of time. However, in a moderately
interacting regime where the final ground state is expected to
be known, a modification of the scheme should allow one to
reproduce it exactly.

Doing so could extend the experimentally feasible regime
beyond the 2000a0 limit in Ref. [1], where the adiabatic ramp
is limited by three-body loss. Just beyond this regime, loss is
still slow enough that any dynamics would be initially dom-
inated by the mismatch onto the final ground state. Scanning
the initial trap frequency and minimizing 
 improves the
overlap over the direct quench, but still only gives an overlap
squared of 0.975 for our system parameters. Here we show
how to eliminate the remaining discrepancy in projecting onto
the known strongly interacting state.

Given a target wave function that is the ground state φt of
the final trap, we seek a weakly interacting state with perfect
overlap onto φt . This increases the complexity of the initial
trap, which will no longer be harmonic, but will require the
tools of trap shaping [15–17]. We design a potential V such
that the Gross-Pitaevskii equation with small scattering length
has φt as its ground state. In this way φt could be adiabatically
prepared in V prior to some quench into large scattering
length. At low scattering length, beyond LHY corrections and
loss are negligible, so the Gross-Pitaevskii equation for the
initial single-particle ground-state wave function φi reads(

− h̄2

2m
∇2 + V − μ + gN |φi|2

)
φi = 0, (11)

where the chemical potential μ and the coupling g =
4π h̄2ai/2m are both for the initial, low scattering length state.
We set the potential V based on the target state φt to

V = h̄2

2m

∇2φt

φt
− gN |φt |2 + μ, (12)

where g and μ are still for the initial state. Inserting V into
Eq. (11) and rearranging terms, we have[

h̄2

2m

(
−∇2 + ∇2φt

φt

)
+ gN (|φi|2 − |φt |2)

]
φi = 0. (13)

Now φt solves Eq. (13), since both terms are zero by setting
φi = φt . This is an equation for the gas at low scattering
length, although φt is the product of the high scattering length
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FIG. 5. Shaping the trap at low scattering length to match the
target final density profile. Both the steep harmonic ω f and the
shaped trap give the same density, the former at 5000a0 and the latter
at 100a0.

gas. Since the target state is the ground state of the final
potential, it is real and nodeless [18]. Thus, ∇2φt/φt is well
behaved. The chemical potential sets an overall but irrelevant
shift to V in Eq. (12), so for convenience we set V (r = 0) = 0.

For the ground state φt of the harmonic trap at a f =
5000a0, we show the potential that produces this same state
with ai = 100a0 in Fig. 5. The shaped trap and optimal
harmonic trap are both very wide on the scale of the final trap,
as the scattering length is much smaller during the preparation
than after the quench. However, the shaped trap that produces
φt exactly is strikingly different from the optimal harmonic
trap, especially given that we achieved overlap squared of
0.975 (instead of unity) with the harmonic trap. The shaped
trap rises much more quickly than the harmonic trap after
RTF = 10.3aho, reducing the exponential tail of the density
profile to better match the short tail of the strongly interacting
gas. At small r it essentially matches the harmonic profile of
the optimal harmonic trap. For r � RTF, both ∇2φt ≈ 0 and
φt ≈ 0, so their quotient is indeterminable. We therefore cut
off the shaped trap at large r, well after the density has gone
to zero. We numerically verify, using the full model including
the LHY term, that this shaped potential gives the correct
ground-state wave function with overlap error less than 10−3.

III. ANCILLARY MEASUREMENTS OF GAS PROPERTIES

The mode-matching protocol, in addition to preparing an
approximate or exact strongly interacting ground state, offers
a way to extract useful information about the gas and the
equation of state that governs it. We demonstrate a method
for observing the LHY correction and beyond LHY correction
to the Gross-Pitaevskii equation and how to approximately
gauge the ground-state density and energy.

By considering the map of 
 versus ωi as a kind of
spectrum, one can extract the “resonant” frequency ωopt at
the minimal value of 
. Figure 6 shows scans of ωi for three
different final scattering lengths a f . We give these frequencies
in units of Hertz here instead of ωTF, as we did in Fig. 4,
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FIG. 6. Mode mismatch 
 as a function of initial trap frequency
ωi for three final scattering lengths af . We move from the mean-
field regime at af = 3000a0 to the intermediate regime described
throughout at af = 5000a0 and finally to the beyond LHY regime
at af = 10 000a0.

since ωTF depends on a f . We vary the loss as a function of
scattering length according to Eq. (7). The red dashed line
reproduces the solid blue curve from Fig. 4. We additionally
show the spectrum for a smaller final scattering length a f =
3000a0 (blue dotted curve). Compared to the a f = 5000a0

spectrum, the minimum here shifts to larger ωi as the final gas
is narrower. The peak here is much sharper at small scattering
length. Due to the lack of appreciable loss, the majority of
dynamics are due solely to mode mismatching.

The yellow dash-dotted curve shows a much larger scatter-
ing length when a f = 10 000a0. Here the loss is so significant
that the condensate is almost overdamped. Thus, there is near
exponential decay regardless of the initial frequency. The
spectroscopic feature becomes more shallow and broader, but
is nevertheless still resolvable. At this large a f , our LHY
model is likely not fully describing the gas, as now na3 =
0.132. It is interesting to consider exactly how the location
of the minimum shifts as a f is varied.

Figure 7 shows the initial frequencies ωi = ωopt that give
the minimum value of 
 as a function of final scattering length
a f , for two different models. The dashed blue curve gives the
initial frequency predicted by a Gross-Pitaevskii (GP) model
neglecting the LHY correction, which is contrasted with the
red curve that shows the initial frequency predicted by the
full (GP plus LHY) model. Deviation from the value predicted
by the GP curve would constitute a measurement of the LHY
correction. This difference is fairly subtle for small scattering
length, but becomes more pronounced around 4000a0. Fur-
thermore, we show these curves up to 14 000a0 where the
beyond LHY correction is sizable, as na3 = 0.295. Then the
difference between the optimal ωi and the value predicted by
the full (GP plus LHY) model could give a measurement of
the next, beyond LHY correction to the equation of motion.

In addition, based on the way in which it is selected,
the initial density profile approximately measures the density
profile of the strongly interacting ground state. When the
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FIG. 7. Optimum frequencies that minimize mode mismatch 


for a range of final scattering lengths. The final trap frequency is
ω f = 2π × 10 Hz, while the three-body loss is adjusted for scatter-
ing length according to Eq. (7).

density profile is thought to be known exactly, shaping the
trap, as discussed in Sec. II B, could confirm if this is the
actual ground-state density.

One could also measure the ground-state energy by a
slightly modified quench experiment, especially in the inter-
mediate regime where an adiabatic ramp is not possible but the
gas is fully described by some (possibly modified) GP equa-
tion and loss is low. First, the density profile of the strongly
interacting Bose gas in some final trap needs to be established
either theoretically or by finding the minimum of 
. Then
one could adiabatically prepare the weakly interacting gas in
a state with density that matches the density of the final state,
in either a harmonic or shaped initial trap. Measurement of
the energy of this final state could be done by quenching from
ai → a f , while simultaneously turning off the trap. The final
trap never actually needs to be produced. At small times, once
the scattering length has been quenched, there is a strongly
interacting ground state for the final trap, even in the absence
of that trap. The gas then expands, and as long as three-body
loss is negligible during the expansion, the energy can be
extracted from the final kinetic energy.

This energy measurement presumes, as we have presumed
throughout, that the quench to the final state is adiabatic with

respect to quasiparticles and molecular dynamics. That there
is a quench rate that satisfies this criterion was argued in Sec. I.
However, it is also interesting to contemplate quenches that
are chosen to be diabatic with respect to two-body physics,
to emphasize the creation and dynamics of quasiparticles.
If this quench occurs within the mode-matching procedure,
the resulting dynamics will be dominated by quasiparticles,
disentangled from collective oscillations in the density profile
of the gas.

IV. OUTLOOK

The mode-matching protocol represents a compromise be-
tween the need to get quickly to the final state versus the need
to place the gas gently into this state. As such, it represents
a potential tool for probing BEC further beyond the mean-
field regime than has previously been done. For modestly
beyond-mean-field gases that are still expected to be described
by LHY theory, the results of a mode-matching experiment
can be predicted accurately. The same experiment could be
performed even well beyond this region, revealing something
different. It is worth noting that, because of the ability to
prepare initial BECs of arbitrary density profile as described in
Sec. II B, a similar protocol could be carried out in box-shaped
traps [19].

It would be tempting to apply the same type of measure-
ment to the unitary gas whose scattering length is infinite.
Thus far, however, the unitary Bose gases that have been pro-
duced decay on timescales short compared to trap periods. In
such a case, the density variation versus time in Fig. 3 would
be overdamped and the figure of merit 
 poorly determined.
This is not to say that the dynamics will not vary for quenches
from various initial traps ωi; however, it would be difficult to
predict or interpret the results of these experiments at present.
To do so would require a hardy dynamical theory of the
unitary Bose gas. Such models would however make concrete
predictions for the density profile of the gas. This profile
can be prepared in the initial state, whereby the results of
projection would presumably reveal details of the gas beyond
its shape.
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