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Computer simulations of many-body quantum dynamics of indistinguishable particles is a challenging task
for computational physics. In this paper we demonstrate that the method of coupled coherent states (CCS)
developed previously for multidimensional quantum dynamics of distinguishable particles can be used to study
indistinguishable bosons in the second-quantization formalism. To prove its validity, the technique termed here
coupled coherent states for indistinguishable bosons (CCSB) is tested on two model problems. The first is a
system-bath problem consisting of a tunneling mode coupled to a harmonic bath, previously studied by CCS and
other methods in distinguishable representation in 20 dimensions. The harmonic bath is comprised of identical
oscillators, and may be second quantized for use with CCSB, so that this problem may be thought of as a bosonic
bath with an impurity. The cross-correlation function for the dynamics of the system and Fourier transform
spectrum compare extremely well with a benchmark calculation, which none of the prior methods of studying
the problem achieved. The second model problem involves 100 bosons in a shifted harmonic trap. Breathing
oscillations in the one-body density are calculated and shown to compare favorably to a multiconfigurational
time-dependent Hartree for bosons calculation, demonstrating the applicability of the method as a new formally
exact way to study the quantum dynamics of Bose-Einstein condensates.
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I. INTRODUCTION

In the past two decades there has been significant interest
in systems of indistinguishable bosons due to experimen-
tally produced Bose-Einstein condensates of ultracold alkali
metal atoms [1–3]. These condensates, first posited by the
eponymous Bose and Einstein in 1924–1925, have permitted
macroscopic observations of quantum phenomena and led to
a wealth of experimental research in areas such as atomic in-
terferometry [4], bosonic Josephson junctions [5,6], quantum
vortices [7,8], and the generation of solitons [9,10].

From the theoretician’s point of view, the Gross-Pitaevskii
equation (GPE) [11,12] has been the predominant method
used to study Bose-Einstein condensates; see, for example,
Refs. [13–18] and the review articles [19,20]. However the
GPE is a mean-field theory and as such cannot describe
many-body effects in condensates. It also assumes that all
bosons occupy a single state at all times, which is not the
case during fragmentation. In recent years, the multiconfig-
urational time-dependent Hartree method for bosons (MCT-
DHB) [21,22] has been used to treat indistinguishable bosons
from the standpoint of exact quantum mechanics [23–33].
A multilayer version of MCTDHB has also been developed
(ML-MCTDHB) [34,35] that exploits the multilayer structure
to study mixed bosonic systems (for example, impurities
in Bose-Einstein condensates [36–40], binary mixtures of
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Bose-Einstein condensates [41], and solitons [40,42–44]) and
bosonic systems where different degrees of freedom may be
separated (for example different spatial locations when bosons
are residing in optical lattices [45–52]).

Before being used to treat indistinguishable bosons, stan-
dard MCTDH [53] and ML-MCTDH [54,55] have been
well established theories for treating distinguishable particles.
They are able to solve the time-dependent Schrödinger equa-
tion (TDSE) exactly for multiple degrees of freedom, albeit
with basis sets that grow exponentially with increased di-
mensionality. Our own coupled coherent states (CCS) method
has also demonstrated its propensity at solving the TDSE
for distinguishable particles, with basis sets that scale more
favorably with dimensionality [56,57]. This is achieved by
using randomly sampled trajectory guided coherent states
as basis functions, although the trade-off for this favorable
scaling is that random noise and slow convergence may be
present. Noise can cause a decay in auto- or cross-correlation
functions and may be reduced by increasing the number of
configurations, or applying a filter diagonalization technique
to extract frequencies [58]. Importance sampling of coherent
state basis set initial conditions is also key to the accuracy and
efficiency of the CCS approach [59].

In this present work we extend the CCS method to look-
ing at indistinguishable bosons in the second-quantization
representation, and dub the method coupled coherent states
for indistinguishable bosons (CCSB). Due to the use of
coherent states in CCSB and their relation to the creation
and annihilation operators of second quantization, together
with the fact that systems with a large number of particles
tend towards classical behavior and the basis in CCSB is
guided by classical-like trajectories, suggest that the method
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will be particularly suited to such systems. Indeed, recent
semiclassical coherent state work with the Herman-Kluk
method on indistinguishable bosons demonstrates this hy-
pothesis [60,61]. CCSB is fully quantum however, as with
standard CCS, and it has previously been shown that a local
quadratic approximation of the Hamiltonian into the CCS
equations yields the coherent state matrix of the Herman-
Kluk propagator [62]. We anticipate that the CCSB method
will provide a description of many-body dynamics over
and above the mean-field Gross-Pitaevskii approach. Further-
more, as CCS has previously shown to be able to provide
a similar numerical picture to MCTDH with lower com-
putational scaling with dimensionality [63], we anticipate
that CCSB may be able to do the same with respect to
MCTDHB.

To illustrate the suitability of CCSB to problems involving
indistinguishable bosons, we apply the method to two model
problems. The first model problem consists of a bosonic bath
with an impurity, demonstrating that the method is capable
of studying multicomponent bosonic systems and opening up
the possibility of studying multi-atomic Bose-Einstein con-
densates [64], spinor Bose-Einstein condensates [65], dark-
bright solitons [66], and Bose-polarons [67]. The second
model problem consists of a collection of indistinguishable
bosons in a harmonic trap, demonstrating the propensity of the
method to study systems of bosons in optical lattices [68]; for
example, with the Bose-Hubbard model [60,61,69], and the
possibility to study bosons in a single well that is deformed
into a double well, such as that in Ref. [22], and observed in
experimental bosonic Josephson junctions [70,71].

II. NUMERICAL DETAILS

The CCSB method relies on the machinery of the CCS
method, which has been derived and presented previously
when treating distinguishable particles [56,57]. A descrip-
tion of the CCS method will be presented below, before a
discussion on how the method is modified to treat indistin-
guishable bosons in the second-quantization representation in
CCSB.

A. Coupled coherent states working equations

In the CCS method, the wave function is represented
as a basis set of trajectory guided coherent states, |z〉. The
coordinate representation of a coherent state is given by

〈x|z〉 =
(γ

π

)1/4
exp

[
−γ

2
(x − q)2 + i

h̄
p(x − q) + ipq

2h̄

]
,

(1)

where q and p are the position and momentum centers of the
coherent state, γ is the width parameter of the coherent state,
given by γ = mω/h̄, with m mass and ω frequency. In atomic
units (which are used throughout the paper) m = ω = h̄ = 1,
thus γ = 1. Coherent states are eigenstates of the creation and
annihilation operators respectively

〈z| â† = 〈z| z∗, (2a)

â |z〉 = z |z〉 , (2b)

where the creation and annihilation operators are given by

â† = 1√
2

(q̂ − i p̂), (3a)

â = 1√
2

(q̂ + i p̂). (3b)

The eigenvalues of Eqs. (2a) and (2b), z∗ and z, can be used
to label a coherent state, and from Eqs. (3a) and (3b) it can be
seen they are given by

z∗ = 1√
2

(q − ip), (4a)

z = 1√
2

(q + ip). (4b)

An important consequence of the above is that one may
write a Hamiltonian in terms of creation and annihilation
operators rather than position and momentum operators. A
normal-ordered Hamiltonian may then be obtained when the
creation operators precede the annihilation ones:

Ĥ (q̂, p̂) = Ĥ (â, â†) = Hord(â†, â). (5)

From this, matrix elements of the Hamiltonian are simple to
calculate in a coherent state basis:

〈z′|Hord(â†, â)|z〉 = 〈z′|z〉 Hord(z′∗, z), (6)

where the overlap 〈z′|z〉 is given by

〈z′|z〉 = exp

(
z′∗z − z′∗z′

2
− z∗z

2

)
. (7)

The wave function ansatz in CCS is given by

|�(t )〉 =
K∑

k=1

Dk (t )eiSk (t ) |zk (t )〉 , (8)

where the sum is over K configurations, Dk is a time-
dependent amplitude and Sk is the classical action. The classi-
cal action in coherent-state notation is given by

Sk =
∫ [

i

2
(z∗

k żk − ż∗
k zk ) − Hord(z∗

k , zk )

]
dt . (9)

The wave function is propagated via the time dependence of
the coherent-state basis vectors, amplitudes, and action. The
coherent states are guided by classical trajectories and evolve
according to Hamilton’s equation:

żk = −i
∂Hord(z∗

k , zk )

∂z∗
k

. (10)

The time-dependence of the amplitudes may be found via
substitution of Eq. (8) into the time-dependent Schrödinger
equation and closing with a coherent-state basis bra:

K∑
l=1

〈zk|zl〉 eiSl
dDl

dt
= −i

K∑
l=1

〈zk|zl〉 eiSl Dlδ
2H ′

ord(z∗
k , zl ),

(11)
where the δ2H ′

ord(z∗
k , zl ) term is

δ2H ′
ord(z∗

k , zl ) = Hord(z∗
k , zl ) − Hord(z∗

l , zl ) − iżl (z
∗
k − z∗

l ).

(12)
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Finally, the time dependence of the classical action is straight-
forwardly calculated from Eq. (9).

B. Second quantization and coupled coherent states for
indistinguishable bosons

CCS works for Hamiltonians that can be expressed via cre-
ation and annihilation operators in the normal-ordered form as
illustrated in Eq. (6). In second quantization, the Hamiltonian
of a system of bosons also appears in a normal ordered form,
therefore no modifications of the CCS working equations are
required for treating indistinguishable bosons with CCSB.
The only difference is that the coherent-state basis functions
are used to represent particle number occupations of quantum
states in the second-quantization formalism, as opposed to
individual particles in the distinguishable first-quantization
representation.

In the second-quantization representation, multiparticle
states are described in terms of an occupation number n(α)

that describes the number of particles belonging to a particular
quantum state |α〉. A Fock state describes the set of occupation
number states:

|n〉 =
	∏

α=0

|n(α)〉 = |n(0), n(1), . . . , n(	)〉 , (13)

and may be generated by successive application of creation
operators on the vacuum state |0〉:
|n(0), n(1), . . . , n(	)〉

= (â(0)†)n(0)

√
n(0)!

(â(1)†)n(1)

√
n(1)!

· · · (â(	)†)n(	)

√
n(	)!

|0(0), 0(1), . . . , 0(	)〉 .

(14)

In CCSB, the multidimensional version of the CCS wave-
function representation is used as a basis set expansion for
Fock states:

|n〉 =
K∑

k=1

Dk (t )eiSk (t ) |zk (t )〉 , (15)

which is exactly analogous to Eq. (8). The only difference
is the multidimensional coherent state |zk〉 is a product of
coherent states that describe occupations of each quantum
state |α〉:

|zk〉 =
	∏

α=0

|z(α)〉 . (16)

Therefore any wave function in the basis of Fock states can be
equivalently represented in the basis of coherent states. The
Hamiltonian of a system of indistinguishable bosons can be
second quantized and presented in terms of one-body ĥ(Q),
two-body Ŵ (Q, Q′), and creation and annihilation operators
as

Ĥ =
∑
α,β

〈α|ĥ|β〉 â(α)†â(β )

+ 1

2

∑
α,β,γ ,ζ

〈α, β|Ŵ |γ , ζ 〉 â(α)†â(β )†â(ζ )â(γ ), (17)

where |α〉, |β〉, |γ 〉, and |ζ 〉 are quantum states. This con-
veniently gives a second-quantized Hamiltonian in normal-
ordered form, which is required by CCSB. In the following
sections CCSB is applied to two model problems to illustrate
its ability to study fully quantum bosonic problems and com-
pare with numerically exact results.

III. APPLICATION 1: DOUBLE-WELL
TUNNELLING PROBLEM

The first application of CCSB is to an M-dimensional
model Hamiltonian that consists of an (M − 1)-dimensional
harmonic bath, coupled to a one-dimensional tunneling mode
governed by an asymmetric double-well potential. This a
system-bath problem, which may also be thought of as a
bosonic bath with an impurity, previously studied in distin-
guishable representation with linear coupling of the bath to the
system by matching pursuit split-operator Fourier transform
(MP/SOFT) [72], standard CCS [73], a trajectory guided
configuration-interaction (CI) expansion of the wave func-
tion [74], an adaptive trajectory guided (aTG) scheme [75],
Gaussian process regression (GPR) [76], and a basis ex-
pansion leaping multiconfiguration Gaussian (BEL MCG)
method [77]. It has also been studied with quadratic cou-
pling of the bath to the system by MP/SOFT [72], standard
CCS [73], trajectory guided CI [74], aTG [75], and a two-layer
version of CCS (2L-CCS) [78]. A benchmark calculation
for the quadratic-coupling case has also been proposed in
recent work [79] by using a relatively simple wave-function
expansion in terms of particle in a box wave functions for the
tunneling mode, and harmonic-oscillator wave functions for
the harmonic bath. The size of the calculation in Ref. [79]
was greatly reduced by exploiting the indistinguishability of
the bath configurations, and a well-converged result was
achieved, prompting the idea of CCSB. The quadratic cou-
pling case is the one we consider in this application.

The Hamiltonian is given in distinguishable representation
by

Ĥ = p̂(1)2

2
− q̂(1)2

2
+ q̂(1)4

16η
+ P̂2

2
+ (1 + λq̂(1) )Q̂2

2
, (18)

where (q̂(1), p̂(1) ) are the position and momentum operators
of the one-dimensional system tunneling mode, and (Q̂, P̂)
are the position and momentum operators of the (M − 1)-
dimensional harmonic bath modes, with Q̂ =∑M

m=2 q̂(m) and
P̂ =∑M

m=2 p̂(m). The coupling between system and bath is
given by the constant λ, while η determines the well depth.

In previous work [72–75,78,79], the parameters λ = 0.1
and η = 1.3544 have been used in a 20-dimensional (M = 20)
problem, which we also consider. The initial wave function
|�(0)〉 is a multidimensional Gaussian wave packet, with
initial position and momentum centers for the tunneling mode
q̂(1)(0) = −2.5 and p̂(1)(0) = 0.0, and for the bath modes
q̂(m)(0) = 0.0 and p̂(m)(0) = 0.0 ∀ m.

As the bath oscillators have the same initial conditions and
the same frequency, they can be thought of as indistinguish-
able, and the bath part of the Hamiltonian may be second
quantized for use with CCSB. Because the tunneling mode
is not part of this indistinguishable system, the portion of the
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Hamiltonian that describes it will not be second quantized.
However, this will not pose a problem as the dynamical
equations are identical for CCS and CCSB, the only subtlety
is the interpretation of the coherent-state basis vectors |z〉 as
will be discussed below. Using the definition of a second-
quantized Hamiltonian in Eq. (17), and the definition of
coherent states as eigenstates of the creation and annihilation
operators, Eq. (18) may be written in normal-ordered form
as Hord(â†, â), for which the coherent-state matrix element
〈zk|Hord(â†, â)|zl〉 = 〈zk|zl〉 Hord(z∗

k , zl ), where

Hord(z∗
k , zl ) = −1

2

(
z(m=1)∗2

k + z(m=1)2

l

)+ 1

64η

(
z(m=1)∗4

k

+z(m=1)4

l + 4z(m=1)∗3

k z(m=1)
l + 4z(m=1)∗

k z(m=1)3

l

+ 6z(m=1)∗2

k z(m=1)2

l +12z(m=1)∗
k z(m=1)

l + 6z(m=1)∗2

k

+6z(m=1)2

l + 3
)+

	∑
α=0

z(2α)∗
k z(2α)

l ε (2α)

+λ

2

	∑
α,β=0

z(2α)∗
k z(2β )

l Q(2α,2β )2(
z(m=1)∗

k + z(m=1)
l

)
.

(19)

The quantum states |α〉 and |β〉 in Eq. (19) are those of the
harmonic oscillator with α and β numbers of quanta, ε (α)

is the eigenvalue for |α〉, and the position and momentum
operators of the tunneling mode have explicitly been labeled
with (m = 1) to distinguish them from the α labeling scheme
of the second-quantized bath modes. A full derivation of this,
alongside evaluation of the Q(2α,2β )2

matrix element is shown
in Appendix A. Note that only even harmonic-oscillator lev-
els are required due to all bath modes initially residing in
the ground level, as previously assumed [79], and the bath
having quadratic coupling to the system meaning only even
harmonic-oscillator levels will be occupied.

The multidimensional coherent-state basis vector |z〉 is
represented as

|z〉 = |z(m=1)〉 ×
	∏

α=0

|z(2α)〉 , (20)

where |z(m=1)〉 is a basis function for the tunneling mode and
|z(2α)〉 is a basis function for the second-quantized bath modes.
The determination of initial conditions for these coherent-
state basis functions, as well as the values of the initial
amplitudes is shown in the following section.

A. Initial conditions for Application 1

The initial coherent-state basis functions for the tunneling
mode are sampled from a Gaussian distribution centered
around the initial tunneling mode coordinates and momenta,
as in previous works [73,78]:

f (z(m=1)) ∝ exp(−σ (m=1)|z(m=1) − z(m=1)(0)|2), (21)

where σ (m=1) is a parameter governing the width of the
distribution.

Sampling the initial coherent states for the bath can be
performed by obtaining a probability distribution from the
square of the coherent-state representation of the initial bath
Fock state. The initial bath Fock state is equal to

|n〉 =
	∏

α=0

|n(2α)〉

= |n(2α=0), n(2α=2), . . . , n(2α=2	)〉
= |(M − 1), 0, . . . , 0〉 , (22)

where there are M − 1 bath oscillators all in the ground
harmonic-oscillator state. Using the representation of a coher-
ent state in a basis of Fock states,

|z〉 = e− |z|2
2

∑
n(α)

zn(α)√
(n(α)!)

|n(α)〉 , (23)

the following may be obtained:

| 〈z(2α)|n(2α)〉 |2 = e−|z(2α)|2 (|z(2α)|2)n(2α)

πn(2α)!
, (24)

where the value of π has appeared to enforce normalization.
This resembles a Poissonian distribution; however, |z(2α)|2 is
continuous so a gamma distribution is used instead:

f (|z(2α)|2) ∝ (|z(2α)|2)n(2α)
e

−|z(2α) |2
σ (2α)

�(n(2α) + 1)(σ (2α) )n(2α)+1
, (25)

where σ (2α) is a compression parameter controlling the width
of the distribution, and � is the gamma function that is
calculated by using n(2α) + 1 because �(n) = (n − 1)!.

The gamma distribution will be centered around σ (2α)n(2α);
however, | 〈z(2α)|n(2α)〉 |2 should be centered around |z(2α)|2 =
n(2α) because its maximum is found by

d| 〈z(2α)|n(2α)〉 |2
d|z(2α)|2 = 1

πn(2α)!

[− e−|z(2α)|2 (|z(2α)|2)n(2α)

+ n(2α)e−|z(2α)|2 (|z(2α)|2)n(2α)−1
] = 0. (26)

Fortunately, this is not an issue, because when n(2α) =
0 for states 2α > 0, the distribution will be centered
around 0 irrespective of the compression parameter, and for
n(2α=0) = M − 1 a compression parameter of σ (2α=0) = 1.0 is
used. Because we are not constrained by a choice of compres-
sion parameter σ (2α>0) for the states 2α > 0, we are free to
alter it to influence the accuracy of the calculation, and the
final result presented in the following section uses σ (2α>0) =
100. The affect of altering this parameter is discussed in
Sec. III C.

The initial amplitudes are calculated by projection of the
initial basis onto the initial wave function with the action set
to zero:

〈zk (0)|�(0)〉 =
K∑

l=1

Dl (0) 〈zk (0)|zl (0)〉 . (27)
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The overlap of the initial coherent-state basis with the initial
wave function can be decomposed to

〈zk (0)|�(0)〉 = 〈z(m=1)
k (0)

∣∣� (m=1)(0)
〉 〈 	∏

α=0

z(2α)
k (0)|n)

〉
. (28)

The coherent-state overlap with initial tunneling mode wave
function 〈z(m=1)

k (0)|� (m=1)(0)〉 can be calculated via a Gaus-
sian overlap, Eq. (7), by using the initial positions and
momenta for the tunneling mode q̂(m=1)(0) = −2.5 and
p̂(m=1)(0) = 0.0. The coherent-state overlap with the ini-
tial bath Fock state can be calculated by once more using
the coherent-state representation in a basis of Fock states,
Eq. (23),〈

	∏
α=0

z(2α)
k (0)|n)

〉
=
[

	∏
α=0

e− |z(2α)
k (0)|2

2

](
z(2α=0)∗

k (0)
)M−1

√
(M − 1)!

. (29)

B. Results and comparison to other methods

The quantity of interest used to assess the performance
of CCSB and compare it to previous methods of studying
the problem [72–75,78,79] is the cross-correlation function
(CCF). This is the overlap between the wave function at time
t and the mirror image of the initial wave packet, |�̄(0)〉,
i.e., 〈�̄(0)|�(t )〉. The mirror image of the initial state has
coordinates for the tunneling mode of q̄(1)(0) = +2.5 and
p̄(1)(0) = 0.0, with bath modes in the ground harmonic level.
It is located in the upper well of the asymmetric double-well
tunneling potential, therefore nonzero values of the CCF are
indicative of tunneling. The spectrum of the CCF is also
presented via a Fourier transform (FT) of the real part of the
CCF.

The results of the CCSB calculation compared with previ-
ous methods of studying the twenty-dimensional (20D), λ =
0.1 case [72–75,78,79] is shown in Fig. 1 with the absolute
values of the CCFs in Fig. 1(i), and FT spectra in Fig. 1(ii).
As can be seen from these two figures, the CCSB results
compare extremely favorably to the benchmark calculation,
with much closer agreement than prior methods. Previously,
the trajectory guided CI expansion was the closest result to the
benchmark, due to its basis set expansion of time-independent
basis functions used to represent excited-state configurations
being similar to the benchmark approach. However, the CCF
still differed from the benchmark, with noticeable differences
occurring after 25 a.u., possibly due to approximations used in
sampling the potential-energy surface, despite the FT obtain-
ing splitting of the higher-energy peaks that no prior method
managed. For this present CCSB calculation, there is no
significant degradation of the calculation at t > 25 a.u. as with
the other methods, and the splitting of the high-energy peaks
is very well reproduced. As was alluded to in Ref. [78], for this
Hamiltonian a detailed description of the bath is required for
accurate propagation, which is achieved in CCSB by taking
account of the symmetry of the Hamiltonian.

The CCSB calculation uses K = 4000 configurations and
	 = 5 even harmonic-oscillator levels in the bath basis. The
dimensionality of this problem has therefore been reduced
from 20 to 6. The influence on the CCSB calculation of

altering these parameters, as well as the compression parame-
ter chosen of σ (2α>0) = 100 is shown in the following section.

C. Numerical accuracy and convergence

By using an approach first presented in Ref. [78] to il-
lustrate the accuracy and convergence of a method studying
Application 1 with respect to the benchmark calculation, we
define an error parameter χ as

χ =
∫

|Abs(〈�̄(0)|�(t )〉)bench − Abs(〈�̄(0)|�(t )〉)CCSB|dt,

(30)
which indicates the cumulative error of the absolute value of
the cross-correlation function of the CCSB method compared
with the benchmark. This is shown in Fig. 2(i), for different
values of σ (2α>0), K and 	, in Figs. 2(i)(a)–2(i)(c).

As with CCS, the CCSB method does not conserve the
norm 〈�(t )|�(t )〉 by default due to the use of a basis consist-
ing of a superposition of coherent states [57]. However, this
can be a useful property because the extent of norm conser-
vation can be used to determine the accuracy and reliability
of a propagation. Another important quantity for CCSB to
conserve is the total particle number

N = 〈�(t )|
	∑

α=0

â(α)†â(α)|�(t )〉

=
K∑

k,l=1

	∑
α=0

D∗
k Dle

i(Sl −Sk ) 〈zk|zl〉 z(α)∗
k z(α)

l , (31)

which for Application 1 amounts to the number of oscillators
in the bath, N = (M − 1) = 19. Plots of the norm and particle
number conservation for different values of σ (2α>0), K , and 	

[as in Fig. 2(i)], are shown in Fig. 2(ii), with the value of the
norm given by the dashed-dotted lines without circles and the
particle number by the dashed-dotted lines with circles. It can
be seen that the values of the norm and particle number follow
each other closely for all calculations, and we will discuss the
specific cases in the following.

First, considering Figs. 2(i)(a) and 2(ii)(a), both K and 	

are held fixed while σ (2α>0) is varied. It can be seen that the
quality of the calculation with respect to the error term χ and
the conservation of the norm and particle number improve
with increasing σ (2α>0). A further increase of σ (2α>0) results
in a numerically unstable propagation, because the value of
the norm and particle number explodes as the basis is over-
compressed. This suggests that appropriate choice of σ (2α>0)

is necessary for the initial sampling of the coherent states,
because a value that is too small leads to errors due to the
coherent states spreading too quickly, while a value that is too
large leads to numerical instability.

Second, considering Figs. 2(i)(b) and 2(ii)(b), the value of
K is varied while 	 is held constant. The value of σ (2α>0)

was chosen based on the criteria presented in the previous
paragraph, with larger values of σ (2α>0) for smaller values
of K . This phenomenon has been noted in previous studies
with CCS, where larger compression parameters are necessary
for basis sets with fewer configurations; see Ref. [59] for
further details. The error χ decreases with increasing K , as
Monte Carlo noise causing decay of the cross-correlation
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FIG. 1. Comparison of (i) absolute values of the cross-correlation functions and (ii) Fourier transforms of the real part of the cross-
correlation functions for different methods (red, solid) of studying Eq. (18) with M = 20. λ = 0.1 parameters relative to the benchmark [79]
(black, dotted): (a) MP/SOFT [72], (b) Trajectory Guided CI Expansion [74], (c) aTG [75], (d) CCS [73], (e) 2L-CCS [78], (f) CCSB (present
work).
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FIG. 2. (i) Cumulative error χ [defined in Eq. (30)] of the CCSB method with respect to the benchmark [79] for different values of
(a) compression parameter for coherent-state sampling of the bath basis levels with zero initial occupation σ (2α>0), (b) configurations K , and
(c) even harmonic-oscillator levels in bath basis 	. (ii) Norm (dashed-dotted lines without circles) and particle number (dashed-dotted lines
with circles) of CCSB calculations with different values of (a) σ (2α>0), (b) K , and (c) 	. Note that in panels (b) and (c) for both columns (i)
and (ii) the value of σ (2α>0) changes as well as K and 	. This is addressed in the text.

function decreases with increasing number of configurations.
However, χ does not remain at 0 for the duration of the
calculation, and the K = 4000 propagation is only equivalent
to the K = 3000 calculation for the first 30 a.u. This indicates
the slow convergence of the method as mentioned in the
introduction. However, we can regard the accuracy of the
K = 4000 calculation as sufficient for this application as
we are able to obtain an accurate FT spectrum with correct
frequencies, alongside the good conservation of norm and par-
ticle number compared with the other calculations with fewer
configurations.

Finally, considering Figs. 2(i)(c) and 2(ii)(c), the value of
	 is varied while K is held constant. The value of σ (2α>0)

was again chosen based on the criteria presented above, with
larger values possible with increased 	. It can be seen that
altering the value of 	 has a small effect on the accuracy
of the calculation [note the difference in y-axis values for χ

compared with Figs. 2(i)(a) and 2(i)(b)], and the value 	 = 5
was deemed to result in a stable enough propagation.

IV. APPLICATION 2: INDISTINGUISHABLE BOSONS IN A
DISPLACED HARMONIC TRAP

The second application of CCSB is to a system composed
purely of indistinguishable bosons, with N interacting bosons
placed in a harmonic trap displaced from the origin, with N =
100 used in the present application. The oscillations in the
density are calculated and compared with MCTDHB [21,22]
calculations (performed by the authors, using the MCTDHB
package [80]). The Hamiltonian (in dimensionless units and
distinguishable representation) for this problem consists of a

shifted harmonic potential and a two-body interaction term,

Ĥ = P̂2

2
+ (Q̂ − ξ )2

2
+ Ŵ (Q, Q′), (32)

where Q̂ and P̂ are the position and momentum operators of
the N bosons, ξ = 2.1 is a parameter that shifts the harmonic
potential from the origin, and Ŵ is the two-body interaction
given by the contact interaction

Ŵ (Q, Q′) = λ0δ(Q − Q′). (33)

The constant λ0 controls the strength of the interaction, with
values of λ0 = 0.001 and λ0 = 0.01 used in the present ap-
plication, while δ(Q − Q′) is the Dirac δ function. As with
Application 1, the Hamiltonian in Eq. (32) must be second
quantized and normal ordered before it can be used with
CCSB, with

Hord(z∗
k , zl ) =

	∑
α=0

ε (α)z(α)∗
k z(α)

l −
	∑

α,β=0

ξQ(α,β )z(α)∗
k z(β )

l

+
	∑

α=0

ξ 2

2
z(α)∗

k z(α)
l

+ 1

2

	∑
α,β,γ ,ζ=0

λ0δ
(α,β,γ ,ζ )z(α)∗

k z(β )∗
k z(ζ )

l z(γ )
l . (34)

The derivation of the above and evaluation of the matrix ele-
ments Q(α,β ) and δ(α,β,γ ,ζ ) is shown in Appendix B. The initial
sampling of the coherent states and amplitudes is performed in
a similar manner to the second-quantized bath of Application
1 and is shown in the following section.

013607-7



JAMES A. GREEN AND DMITRII V. SHALASHILIN PHYSICAL REVIEW A 100, 013607 (2019)

A. Initial conditions for Application 2

The initial Fock state for the system includes all bosons in
the ground harmonic state:

|n〉 =
	∏

α=0

|n(α)〉 = |n(0), n(1), . . . , n(	)〉 = |100, 0, . . . , 0〉 .

(35)
As with the second-quantized bath of Application 1, the

coherent states are sampled via a gamma distribution like in
Eq. (25). The ground state with initial occupation n(α=0) =
100 is sampled with compression parameter σ (α=0) = 1.0 to
ensure that the distribution is centered in the correct place,
while once more we are free to choose the compression pa-
rameter for the excited states with initial occupation n(α>0) =
0. Values of σ (α>0) = 109 for λ0 = 0.001 and σ (α>0) = 107

for λ0 = 0.01 are used, with full details for the determination
of these compression parameters shown in the following
section.

Initial amplitudes are calculated by projecting the basis
onto the initial Fock state in Eq. (35)

〈zk (0)|n〉 =
K∑

l=1

Dl (0) 〈zk (0)|zl (0)〉 , (36)

where

〈zk (0)|n〉 =
〈

	∏
α=0

z(α)
k (0)|n)

〉

=
[

	∏
α=0

e− |z(α)
k (0)|2

2

](
z(α=0)∗

k (0)
)100

√
100!

. (37)

For the MCTDHB calculations, the initial orbitals were
constructed from eigenfunctions of the unshifted trap (ξ = 0),
with the coefficient of one of the orbitals set to 1, while the rest
were set to 0. This was chosen for the initial conditions of the
MCTDHB calculations rather than propagation in imaginary
time to obtain the initial orbitals and coefficients of the ground
state [21,22], because we currently do not have an analogous
procedure for CCSB due to the instability of trajectories when
propagating in imaginary time [81]. This way we ensure that
the initial conditions for both methods are the same, and
we are testing the propagation accuracy of both methods. In
future work we will look at the effect of initial conditions on
CCSB, and its comparison to MCTDHB.

B. Results and comparison to multiconfigurational
time-dependent Hartree method for bosons

The dynamics are followed by observing the evolution of
the density matrix over the course of the calculation, which in
CCSB can be evaluated as

ρ (α,β ) = 〈�|â(α)†â(β )|�〉

=
K∑

k,l=1

D∗
k Dle

i(Sl −Sk ) 〈zk|zl〉 z(α)∗
k z(β )

l . (38)

Because the creation and annihilation operators have different
interpretations in CCSB and MCTDHB (acting on quantum
states vs orbitals), the density matrix in this form also has a

different interpretation. Therefore, to compare the two meth-
ods on the same footing, the one-body density is evaluated as
a function of position, which for CCSB in this application can
be calculated by the following:

ρ(Q) = 〈α|ρ (α,β )|β〉

=
	∑

α,β=0

1√
2αα!

(
1

π

)1/4

e−Q2/2Heα (Q)ρ (α,β )

× 1√
2ββ!

(
1

π

)1/4

e−Q2/2Heβ (Q). (39)

This one-body density is shown as a function of position
and time in Fig. 3 for interaction strengths λ0 = 0.001
[Fig. 3(i)] and λ0 = 0.01 [Fig. 3(ii)], with the MCTDHB cal-
culations in Figs. 3(i)(a) and 3(ii)(a) and CCSB calculations
in Figs. 3(i)(b) and 3(ii)(b). The MCTDHB calculations use
one orbital for the λ0 = 0.001 case, and three orbitals for
the λ0 = 0.01 case, labeled MCTDHB(1) and MCTDHB(3),
respectively. The CCSB calculations use K = 150 configu-
rations for both the λ0 = 0.001 and λ0 = 0.01 cases, with
	 = 26 harmonic-oscillator levels for the λ0 = 0.001 case
and 	 = 25 harmonic-oscillator levels for the λ0 = 0.01 case,
with the compression parameters σ (α>0) as mentioned in the
previous section. It can be seen that the MCTDHB and CCSB
calculations of the one-body density compare well to one
another, illustrating the oscillations in the bosonic cloud due
to the trap displacement.

As well as the density being subject to oscillations as a
function of the trap displacement, it also exhibits breathing
oscillations, which may not be immediately apparent from
Fig. 3. To illustrate these, we plot the variance in the one-body
density as a function of time

〈Q〉 =
∫

Q2ρ(Q)dQ −
(∫

Qρ(Q)dQ

)2

, (40)

which is shown in Fig. 4, with the interaction strengths
λ0 = 0.001 in Fig. 4(i) and λ0 = 0.01 in Fig. 4(ii). It can
immediately be seen that the stronger interaction strength
produces larger breathing oscillations, which is not as easy
to see in Fig. 3. Furthermore, the breathing oscillations in
Fig. 4 serve to determine the convergence of the methods:
MCTDHB with respect to the number of orbitals; and CCSB
with respect to σ (α>0), K , and 	. A portion of the peak of the
density variance at ∼8 a.u. is highlighted to clearly illustrate
any discrepancies that may be difficult to distinguish. As with
Application 1, the accuracy and convergence of the CCSB
calculation may also be determined from the conservation of
norm and particle number, which is shown in Fig. 5.

For λ0 = 0.001, the MCTDHB calculations using 1, 3,
and 4 orbitals demonstrate equivalent breathing oscillations
in Fig. 4(i)(a), while there appears to be an anomalous result
for MCTDHB with two orbitals. The authors are unsure of the
reason for this, which may be best left for a future MCTDHB
study; however, we regard the MCTDHB(1) as being fully
converged and use this to compare with the CCSB calculations
in Figs. 4(i)(b)–4(i)(d), as well as in Fig. 3(i). An MCTDHB
calculation with one orbital is equivalent to the GPE [82], so
these dynamics are at the mean-field level.
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FIG. 3. Spacetime representation of the evolution of the one-body density for (a) MCTDHB and (b) CCSB calculations of Application 2
with interaction strengths (i) λ0 = 0.001 and (ii) λ0 = 0.01.

In Fig. 4(i)(b) we alter the value of the compression pa-
rameter σ (α>0), while keeping the number of configurations
fixed at K = 150, and the number of harmonic-oscillator
levels fixed at 	 = 26. There appears to be little difference
in the breathing oscillations for different values of σ (α>0), al-
though the highlighted peak at ∼8 a.u. demonstrates small dis-
crepancies between the MCTDHB calculation and σ (α>0) =
106 and σ (α>0) = 107, while σ (α>0) = 108 and σ (α>0) = 109

superimpose on the MCTDHB result. The conservation of
norm and particle number for different values of σ (α>0) is
shown in Fig. 5(i)(a), where σ (α>0) = 108 and σ (α>0) = 109

superimpose upon a value of the norm of 1, and particle
number 100, as should be expected. We keep σ (α>0) = 109

for the remaining calculations. This is much larger than the
compression parameter used in Application 1; however, much
fewer configurations are used in this application, and the com-
pression parameter necessary also depends upon the problem
studied, and how the dynamics affect the motion of the basis.

In Fig. 4(i)(c) we alter the value of K while keeping σ (α>0)

and 	 fixed. Altering the value of the compression parameter

for different values of K was not necessary like in Application
1, as a stable basis was able to be formed. We observe very lit-
tle discrepancy between the different CCSB calculations and
MCTDHB, and the norm and particle number conservation
for K = 150 and K = 200 are very similar in Fig. 5(i)(b). We
therefore regard K = 150 as being fully converged.

In Fig. 4(i)(d) we alter the value of 	 and keep K and
σ (α>0) fixed. As with the above, altering the value of σ (α>0)

was not necessary because a stable basis was able to be
formed each time. Larger discrepancies between the CCSB
calculations and the MCTDHB result are seen in this panel,
indicating that the choice of 	 has the largest influence on this
calculation. The results for 	 = 25 and 	 = 26 superimpose,
indicating that the calculation is converged by this point. The
conservation of norm and particle number for both of these
calculations is also similar in Fig. 5(i)(c).

Turning to the larger interaction strength of λ0 = 0.01,
we follow the same approach as above in determining the
accuracy and convergence of the calculations. Initially, in
Fig. 4(ii)(a), the MCTDHB calculations with one and two
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FIG. 4. Variance of the one-body density 〈Q〉 for Application 2 with two-body interaction strength (i) λ0 = 0.001 and (ii) λ0 = 0.01. Panels
(a) show the MCTDHB calculations with different numbers of orbitals, and the converged result is used to compare with CCSB calculations
with different values of (b) compression parameter for coherent-state sampling of the harmonic-oscillator levels with zero initial occupation
σ (α>0), (c) configurations K , and (d) harmonic-oscillator levels in the basis 	.

orbitals exhibit minor differences with respect to those with
three and four orbitals, shown in the highlighted portion of the
figure, so we regard the MCTDHB(3) calculation as our fully
converged reference point. At this level of interaction strength,
an above-mean-field description is therefore necessary. We
admit that the discrepancy between these MCTDHB calcu-
lations is not very large; however, a similar study in Ref. [31]
also illustrated minor differences in breathing dynamics for
MCTDHB calculations with different numbers of orbitals.

In Fig. 4(ii)(b) we alter the value of the compression
parameter σ (α>0), while keeping the number of configu-
rations fixed at K = 150, and the number of harmonic-
oscillator levels fixed at 	 = 25. All the calculations su-
perimpose, and there is even less discrepancy than in the
λ0 = 0.001 case. For the remaining calculations we choose a
compression parameter of σ (α>0) = 107 because this demon-
strates the best norm and particle number conservation in
Fig. 5(ii)(a).

In Fig. 4(ii)(c) we alter the value of K while keeping σ (α>0)

and 	 fixed. There are minor differences between the K =
100 calculation and the K = 150 and K = 200 calculations,
the latter of which superimpose on the MCTDHB result. The

norm and particle number conservation of the K = 150 and
K = 200 calculations are very similar in Fig. 5(ii)(b), there-
fore we regard the K = 150 result as being fully converged.

In Fig. 4(ii)(d) we alter the value of 	 and keep K and
σ (α>0) fixed. As with the λ0 = 0.001 calculations, this has
the largest effect on the breathing oscillations, with 	 = 20
and 	 = 22 being insufficient to describe them accurately,
while the 	 = 24 and 	 = 25 cases superimpose upon the
MCTDHB result. The norm and particle number conservation
of the 	 = 24 result, shown in Fig. 5(ii)(c) is not as good as
the 	 = 25 result, which is why we choose the latter as our
most accurate calculation.

The above demonstrates that CCSB is able to reproduce
MCTDHB calculations in both the mean-field and multi-
orbital fully quantum regimes, with similar levels of theory
for the CCSB calculations in each regime. We have also
shown that the method converges appropriately with respect
to the K and 	 parameters, this it is stable with respect to
norm and particle number conservation, and that appropri-
ate choice of the compression parameter σ (α>0) for initial
sampling of the coherent-state basis is necessary, like in
Application 1.
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FIG. 5. Norm (dashed-dotted lines without circles) and particle number (dashed-dotted lines with circles) for CCSB calculations of
Application 2 with two-body interaction strength (i) λ0 = 0.001 and (ii) λ0 = 0.01 with different values of (a) compression parameter for
coherent-state sampling of the harmonic-oscillator levels with zero initial occupation σ (α>0), (b) configurations K , and (c) harmonic-oscillator
levels in the basis 	.

V. CONCLUSIONS

In this work the CCS method has been straightforwardly
applied to the investigation of indistinguishable bosons, as
MCTDH and ML-MCTDH have been, and the method
dubbed CCSB. Instead of the coherent-state basis functions
being used to represent individual particles like in the standard
distinguishable representation of CCS, in CCSB they are used
as a basis for number occupation of quantum states in the
second-quantization Fock state formalism.

Two example model Hamiltonians have been studied,
demonstrating the accuracy of the method by comparing with
fully quantum benchmarks. In the first example, CCSB was
applied to the system-bath asymmetric double-well tunneling
problem previously studied in Refs. [72–75,78,79] in dis-
tinguishable representation. Because the bath is comprised
of oscillators of the same frequency, they were treated as
indistinguishable and the bath portion of the Hamiltonian
second quantized. The system tunneling portion of the Hamil-
tonian was kept in distinguishable representation, therefore
this first application was a hybrid of standard CCS and CCSB.
This does not pose a problem however, because the working
equations for trajectories and time dependence of amplitudes
are the same in each. This may also be thought of as a system
with a bosonic bath and an impurity, opening up the possibil-
ity of the method studying multi-atomic Bose-Einstein con-
densates [64], spinor Bose-Einstein condensates [65], dark-
bright solitons [66], and Bose polarons [67]. The previously
studied 20D, quadratic system-bath coupling with constant
λ = 0.1 case [72–75,78,79] was investigated, and the second-
quantized bath required 	 = 5 harmonic-oscillator levels in
the basis, thus the dimensionality of the problem was reduced

from 20 to 6. The CCSB calculation was in much better
agreement with a benchmark result [79] on the system than
all other methods that have studied the problem.

In the second example, a model Hamiltonian for a system
of 100 bosons in a shifted harmonic trap was studied, the
one-body density has been calculated, as well as its variance,
to demonstrate the breathing oscillations of the density. Matrix
elements of two-body operators had to be calculated, as is
common for interacting condensates, and these may be com-
puted analytically by CCSB. The density oscillations were
calculated at two different two-body interaction strengths
and compared with MCTDHB benchmark calculations. The
weaker interaction strength was able to be described by
MCTDHB with one orbital, such that it was equivalent to the
GPE mean-field theory, while the stronger interaction strength
required MCTDHB with three orbitals, and was thus fully
quantum, taking correlations into account and going beyond
the mean-field approach. CCSB was able to reproduce both
results with similar levels of theory, providing motivation for
further study on more challenging Bose-Einstein condensate
systems. In particular, future avenues of research for CCSB in
this vein include more complicated Bose-Einstein condensate
problems, such as that in Ref. [22] of a condensate in a single-
well trap that is deformed into a double well, like that ob-
served in experimental bosonic Josephson junctions [70,71].
We also wish to consider condensates in multiwell traps, such
as a multisite version of the Bose-Hubbard model studied in
Ref. [61], and other interesting systems that have previously
been studied by ML-MCTDHB [45–52].

Both applications have demonstrated that the CCSB
method converges with the number of configurations K and
number of quantum states included in the basis 	. We have
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also demonstrated that appropriate sampling of the initial
coherent states via a compression parameter σ is necessary
to ensure a reliable and accurate calculation. Further de-
velopments of the method that we envisage in the future
include development of methods to generate initial conditions,
as imaginary time propagation is unstable with trajectories;
incorporation of SU(n) coherent states, as demonstrated in
Ref. [83], and the combination of the method with one to
treat identical fermions [84] to study Bose-Fermi mixtures, as
has been carried out by MCTDH [85] and ML-MCTDH [86]
previously.

The data generated in this work that are shown in the
figures are available, along with the program code used to
generate the data [87].
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APPENDIX A: SECOND QUANTIZATION AND NORMAL ORDERING OF HAMILTONIAN FOR APPLICATION 1

Using the definition of a second-quantized Hamiltonian in Eq. (17) in the main text, Eq. (18) may be written as

Ĥ = p̂(m=1)2

2
− q̂(m=1)2

2
+ q̂(m=1)4

16η
+
⎡
⎣ 	∑

α,β=0

〈α| P̂2

2
+ Q̂2

2
|β〉 â(α)†â(β )

⎤
⎦+ λq̂(m=1)

2

⎡
⎣ 	∑

α,β=0

〈α|Q̂2|β〉 â(α)†â(β )

⎤
⎦

= p̂(m=1)2

2
− q̂(m=1)2

2
+ q̂(m=1)4

16η
+
[

	∑
α=0

〈α| P̂2

2
+ Q̂2

2
|α〉 â(α)†â(α)

]
+ λq̂(m=1)

2

⎡
⎣ 	∑

α,β=0

Q(α,β )2
â(α)†â(β )

⎤
⎦

= p̂(m=1)2

2
− q̂(m=1)2

2
+ q̂(m=1)4

16η
+
[

	∑
α=0

ε (α)â(α)†â(α)

]
+ λq̂(m=1)

2

⎡
⎣ 	∑

α,β=0

Q(α,β )2
â(α)†â(β )

⎤
⎦. (A1)

The quantum states |α〉 and |β〉 are those of the harmonic oscillator with α and β being the numbers of quanta, and the equality
for 〈α| P̂2

2 + Q̂2

2 |β〉 in the second step follows because this is nonzero with eigenvalue ε (α) only when α = β. The sums are from
the ground level α = 0 to some upper level 	. In principle, one should choose 	 = ∞ for a complete description of the bath;
however, in practice additional oscillator levels may simply be added on until a converged result is achieved. The position and
momentum operators of the tunneling mode have been explicitly labeled with (m = 1) to distinguish them from the α-labeling
scheme of the second-quantized bath modes.

The matrix Q(α,β )2
is evaluated as

〈α|Q̂2|β〉 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

√
(α+2)(α+1) if α = β − 2

1
2

√
α(α − 1) if α = β+2

ε (α) if α = β

0 otherwise.

(A2)

As this matrix is nonzero only for quanta α = β and α = β ± 2, and we may say that all bath modes are initially in the ground
harmonic-oscillator level (α = 0) because they are at the origin in distinguishable representation (previously assumed in the
benchmark calculation [79]), only harmonic-oscillator levels with even numbers of quanta will be included and the bottom line
of Eq. (A1) is written as

Ĥ = p̂(m=1)2

2
− q̂(m=1)2

2
+ q̂(m=1)4

16η
+
[

	∑
α=0

ε (2α)â(2α)†â(2α)

]
+ λq̂(m=1)

2

⎡
⎣ 	∑

α,β=0

Q(2α,2β )2
â(2α)†â(2β )

⎤
⎦. (A3)

The relationship between the creation and annihilation operators and q̂ and p̂ given in Eq. (3) may then be used in Eq. (A3)
alongside the relationships in Eqs. (2) and (6) to give Eq. (19).
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APPENDIX B: SECOND QUANTIZATION OF HAMILTONIAN FOR APPLICATION 2

Using the definition of a second-quantized Hamiltonian in Eq. (17) in the main text, Eq. (32) may be written as

Ĥ =
	∑

α,β=0

〈α| P̂2

2
+ Q̂2

2
|β〉 â(α)†â(β ) −

	∑
α,β=0

〈α|ξQ̂|β〉 â(α)†â(β ) +
	∑

α,β=0

〈α|ξ
2

2
|β〉 â(α)†â(β )

+ 1

2

	∑
α,β,γ ,ζ=0

〈α, β|λ0δ(Q − Q′)|γ , ζ 〉 â(α)†â(β )†â(ζ )â(γ )

=
	∑

α=0

〈α| P̂2

2
+ Q̂2

2
|α〉 â(α)†â(α) −

	∑
α,β=0

〈α|ξQ̂|β〉 â(α)†â(β )

+
	∑

α=0

〈α|ξ
2

2
|α〉 â(α)†â(α) + 1

2

	∑
α,β,γ ,ζ=0

〈α, β|λ0δ(Q − Q′)|γ , ζ 〉 â(α)†â(β )†â(ζ )â(γ )

=
	∑

α=0

ε (α)â(α)†â(α) −
	∑

α,β=0

ξQ(α,β )â(α)†â(β ) +
	∑

α=0

ξ 2

2
â(α)†â(α)

+ 1

2

	∑
α,β,γ ,ζ=0

λ0δ
(α,β,γ ,ζ )â(α)†â(β )†â(ζ )â(γ ). (B1)

The relationships in Eqs. (2) and (6) may then be used with Eq. (B1) to give Eq. (34). In Eq. (B1), ε (α) is the eigenvalue of the
harmonic oscillator for state |α〉, and Q(α,β ) is a matrix given by

Q(α,β ) = 〈α|Q̂|β〉 =

⎧⎪⎨
⎪⎩
√

α
2 α = β + 1√
β

2 β = α + 1

0 otherwise.

(B2)

Evaluation of the δ(α,β,γ ,ζ ) matrix is slightly more involved, because it is required to solve the integral

δ(α,β,γ ,ζ ) = 〈α, β|δ(Q − Q′)|γ , ζ 〉 =
∫ +∞

−∞

∫ +∞

−∞

1√
2αα!

(
1

π

)1/4

e−Q2/2He(α)(Q)
1√

2ββ!

(
1

π

)1/4

e−Q′2/2He(β )(Q′)

× δ(Q − Q′)
1√

2γ γ !

(
1

π

)1/4

e−Q2/2He(γ )(Q)
1√

2ζ ζ !

(
1

π

)1/4

e−Q′2/2He(ζ )(Q′)dQdQ′, (B3)

where He(α)(Q) is a Hermite polynomial of order α. However, an analytic solution is possible, and the above may be simplified
by using the relationship ∫ +∞

−∞
f (x′)δ(x − x′)dx′ = f (x) (B4)

and like terms collated to obtain

δ(α,β,γ ,ζ ) = 1

π
√

2(α+β+γ+ζ )α!β!γ !ζ !

∫ +∞

−∞
e−2Q2

He(α)(Q)He(β )(Q)He(γ )(Q)He(ζ )(Q)dQ. (B5)

This will only be nonzero if the integrand is an even function, so the product of Hermite polynomials can only have even powers
of Q:

δ(α,β,γ ,ζ ) = 1

π
√

2α+β+γ+ζ α!β!γ !ζ !

∫ +∞

−∞
e−2Q2

(α+β+γ+ζ )/2∑
τ=0

c2τ Q2τ dQ, (B6)

where c2τ is a constant obtained from the product of Hermite polynomial coefficients. Using the identity

∫ +∞

−∞
x2ne− 1

2 ax2
dx =

√
2π

a

1

an
(2n − 1)!! for n > 0 (B7)
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combined with a Gaussian integral for τ = 0, Eq. (B6) can be evaluated as

δ(α,β,γ ,ζ ) = 1

π
√

2α+β+γ+ζ α!β!γ !ζ !

[√
π

2
c0 +

(α+β+γ+ζ )/2∑
τ=1

c2τ

√
π

2

1

4τ
(2τ − 1)!!

]
. (B8)

We note that an alternative method of calculating the δ(α,β,γ ,ζ ) matrix elements exists by using Gauss-Hermite quadrature [88];
however, our approach was sufficiently efficient.

[1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman,
and E. A. Cornell, Science 269, 198 (1995).

[2] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Phys.
Rev. Lett. 75, 1687 (1995).

[3] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten,
D. S. Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Lett. 75,
3969 (1995).

[4] C. Orzel, A. K. Tuchman, M. L. Fenselau, M. Yasuda, and M. A.
Kasevich, Science 291, 2386 (2001).

[5] M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, and
M. K. Oberthaler, Phys. Rev. Lett. 95, 010402 (2005).

[6] S. Levy, E. Lahoud, I. Shomroni, and J. Steinhauer, Nature
(London) 449, 579 (2007).

[7] M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E.
Wieman, and E. A. Cornell, Phys. Rev. Lett. 83, 2498 (1999).

[8] K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Phys.
Rev. Lett. 84, 806 (2000).

[9] S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A.
Sanpera, G. V. Shlyapnikov, and M. Lewenstein, Phys. Rev.
Lett. 83, 5198 (1999).

[10] J. Denschlag, J. E. Simsarian, D. L. Feder, C. W. Clark, L. A.
Collins, J. Cubizolles, L. Deng, E. W. Hagley, K. Helmerson,
W. P. Reinhardt, S. L. Rolston, B. I. Schneider, and W. D.
Phillips, Science 287, 97 (2000).

[11] E. P. Gross, Nuovo Cimento 20, 454 (1961).
[12] L. P. Pitaevskii, Sov. Phys. JETP-USSR 13, 451 (1961).
[13] A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Phys.

Rev. Lett. 79, 4950 (1997).
[14] V. M. Pérez-García, H. Michinel, J. I. Cirac, M. Lewenstein,

and P. Zoller, Phys. Rev. A 56, 1424 (1997).
[15] S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, Phys.

Rev. A 59, 620 (1999).
[16] W. Bao, D. Jaksch, and P. A. Markowich, J. Comput. Phys. 187,

318 (2003).
[17] Z. X. Liang, Z. D. Zhang, and W. M. Liu, Phys. Rev. Lett. 94,

050402 (2005).
[18] D. Ananikian and T. Bergeman, Phys. Rev. A 73, 013604

(2006).
[19] A. J. Leggett, Rev. Mod. Phys. 73, 307 (2001).
[20] A. Minguzzi, S. Succi, F. Toschi, M. Tosi, and P. Vignolo, Phys.

Rep. 395, 223 (2004).
[21] A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, Phys. Rev.

Lett. 99, 030402 (2007).
[22] O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, Phys. Rev. A

77, 033613 (2008).
[23] A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, Phys. Rev.

Lett. 100, 130401 (2008).
[24] A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, Phys. Rev. A

80, 043616 (2009).

[25] A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, J. Phys. B:
At., Mol. Opt. Phys. 42, 091004 (2009).

[26] A. U. J. Lode, A. I. Streltsov, O. E. Alon, H.-D. Meyer, and
L. S. Cederbaum, J. Phys. B: At., Mol. Opt. Phys. 42, 044018
(2009).

[27] K. Sakmann, A. I. Streltsov, O. E. Alon, and L. S. Cederbaum,
Phys. Rev. Lett. 103, 220601 (2009).

[28] K. Sakmann, A. I. Streltsov, O. E. Alon, and L. S. Cederbaum,
Phys. Rev. A 82, 013620 (2010).

[29] A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, Phys. Rev.
Lett. 106, 240401 (2011).

[30] A. I. Streltsov, K. Sakmann, O. E. Alon, and L. S. Cederbaum,
Phys. Rev. A 83, 043604 (2011).

[31] A. U. J. Lode, K. Sakmann, O. E. Alon, L. S. Cederbaum, and
A. I. Streltsov, Phys. Rev. A 86, 063606 (2012).

[32] A. I. Streltsov, Phys. Rev. A 88, 041602(R) (2013).
[33] R. Beinke, S. Klaiman, L. S. Cederbaum, A. I. Streltsov, and

O. E. Alon, Phys. Rev. A 92, 043627 (2015).
[34] L. Cao, S. Krönke, O. Vendrell, and P. Schmelcher, J. Chem.

Phys. 139, 134103 (2013).
[35] S. Krönke, L. Cao, O. Vendrell, and P. Schmelcher, New J. Phys.

15, 063018 (2013).
[36] J. M. Schurer, A. Negretti, and P. Schmelcher, Phys. Rev. Lett.

119, 063001 (2017).
[37] K. Keiler and P. Schmelcher, New J. Phys. 20, 103042 (2018).
[38] S. I. Mistakidis, A. G. Volosniev, N. T. Zinner, and P.

Schmelcher, arXiv:1809.01889 [Phys. Rev. A (to be pub-
lished)].

[39] S. Mistakidis, G. Katsimiga, G. Koutentakis, T. Busch, and P.
Schmelcher, Phys. Rev. Lett. 122, 183001 (2019).

[40] G. C. Katsimiga, S. I. Mistakidis, G. M. Koutentakis, P. G.
Kevrekidis, and P. Schmelcher, Phys. Rev. A 98, 013632
(2018).

[41] S. I. Mistakidis, G. C. Katsimiga, P. G. Kevrekidis, and P.
Schmelcher, New J. Phys. 20, 043052 (2018).

[42] G. C. Katsimiga, G. M. Koutentakis, S. I. Mistakidis, P. G.
Kevrekidis, and P. Schmelcher, New J. Phys. 19, 073004
(2017).

[43] S. Krönke and P. Schmelcher, Phys. Rev. A 91, 053614 (2015).
[44] G. C. Katsimiga, S. I. Mistakidis, G. M. Koutentakis, P. G.

Kevrekidis, and P. Schmelcher, New J. Phys. 19, 123012 (2017).
[45] S. I. Mistakidis, L. Cao, and P. Schmelcher, J. Phys. B: At., Mol.

Opt. Phys. 47, 225303 (2014).
[46] S. I. Mistakidis, L. Cao, and P. Schmelcher, Phys. Rev. A 91,

033611 (2015).
[47] S. I. Mistakidis, T. Wulf, A. Negretti, and P. Schmelcher, J.

Phys. B: At., Mol. Opt. Phys. 48, 244004 (2015).
[48] S. I. Mistakidis and P. Schmelcher, Phys. Rev. A 95, 013625

(2017).

013607-14

https://doi.org/10.1126/science.269.5221.198
https://doi.org/10.1126/science.269.5221.198
https://doi.org/10.1126/science.269.5221.198
https://doi.org/10.1126/science.269.5221.198
https://doi.org/10.1103/PhysRevLett.75.1687
https://doi.org/10.1103/PhysRevLett.75.1687
https://doi.org/10.1103/PhysRevLett.75.1687
https://doi.org/10.1103/PhysRevLett.75.1687
https://doi.org/10.1103/PhysRevLett.75.3969
https://doi.org/10.1103/PhysRevLett.75.3969
https://doi.org/10.1103/PhysRevLett.75.3969
https://doi.org/10.1103/PhysRevLett.75.3969
https://doi.org/10.1126/science.1058149
https://doi.org/10.1126/science.1058149
https://doi.org/10.1126/science.1058149
https://doi.org/10.1126/science.1058149
https://doi.org/10.1103/PhysRevLett.95.010402
https://doi.org/10.1103/PhysRevLett.95.010402
https://doi.org/10.1103/PhysRevLett.95.010402
https://doi.org/10.1103/PhysRevLett.95.010402
https://doi.org/10.1038/nature06186
https://doi.org/10.1038/nature06186
https://doi.org/10.1038/nature06186
https://doi.org/10.1038/nature06186
https://doi.org/10.1103/PhysRevLett.83.2498
https://doi.org/10.1103/PhysRevLett.83.2498
https://doi.org/10.1103/PhysRevLett.83.2498
https://doi.org/10.1103/PhysRevLett.83.2498
https://doi.org/10.1103/PhysRevLett.84.806
https://doi.org/10.1103/PhysRevLett.84.806
https://doi.org/10.1103/PhysRevLett.84.806
https://doi.org/10.1103/PhysRevLett.84.806
https://doi.org/10.1103/PhysRevLett.83.5198
https://doi.org/10.1103/PhysRevLett.83.5198
https://doi.org/10.1103/PhysRevLett.83.5198
https://doi.org/10.1103/PhysRevLett.83.5198
https://doi.org/10.1126/science.287.5450.97
https://doi.org/10.1126/science.287.5450.97
https://doi.org/10.1126/science.287.5450.97
https://doi.org/10.1126/science.287.5450.97
https://doi.org/10.1007/BF02731494
https://doi.org/10.1007/BF02731494
https://doi.org/10.1007/BF02731494
https://doi.org/10.1007/BF02731494
http://www.jetp.ac.ru/cgi-bin/dn/e_013_02_0451.pdf
https://doi.org/10.1103/PhysRevLett.79.4950
https://doi.org/10.1103/PhysRevLett.79.4950
https://doi.org/10.1103/PhysRevLett.79.4950
https://doi.org/10.1103/PhysRevLett.79.4950
https://doi.org/10.1103/PhysRevA.56.1424
https://doi.org/10.1103/PhysRevA.56.1424
https://doi.org/10.1103/PhysRevA.56.1424
https://doi.org/10.1103/PhysRevA.56.1424
https://doi.org/10.1103/PhysRevA.59.620
https://doi.org/10.1103/PhysRevA.59.620
https://doi.org/10.1103/PhysRevA.59.620
https://doi.org/10.1103/PhysRevA.59.620
https://doi.org/10.1016/S0021-9991(03)00102-5
https://doi.org/10.1016/S0021-9991(03)00102-5
https://doi.org/10.1016/S0021-9991(03)00102-5
https://doi.org/10.1016/S0021-9991(03)00102-5
https://doi.org/10.1103/PhysRevLett.94.050402
https://doi.org/10.1103/PhysRevLett.94.050402
https://doi.org/10.1103/PhysRevLett.94.050402
https://doi.org/10.1103/PhysRevLett.94.050402
https://doi.org/10.1103/PhysRevA.73.013604
https://doi.org/10.1103/PhysRevA.73.013604
https://doi.org/10.1103/PhysRevA.73.013604
https://doi.org/10.1103/PhysRevA.73.013604
https://doi.org/10.1103/RevModPhys.73.307
https://doi.org/10.1103/RevModPhys.73.307
https://doi.org/10.1103/RevModPhys.73.307
https://doi.org/10.1103/RevModPhys.73.307
https://doi.org/10.1016/j.physrep.2004.02.001
https://doi.org/10.1016/j.physrep.2004.02.001
https://doi.org/10.1016/j.physrep.2004.02.001
https://doi.org/10.1016/j.physrep.2004.02.001
https://doi.org/10.1103/PhysRevLett.99.030402
https://doi.org/10.1103/PhysRevLett.99.030402
https://doi.org/10.1103/PhysRevLett.99.030402
https://doi.org/10.1103/PhysRevLett.99.030402
https://doi.org/10.1103/PhysRevA.77.033613
https://doi.org/10.1103/PhysRevA.77.033613
https://doi.org/10.1103/PhysRevA.77.033613
https://doi.org/10.1103/PhysRevA.77.033613
https://doi.org/10.1103/PhysRevLett.100.130401
https://doi.org/10.1103/PhysRevLett.100.130401
https://doi.org/10.1103/PhysRevLett.100.130401
https://doi.org/10.1103/PhysRevLett.100.130401
https://doi.org/10.1103/PhysRevA.80.043616
https://doi.org/10.1103/PhysRevA.80.043616
https://doi.org/10.1103/PhysRevA.80.043616
https://doi.org/10.1103/PhysRevA.80.043616
https://doi.org/10.1088/0953-4075/42/9/091004
https://doi.org/10.1088/0953-4075/42/9/091004
https://doi.org/10.1088/0953-4075/42/9/091004
https://doi.org/10.1088/0953-4075/42/9/091004
https://doi.org/10.1088/0953-4075/42/4/044018
https://doi.org/10.1088/0953-4075/42/4/044018
https://doi.org/10.1088/0953-4075/42/4/044018
https://doi.org/10.1088/0953-4075/42/4/044018
https://doi.org/10.1103/PhysRevLett.103.220601
https://doi.org/10.1103/PhysRevLett.103.220601
https://doi.org/10.1103/PhysRevLett.103.220601
https://doi.org/10.1103/PhysRevLett.103.220601
https://doi.org/10.1103/PhysRevA.82.013620
https://doi.org/10.1103/PhysRevA.82.013620
https://doi.org/10.1103/PhysRevA.82.013620
https://doi.org/10.1103/PhysRevA.82.013620
https://doi.org/10.1103/PhysRevLett.106.240401
https://doi.org/10.1103/PhysRevLett.106.240401
https://doi.org/10.1103/PhysRevLett.106.240401
https://doi.org/10.1103/PhysRevLett.106.240401
https://doi.org/10.1103/PhysRevA.83.043604
https://doi.org/10.1103/PhysRevA.83.043604
https://doi.org/10.1103/PhysRevA.83.043604
https://doi.org/10.1103/PhysRevA.83.043604
https://doi.org/10.1103/PhysRevA.86.063606
https://doi.org/10.1103/PhysRevA.86.063606
https://doi.org/10.1103/PhysRevA.86.063606
https://doi.org/10.1103/PhysRevA.86.063606
https://doi.org/10.1103/PhysRevA.88.041602
https://doi.org/10.1103/PhysRevA.88.041602
https://doi.org/10.1103/PhysRevA.88.041602
https://doi.org/10.1103/PhysRevA.88.041602
https://doi.org/10.1103/PhysRevA.92.043627
https://doi.org/10.1103/PhysRevA.92.043627
https://doi.org/10.1103/PhysRevA.92.043627
https://doi.org/10.1103/PhysRevA.92.043627
https://doi.org/10.1063/1.4821350
https://doi.org/10.1063/1.4821350
https://doi.org/10.1063/1.4821350
https://doi.org/10.1063/1.4821350
https://doi.org/10.1088/1367-2630/15/6/063018
https://doi.org/10.1088/1367-2630/15/6/063018
https://doi.org/10.1088/1367-2630/15/6/063018
https://doi.org/10.1088/1367-2630/15/6/063018
https://doi.org/10.1103/PhysRevLett.119.063001
https://doi.org/10.1103/PhysRevLett.119.063001
https://doi.org/10.1103/PhysRevLett.119.063001
https://doi.org/10.1103/PhysRevLett.119.063001
https://doi.org/10.1088/1367-2630/aae98f
https://doi.org/10.1088/1367-2630/aae98f
https://doi.org/10.1088/1367-2630/aae98f
https://doi.org/10.1088/1367-2630/aae98f
http://arxiv.org/abs/arXiv:1809.01889
https://doi.org/10.1103/PhysRevLett.122.183001
https://doi.org/10.1103/PhysRevLett.122.183001
https://doi.org/10.1103/PhysRevLett.122.183001
https://doi.org/10.1103/PhysRevLett.122.183001
https://doi.org/10.1103/PhysRevA.98.013632
https://doi.org/10.1103/PhysRevA.98.013632
https://doi.org/10.1103/PhysRevA.98.013632
https://doi.org/10.1103/PhysRevA.98.013632
https://doi.org/10.1088/1367-2630/aabc6a
https://doi.org/10.1088/1367-2630/aabc6a
https://doi.org/10.1088/1367-2630/aabc6a
https://doi.org/10.1088/1367-2630/aabc6a
https://doi.org/10.1088/1367-2630/aa766b
https://doi.org/10.1088/1367-2630/aa766b
https://doi.org/10.1088/1367-2630/aa766b
https://doi.org/10.1088/1367-2630/aa766b
https://doi.org/10.1103/PhysRevA.91.053614
https://doi.org/10.1103/PhysRevA.91.053614
https://doi.org/10.1103/PhysRevA.91.053614
https://doi.org/10.1103/PhysRevA.91.053614
https://doi.org/10.1088/1367-2630/aa96f6
https://doi.org/10.1088/1367-2630/aa96f6
https://doi.org/10.1088/1367-2630/aa96f6
https://doi.org/10.1088/1367-2630/aa96f6
https://doi.org/10.1088/0953-4075/47/22/225303
https://doi.org/10.1088/0953-4075/47/22/225303
https://doi.org/10.1088/0953-4075/47/22/225303
https://doi.org/10.1088/0953-4075/47/22/225303
https://doi.org/10.1103/PhysRevA.91.033611
https://doi.org/10.1103/PhysRevA.91.033611
https://doi.org/10.1103/PhysRevA.91.033611
https://doi.org/10.1103/PhysRevA.91.033611
https://doi.org/10.1088/0953-4075/48/24/244004
https://doi.org/10.1088/0953-4075/48/24/244004
https://doi.org/10.1088/0953-4075/48/24/244004
https://doi.org/10.1088/0953-4075/48/24/244004
https://doi.org/10.1103/PhysRevA.95.013625
https://doi.org/10.1103/PhysRevA.95.013625
https://doi.org/10.1103/PhysRevA.95.013625
https://doi.org/10.1103/PhysRevA.95.013625


SIMULATION OF THE QUANTUM DYNAMICS OF … PHYSICAL REVIEW A 100, 013607 (2019)

[49] G. M. Koutentakis, S. I. Mistakidis, and P. Schmelcher, Phys.
Rev. A 95, 013617 (2017).

[50] J. Neuhaus-Steinmetz, S. I. Mistakidis, and P. Schmelcher,
Phys. Rev. A 95, 053610 (2017).

[51] S. Mistakidis, G. Koutentakis, and P. Schmelcher, Chem. Phys.
509, 106 (2018).

[52] T. Plaßmann, S. I. Mistakidis, and P. Schmelcher, J. Phys. B:
At., Mol. Opt. Phys. 51, 225001 (2018).

[53] H.-D. Meyer, U. Manthe, and L. Cederbaum, Chem. Phys. Lett.
165, 73 (1990).

[54] H. Wang and M. Thoss, J. Chem. Phys. 119, 1289 (2003).
[55] U. Manthe, J. Chem. Phys. 128, 164116 (2008).
[56] D. V. Shalashilin and M. S. Child, J. Chem. Phys. 113, 10028

(2000).
[57] D. V. Shalashilin and M. S. Child, Chem. Phys. 304, 103

(2004).
[58] D. V. Shalashilin and M. S. Child, J. Chem. Phys. 119, 1961

(2003).
[59] D. V. Shalashilin and M. S. Child, J. Chem. Phys. 128, 054102

(2008).
[60] L. Simon and W. T. Strunz, Phys. Rev. A 89, 052112 (2014).
[61] S. Ray, P. Ostmann, L. Simon, F. Grossmann, and W. T. Strunz,

J. Phys. A: Math. Theor. 49, 165303 (2016).
[62] M. S. Child and D. V. Shalashilin, J. Chem. Phys. 118, 2061

(2003).
[63] D. V. Shalashilin and M. S. Child, J. Chem. Phys. 121, 3563

(2004).
[64] G. Modugno, M. Modugno, F. Riboli, G. Roati, and M.

Inguscio, Phys. Rev. Lett. 89, 190404 (2002).
[65] Y. Kawaguchi and M. Ueda, Phys. Rep. 520, 253 (2012).
[66] C. Becker, S. Stellmer, P. Soltan-Panahi, S. Dörscher, M.

Baumert, E.-M. Richter, J. Kronjäger, K. Bongs, and K.
Sengstock, Nat. Phys. 4, 496 (2008).

[67] M. Bruderer, A. Klein, S. R. Clark, and D. Jaksch, Phys. Rev.
A 76, 011605(R) (2007).

[68] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I.
Bloch, Nature (London) 415, 39 (2002).

[69] D. Jaksch and P. Zoller, Ann. Phys. (NY) 315, 52 (2005).

[70] R. Gati, M. Albiez, J. Fölling, B. Hemmerling, and M.
Oberthaler, Appl. Phys. B: Lasers Opt. 82, 207 (2006).

[71] R. Gati and M. K. Oberthaler, J. Phys. B: At., Mol. Opt. Phys.
40, R61 (2007).

[72] Y. Wu and V. S. Batista, J. Chem. Phys. 121, 1676 (2004).
[73] P. A. J. Sherratt, D. V. Shalashilin, and M. S. Child, Chem. Phys.

322, 127 (2006).
[74] S. Habershon, J. Chem. Phys. 136, 054109 (2012).
[75] M. A. C. Saller and S. Habershon, J. Chem. Theory Comput.

13, 3085 (2017).
[76] J. P. Alborzpour, D. P. Tew, and S. Habershon, J. Chem. Phys.

145, 174112 (2016).
[77] T. Murakami and T. J. Frankcombe, J. Chem. Phys. 149, 134113

(2018).
[78] J. A. Green, A. Grigolo, M. Ronto, and D. V. Shalashilin, J.

Chem. Phys. 144, 024111 (2016).
[79] J. A. Green and D. V. Shalashilin, Chem. Phys. Lett. 641, 173

(2015).
[80] A. I. e. a. Streltsov, The Multiconfigurational Time-Dependent

Hartree for Bosons Package, http://mctdhb.org.
[81] D. V. Shalashilin, M. S. Child, and D. C. Clary, J. Chem. Phys.

120, 5608 (2004).
[82] K. Sakmann, A. I. Streltsov, O. E. Alon, and L. S. Cederbaum,

Phys. Rev. A 89, 023602 (2014).
[83] A. Grigolo, T. F. Viscondi, and M. A. M. de Aguiar, J. Chem.

Phys. 144, 094106 (2016).
[84] D. V. Shalashilin, J. Chem. Phys. 148, 194109 (2018).
[85] O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, J. Chem. Phys.

127, 154103 (2007).
[86] L. Cao, V. Bolsinger, S. I. Mistakidis, G. M. Koutentakis, S.

Krönke, J. M. Schurer, and P. Schmelcher, J. Chem. Phys. 147,
044106 (2017).

[87] J. A. Green and D. V. Shalashilin, Data associated with “Sim-
ulation of the Quantum Dynamics of Indistinguishable Bosons
with the Method of Coupled Coherent States”, University of
Leeds, https://doi.org/10.5518/595 (2019).

[88] M. Edwards, R. J. Dodd, C. W. Clark, and K. Burnett, J. Res.
Natl. Inst. Stand. Technol. 101, 553 (1996).

013607-15

https://doi.org/10.1103/PhysRevA.95.013617
https://doi.org/10.1103/PhysRevA.95.013617
https://doi.org/10.1103/PhysRevA.95.013617
https://doi.org/10.1103/PhysRevA.95.013617
https://doi.org/10.1103/PhysRevA.95.053610
https://doi.org/10.1103/PhysRevA.95.053610
https://doi.org/10.1103/PhysRevA.95.053610
https://doi.org/10.1103/PhysRevA.95.053610
https://doi.org/10.1016/j.chemphys.2017.11.022
https://doi.org/10.1016/j.chemphys.2017.11.022
https://doi.org/10.1016/j.chemphys.2017.11.022
https://doi.org/10.1016/j.chemphys.2017.11.022
https://doi.org/10.1088/1361-6455/aae57a
https://doi.org/10.1088/1361-6455/aae57a
https://doi.org/10.1088/1361-6455/aae57a
https://doi.org/10.1088/1361-6455/aae57a
https://doi.org/10.1016/0009-2614(90)87014-I
https://doi.org/10.1016/0009-2614(90)87014-I
https://doi.org/10.1016/0009-2614(90)87014-I
https://doi.org/10.1016/0009-2614(90)87014-I
https://doi.org/10.1063/1.1580111
https://doi.org/10.1063/1.1580111
https://doi.org/10.1063/1.1580111
https://doi.org/10.1063/1.1580111
https://doi.org/10.1063/1.2902982
https://doi.org/10.1063/1.2902982
https://doi.org/10.1063/1.2902982
https://doi.org/10.1063/1.2902982
https://doi.org/10.1063/1.1322075
https://doi.org/10.1063/1.1322075
https://doi.org/10.1063/1.1322075
https://doi.org/10.1063/1.1322075
https://doi.org/10.1016/j.chemphys.2004.06.013
https://doi.org/10.1016/j.chemphys.2004.06.013
https://doi.org/10.1016/j.chemphys.2004.06.013
https://doi.org/10.1016/j.chemphys.2004.06.013
https://doi.org/10.1063/1.1584663
https://doi.org/10.1063/1.1584663
https://doi.org/10.1063/1.1584663
https://doi.org/10.1063/1.1584663
https://doi.org/10.1063/1.2828509
https://doi.org/10.1063/1.2828509
https://doi.org/10.1063/1.2828509
https://doi.org/10.1063/1.2828509
https://doi.org/10.1103/PhysRevA.89.052112
https://doi.org/10.1103/PhysRevA.89.052112
https://doi.org/10.1103/PhysRevA.89.052112
https://doi.org/10.1103/PhysRevA.89.052112
https://doi.org/10.1088/1751-8113/49/16/165303
https://doi.org/10.1088/1751-8113/49/16/165303
https://doi.org/10.1088/1751-8113/49/16/165303
https://doi.org/10.1088/1751-8113/49/16/165303
https://doi.org/10.1063/1.1531997
https://doi.org/10.1063/1.1531997
https://doi.org/10.1063/1.1531997
https://doi.org/10.1063/1.1531997
https://doi.org/10.1063/1.1776111
https://doi.org/10.1063/1.1776111
https://doi.org/10.1063/1.1776111
https://doi.org/10.1063/1.1776111
https://doi.org/10.1103/PhysRevLett.89.190404
https://doi.org/10.1103/PhysRevLett.89.190404
https://doi.org/10.1103/PhysRevLett.89.190404
https://doi.org/10.1103/PhysRevLett.89.190404
https://doi.org/10.1016/j.physrep.2012.07.005
https://doi.org/10.1016/j.physrep.2012.07.005
https://doi.org/10.1016/j.physrep.2012.07.005
https://doi.org/10.1016/j.physrep.2012.07.005
https://doi.org/10.1038/nphys962
https://doi.org/10.1038/nphys962
https://doi.org/10.1038/nphys962
https://doi.org/10.1038/nphys962
https://doi.org/10.1103/PhysRevA.76.011605
https://doi.org/10.1103/PhysRevA.76.011605
https://doi.org/10.1103/PhysRevA.76.011605
https://doi.org/10.1103/PhysRevA.76.011605
https://doi.org/10.1038/415039a
https://doi.org/10.1038/415039a
https://doi.org/10.1038/415039a
https://doi.org/10.1038/415039a
https://doi.org/10.1016/j.aop.2004.09.010
https://doi.org/10.1016/j.aop.2004.09.010
https://doi.org/10.1016/j.aop.2004.09.010
https://doi.org/10.1016/j.aop.2004.09.010
https://doi.org/10.1007/s00340-005-2059-z
https://doi.org/10.1007/s00340-005-2059-z
https://doi.org/10.1007/s00340-005-2059-z
https://doi.org/10.1007/s00340-005-2059-z
https://doi.org/10.1088/0953-4075/40/10/R01
https://doi.org/10.1088/0953-4075/40/10/R01
https://doi.org/10.1088/0953-4075/40/10/R01
https://doi.org/10.1088/0953-4075/40/10/R01
https://doi.org/10.1063/1.1766298
https://doi.org/10.1063/1.1766298
https://doi.org/10.1063/1.1766298
https://doi.org/10.1063/1.1766298
https://doi.org/10.1016/j.chemphys.2005.06.050
https://doi.org/10.1016/j.chemphys.2005.06.050
https://doi.org/10.1016/j.chemphys.2005.06.050
https://doi.org/10.1016/j.chemphys.2005.06.050
https://doi.org/10.1063/1.3681167
https://doi.org/10.1063/1.3681167
https://doi.org/10.1063/1.3681167
https://doi.org/10.1063/1.3681167
https://doi.org/10.1021/acs.jctc.7b00021
https://doi.org/10.1021/acs.jctc.7b00021
https://doi.org/10.1021/acs.jctc.7b00021
https://doi.org/10.1021/acs.jctc.7b00021
https://doi.org/10.1063/1.4964902
https://doi.org/10.1063/1.4964902
https://doi.org/10.1063/1.4964902
https://doi.org/10.1063/1.4964902
https://doi.org/10.1063/1.5046643
https://doi.org/10.1063/1.5046643
https://doi.org/10.1063/1.5046643
https://doi.org/10.1063/1.5046643
https://doi.org/10.1063/1.4939205
https://doi.org/10.1063/1.4939205
https://doi.org/10.1063/1.4939205
https://doi.org/10.1063/1.4939205
https://doi.org/10.1016/j.cplett.2015.10.073
https://doi.org/10.1016/j.cplett.2015.10.073
https://doi.org/10.1016/j.cplett.2015.10.073
https://doi.org/10.1016/j.cplett.2015.10.073
http://mctdhb.org
https://doi.org/10.1063/1.1650299
https://doi.org/10.1063/1.1650299
https://doi.org/10.1063/1.1650299
https://doi.org/10.1063/1.1650299
https://doi.org/10.1103/PhysRevA.89.023602
https://doi.org/10.1103/PhysRevA.89.023602
https://doi.org/10.1103/PhysRevA.89.023602
https://doi.org/10.1103/PhysRevA.89.023602
https://doi.org/10.1063/1.4942926
https://doi.org/10.1063/1.4942926
https://doi.org/10.1063/1.4942926
https://doi.org/10.1063/1.4942926
https://doi.org/10.1063/1.5023209
https://doi.org/10.1063/1.5023209
https://doi.org/10.1063/1.5023209
https://doi.org/10.1063/1.5023209
https://doi.org/10.1063/1.2771159
https://doi.org/10.1063/1.2771159
https://doi.org/10.1063/1.2771159
https://doi.org/10.1063/1.2771159
https://doi.org/10.1063/1.4993512
https://doi.org/10.1063/1.4993512
https://doi.org/10.1063/1.4993512
https://doi.org/10.1063/1.4993512
https://doi.org/10.5518/595
https://doi.org/10.6028/jres.101.055
https://doi.org/10.6028/jres.101.055
https://doi.org/10.6028/jres.101.055
https://doi.org/10.6028/jres.101.055

