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The subject of bianyon interference with ultracold atoms is introduced through theoretical investigations
pertaining to the second-order momentum correlation maps of two anyons (built upon spinless and spin-1/2
bosonic as well as spin-1/2 fermionic ultracold atoms) trapped in a double-well optical trap. The two-particle
system is modeled according to the recently proposed protocols for emulating an anyonic Hubbard Hamiltonian
in ultracold-atom one-dimensional lattices. Because the second-order momentum correlations are mirrored in
the time-of-flight second-order interference patterns in space, our findings provide impetus for time-of-flight
experimental protocols for detecting anyonic statistics via interferometry measurements of massive particles that
broaden the scope of the biphoton interferometry of quantum optics.
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I. INTRODUCTION

Emulations of condensed-matter many-body physics [1,2]
and of optical biphoton interferometry [3–11] with ultracold
atoms in optical traps and lattices, as well as quantum simu-
lations of many-body phenomena using nonlinear-optics plat-
forms (e.g., coupled resonator arrays or waveguide lattices)
[12–19] constitute complimentary branches of research that
have witnessed explosive growth in the past two decades.
A great promise of these emerging research branches rests
with their potential for achieving actual simulations of exotic
synthetic particles that have been theoretically proposed in
many-body and elementary-particle physics but have been
problematic to realize within the experimental framework
of traditional condensed-matter and high-energy subfields of
physics.

In this context, the properties and probable detection of
synthetic particles, proposed initially in two dimensions and
referred to as anyons [20,21], that obey nontrivial particle-
exchange statistics interpolating between the familiar bosonic
and the fermionic ones, continues to be an intensely active
field of theoretical and experimental research across several
disciplines of physics; see, e.g., in the context of quantum
computing [22,23], current-current correlations of fractional-
quantum-Hall anyons in high magnetic fields [24], noninter-
acting ultracold anyonic atoms in harmonic traps [25], and
quasiholes in a fractional quantum Hall state of ultracold
atoms [26]. We also note theoretical [16,17] and experimental
[18] studies for simulating anyonic NOON states with photons
in waveguide lattices.

Recently, going beyond the case of two-dimensional
space, a propicious direction for the simulation of a new
class of massive anyons opened when several experimental
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protocols (based on a fractional Jordan-Wigner transforma-
tion) were advanced [27–29], showing that ultracold neu-
tral atoms trapped in one-dimensional (1D) optical lattices
can offer an appropriate substrate for the implementation of
anyonic statistics. In particular, an anyonic Hubbard model
(related to spinless bosons) was formulated and, in analogy
with condensed-matter themes, the influence of 1D anyonic
statistics on ground-state phase transitions in extended optical
lattices was explicitly studied in these [27–29] and subsequent
publications [30–32]. Current interest in 1D anyonic Hubbard
models remains expansive [33–36].

Here, taking fully into account the interparticle interac-
tions, we introduce the subject of 1D anyonic matter-wave
two-particle interferometry with ultracold atoms and establish
analogies with the quantum-optics biphoton [37–39] (two-
photon coincidence) interferometry of massless and nonin-
teracting photons. To this effect, in conforming with recent
relevant experiments (which employ fermionic 6Li atoms
[40–42]), we present theoretical investigations of the second-
order momentum correlation maps of three variants of a pair
of anyons [built upon: (i) spinless, (ii) spin-1/2 bosonic, as
well as (iii) spin-1/2 fermionic, ultracold atoms] trapped in
an isolated optical-tweezer-created double well, serving as a
twin-particle source for the subsequent time-of-flight (TOF)
measurements.

Going beyond the earlier spinless-bosons formalism
[27–29], this is achieved by our formulating anyonic Hub-
bard Hamiltonians that account for the spin-1/2 cases (ii)
and (iii) above in addition to the spinless case (i). Because
the second-order momentum correlations are mirrored in the
TOF spectral maps in space [10,43], our findings provide a
blueprint for TOF experimental protocols for probing anyonic
statistics via second-order interferometry of massive particles
that broaden the scope of the biphoton [37–39] (referred to
also as fourth-order) interferometry of quantum optics.

For experimental determinations of the above-noted
second-order momentum correlations maps via TOF
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FIG. 1. Anyonic-Hubbard-dimer eigenenergies for all three
cases of: (i) spinless bosonic-based anyons, (ii) spin-1/2 bosonic-
based anyons, and (iii) spin-1/2 fermionic-based anyons given by
Eq. (13) plus E4 = 0. The limiting � forms for the associated wave
functions at U → ±∞ are also denoted.

higher-order spectroscopy of trapped ultracold atoms
(specifically of two fermionic 6Li atoms isolated in a
double-well optical-tweezer trap), see Refs. [41,42]. In
these experiments, after the tweezers’ trapping is turned off,
the short-range interactions have a negligible effect, and
the flight of the two atoms is ballistic up to the far field
where the coincidence measurement is performed utilizing a
high-resolution camera. To be noted is the fact that the in situ
preparation of preexpansion few-atom states is deterministic,
i.e., with high certainty concerning the number N of the
few trapped atoms. Such deterministically prepared states
correspond to pure eigenstates of the trapped few-atom
system [40].

To put the present paper in the context of higher-order
(second-order or higher) ultracold atom interferometry, we
stress recent advances in the experimental processing of
data and control and manipulation of ultracold atoms in
colliding free-space beams or clouds (including free fall
under the cloud’s gravity) [6,44–48] as well as in optical-
lattice traps and isolated few-tweezer configurations (two
or three atoms, in situ or TOF) [3–5,40,41]. Such devel-
opments have motivated a growing number of both exper-
imental [3–6,40–42,44,45,47,48] and theoretical [8–11,49]
studies concerning the analogies between second- or higher-
order quantum-optics interference [37–39] and matter-wave
spectroscopy. Our paper goes beyond the earlier established
subfield of first-order atom interferometry [50–53], akin to
Young’s one-photon which-way double-slit interference.

One of the findings of our paper is that the anyonic sig-
nature in the two-particle interferometry maps reflects the ap-
pearance of a generalized NOON state as a major component
in the entangled wave function of the ultracold atoms trapped
in the double well. This NOON-state component is of the
form (|2, 0〉 ± eiθ |0, 2〉)/

√
2, where θ is the statistical angle

determining the commutation (anticommutation) relations for
the anyonic exchange (see below).

The plan of the paper is as follows: In Sec. II, we give
a detailed discussion of the theoretical methodologies devel-
oped and used in this paper. This includes a discussion of

FIG. 2. Second-order momentum correlation maps exhibiting
signatures of anyonic statistics (i.e., dependence on the statistical
angle θ ) for two interacting anyonic ultracold atoms trapped in a dou-
ble well. Columns C1–C3: case of the ground state (with energy E1)
[see Eq. (17)], dependent on both the interaction U and the statistical
angle θ . Column C1: strong attractive interparticle interaction U =
−20. Column C2: vanishing interparticle interaction U = 0. Column
C3: strong repulsive interparticle interaction U = 20. Column C4:
case of the excited state with energy E2 [see Eq. (18)], dependent on
the statistical angle θ but independent of the interaction U . Column
C5, top frame: case of the excited state with energy E4 = 0 [see
Eq. (20)], being independent from both θ and U ; the wave function of
this state is antisymmetric under the exchange of k1 and k2. Column
C5, bottom frame: The functions K(θ ) = πGS

1 (0, 0, θ )/(4s2) that
correspond to Figs. 2(C1) (red solid line), 2(C2) (green dashed line),
and 2(C3) (blue dashed-dotted line) for the ground state. Top row:
θ = 0 (pure bosons or fermions). Middle row: θ = π/2 (intermedi-
ate anyons). Bottom row: θ = π (hard bosons or pseudofermions).
The terms hard bosons and pseudofermions reflect the fact that the
on-site commutation (anticommutaion) relations do not change as a
function of θ , i.e., the on-site exclusion-principle behavior does not
transmute from bosonic to fermionic and vice versa. The remaining
parameters are as follows: interwell distance 2d = 2 μm and width
of single-particle orbital s = 0.2 μm. s governs the decay of the
interference pattern away from the center of the map, whereas 1/d
controls the spacing between the fringes. k1 and k2 in units of 1/μm.
The dashed white lines are a guide to the eye. Blue represents the zero
of the color scale. The white color corresponds to the maximum value
of G(k1, k2, θ ). (Blue is rendered into black in the printed version.)

anyonic exchange, the fractional Jordan-Wigner transforma-
tion, and the density-dependent 1D anyonic Hubbard model
Hamiltonian for the above-noted three cases, i.e., (i) spinless,
(ii) spin-1/2 bosonic, as well as (iii) spin-1/2 fermionic
ultracold atoms trapped in an isolated optical-tweezer-created
double well. The analytic eigenvalues associated with the
four solutions of the three Hubbard Hamiltonians are also
displayed graphically (see Fig. 1). In Sec. III, we give ana-
lytical results and a graphical display (see Fig. 2) for second-
order momentum correlation maps exhibiting signatures of
anyonic statistics, that is dependence on the statistical angle,
predicted from our model for the ground state and two of
the excited states of a system comprising two interacting
anyonic ultracold atoms trapped in a double well. The three
above-noted cases (i)–(iii) are discussed under conditions of
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vanishing interparticle interaction as well as for strongly
attractive and repulsive interactions. We briefly summarize
in Sec. IV. Detailed analytical results are given in the ap-
pendices. In Appendix A, we describe the solution for two
bosonic-based spinless anyons, and, in Appendix B, the solu-
tion for two spin-1/2 anyons (whether bosonic or fermionic
based) is given. The analytical results for second-order mo-
mentum correlation maps are derived in Appendix C, and, in
Appendix D, we display (in Fig. 3) plots of the correlation
maps for the excited state with energy E3, complementing
those shown in Fig. 2 (in Sec. III) where the correlation maps
for E1, E2, and E4 were shown.

II. THEORY PRELIMINARIES

A. Anyonic exchange

For spin-1/2 (i.e., two-flavor) anyons, the annihilation and
creation operators are denoted as aj,σ and a†

j,σ where the index
j = 1, 2 (or, equivalently, j = L, R) denotes the left-right well
(corresponding Hubbard-model site). These operators obey
anyonic commutation or anticommutation relations,

aj,σ a†
k,σ ′ ∓ e−iθ sgn( j−k)a†

k,σ ′a j,σ = δ j,kδσ,σ ′ ,

a j,σ ak,σ ′ ∓ eiθ sgn( j−k)ak,σ ′a j,σ = 0. (1)

The upper sign (commutation) applies for bosonic-based
anyons; the lower sign (anticommutation) for fermionic-based
anyons. sgn( j − k) = 1 for j > k, sgn( j − k) = −1 for j <

k, and sgn( j − k) = 0 for j = k. For bosonic-based spinless
anyons, one drops the spin index σ . On the same site, the two
particles retain the usual bosonic or fermionic commutation
relations.

B. Case (i): Density-dependent Hubbard Hamiltonian
for bosonic-based spinless anyons

Adapting the many-site case of Refs. [27–29], a two-
site anyonic Hubbard Hamiltonian for bosonic-based spinless
anyons is written as follows:

Hspinless = −J (a†
LaR + a†

RaL ) + U

2

∑
j=L,R

n j (n j − 1), (2)

where J is the tunneling parameter, U is the on-site interac-
tion parameter (repulsive or attractive), and nj = a†

j a j is the
number operator.

Using a fractional Jordan-Wigner transformation [27],

aL = bL and aR = bR exp(−iθnL ), (3)

where b j describes a usual bosonic operator and n j = b†
jb j =

a†
j a j , the anyonic Hamiltonian in Eq. (2) is mapped onto

a bosonic Hubbard Hamiltonian with occupation-dependent
hopping from right to left, i.e.,

HB
spinless = −J (b†

LbRe−iθnL + H.c.) + U

2

R∑
j=L

n j (n j − 1). (4)

For two particles, if the left (target) site is unoccupied, the
tunneling parameter is simply −J . If it is occupied by one
boson, this parameter becomes −Je−iθ .

C. Case (ii): Density-dependent Hubbard Hamiltonian
for bosonic-based spin-1/2 anyons

In this case, we introduce a two-site anyonic Hubbard
Hamiltonian for bosonic-based spin-1/2 anyons as follows:

HB
spin-1/2 = −J

∑
σ

(a†
L,σ aR,σ + H.c.) + U

2

∑
j=L,R

Nj (Nj − 1),

(5)

where Nj = ∑
σ a†

j,σ a j,σ with σ denoting the up (↑) or down
(↓) spin; Nj is the number operator at each site j including the
spin degree of freedom.

Using a modified fractional Jordan-Wigner transformation
[54],

aL,σ = bL,σ and aR,σ = bR,σ exp(−iθNL ), (6)

where b j,σ describes a usual spin-1/2 bosonic operator and
Nj = ∑

σ b†
j,σ b j,σ = ∑

σ a†
j,σ a j,σ , the anyonic Hamiltonian in

Eq. (5) is mapped onto a bosonic Hubbard Hamiltonian with
occupation-dependent hopping from right to left, i.e.,

HB
spin-1/2 = −J

∑
σ

(b†
L,σ bR,σ e−iθNL + H.c.)

+ U

2

∑
j=L,R

Nj (Nj − 1). (7)

For two particles, if the left (target) site is unoccupied, the
tunneling parameter is simply −J . If it is occupied by one
boson, this parameter becomes −Je−iθ .

D. Case (iii): Density-dependent Hubbard Hamiltonian
for fermionic-based spin-1/2 anyons

In this case, we introduce a two-site anyonic Hubbard
Hamiltonian for fermionic-based spin-1/2 anyons as follows:

HF
spin-1/2 =−J

∑
σ

(
aF†

L,σ aF
R,σ +H.c.

) + U
∑
j=L,R

nF
j,↑nF

j,↓, (8)

where nF
j,σ = aF†

j,σ aF
j,σ with σ denoting the up (↑) or down (↓)

spin.
Using a modified fractional Jordan-Wigner transformation

[54],

aF
L,σ = fL,σ and aF

R,σ = fR,σ exp
(−iθNF

L

)
, (9)

where f j,σ describes a usual spin-1/2 fermionic operator and
NF

j = ∑
σ f †

j,σ f j,σ = ∑
σ aF†

j,σ aF
j,σ , the anyonic Hamiltonian

in Eq. (8) is mapped onto a fermionic Hubbard Hamiltonian
with occupation-dependent hopping from right to left, i.e.,

HF
spin-1/2 = −J

∑
σ

( f †
L,σ fR,σ e−iθNF

L + H.c.)

+U
∑
j=L,R

nF
j,↑nF

j,↓. (10)

For two particles, if the left (target) site in unoccupied, the
tunneling parameter is simply −J . If it is occupied by one
fermion, this parameter becomes −Je−iθ .

013605-3



CONSTANTINE YANNOULEAS AND UZI LANDMAN PHYSICAL REVIEW A 100, 013605 (2019)

E. Matrix representation of Hamiltonians

In order to solve the two-site two-particle problem speci-
fied by the Hubbard-type Hamiltonians in Eqs. (4), (7), and
(10), which have a density-dependent tunneling term, one
needs to construct the corresponding matrix Hamiltonians.
These matrices and the corresponding eigenenergies are pre-
sented below because for a finite number of particles they
offer a better grasp of the role of the statistical angle θ . The
corresponding eigenvectors and other details of the derivation
of the associated second-order momentum correlations and
interferometry maps are given in Appendices A–C. When θ =
0, these Hamiltonian matrices reduce to the pure bosonic or
fermionic two-trapped-particle interferometry problems; see
Refs. [8–10] for the pure fermionic interferometry case.

For spinless bosons, using the bosonic basis kets,

|2, 0〉 , |1, 1〉 , |0, 2〉 , (11)

where |nL, nR〉 (with nL + nR = 2) corresponds to a permanent
with nL (nR) particles in the L (R) site, one derives the fol-
lowing 3×3 matrix Hamiltonian associated with the anyonic
Hubbard Hamiltonian in Eq. (4):

H =
⎛
⎝

U −√
2e−iθ J 0

−√
2eiθ J 0 −√

2J
0 −√

2J U

⎞
⎠. (12)

The three eigenenergies of the matrix (12) are given by

E1 = J

2
(U −

√
U2 + 16),

E2 = JU = U, (13)

E3 = J

2
(U +

√
U2 + 16),

where U = U/J; they are exact results and independent of
the statistical angle θ , unlike the mean-field energies [27].
In contrast, the corresponding three normalized eigenvectors
(see Appendix A) do depend on the statistical angle θ . As
explicitly shown below, this dependence results in tunable
anyonic signatures that can be detected with controlled ex-
perimental protocols.

For the two spin-1/2 cases (whether for two bosons or
fermions), we seek solutions for states with Sz = 0 (vanishing
total-spin projection [55]) . In this case, the natural basis set is
given by the four kets (note the choice of the ordering of these
kets),

|↑↓, 0〉 , |↓,↑〉 , |↑,↓〉 , |0,↑↓〉 . (14)

In first quantization, these kets correspond to permanents for
bosons and to determinants for fermions. Employing this ket

basis, one can derive the following 4×4 matrix Hamiltoni-
ans associated with the spin-1/2 Hubbard Hamiltonians in
Eqs. (7) and (10),

H =

⎛
⎜⎜⎝

U ∓e−iθ J −e−iθ J 0
∓eiθ J 0 0 ∓J
−eiθ J 0 0 −J

0 ∓J −J U

⎞
⎟⎟⎠, (15)

where the upper minus sign in ∓ applies to bosons and the
bottom plus sign applies to fermions.

The four eigenenergies of the two matrices (15) are given
by the three quantities Ei, i = 1, . . . , 3 in Eq. (13) and an
additional vanishing eigenenergy E4 = 0; they are plotted in
Fig. 1, and they are are independent of the statistical angle
θ and the ∓ alternation in sign. In contrast, as was also the
case of the spinless bosons, the corresponding four normalized
eigenvectors do depend on the statistical angle θ ; they are
given in Appendix B.

III. RESULTS: SECOND-ORDER MOMENTUM
CORRELATION MAPS

The spatial far-field interference patterns map linearly
onto the second-order momentum correlations characteriz-
ing the pure state of the atoms in the source (that is,
in the optical-tweezers-generated double-well confinement).
To generate the second-order momentum correlation maps
Gi(k1, k2, θ ), i = 1, . . . , 4, one needs to transit to the first-
quantization formalism, which uses position- or momentum-
dependent site-localized orbitals, ψL and ψR. To this effect,
each pure bosonic or fermionic particle in either of the two
wells is represented by a displaced Gaussian function [8–10],
which, equivalently in momentum space, is given by

ψ j (k) = 21/4√s

π1/4
e−k2s2

eid j k, (16)

where again the index j stands for L (left) or R (right); the
separation between the two wells is 2d = dR − dL. The value
of the single-particle spatial-extent parameter s as well as the
separation 2d between the wells are taken in the numerical
illustrations (see Fig. 2) to have values (0.2 and 2 μm, respec-
tively) similar to those used in experimental investigations of
1D trapped ultracold atoms [41].

The details of the derivation are given in Appendix C. Here,
we list the final analytical formulas for the Gi(k1, k2, θ )’s,
which are independent of the total spin (i.e., whether the state
is spinless or a spin-singlet or a spin-triplet state) and, thus, are
the same for all three cases (i)–(iii). For the ground state with
energy E1, one finds the following second-order momentum
correlations:

GS
1 (k1, k2, θ ) = 2s2e−2s2(k2

1+k2
2 )

π
√
U2 + 16

{R(U ) cos2[d (k1 − k2)] + R(−U ) cos2[d (k1 + k2) + θ/2]

+ 8 cos[d (k1 − k2)] cos[d (k1 + k2) + θ/2] cos(θ/2)}, (17)

where R(U ) = √
U2 + 16 + U . The superscript S here and in Eqs. (18) and (19) below denotes that the momentum part of the

corresponding two-particle wave functions is symmetric under the exchange of the two momenta k1 and k2; see Appendix C.
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For the excited state with energy E2, one finds the following second-order momentum correlations:

GS
2 (k1, k2, θ ) = 4s2

π
e−2s2(k2

1+k2
2 ) sin2[d (k1 + k2) + θ/2)]. (18)

For the excited state with energy E3, one finds the following second-order momentum correlations:

GS
3 (k1, k2, θ ) = 2s2e−2s2(k2

1+k2
2 )

π
√
U2 + 16

{R(−U ) cos2[d (k1 − k2)] + R(U ) cos2[d (k1 + k2) + θ/2]

− 8 cos[d (k1 − k2)] cos[d (k1 + k2) + θ/2] cos(θ/2)}, (19)

Finally, for the excited state with energy E4 [only for the
two spin-1/2 cases (ii) and (iii)], one finds the following
second-order momentum correlations:

GA
4 (k1, k2, θ ) = 4s2

π
e−2s2(k2

1+k2
2 ) sin2[d (k1 − k2)]. (20)

The superscript A here denotes that the momentum part of the
corresponding two-particle wave function is antisymmetric
under the exchange of the two momenta k1 and k2; see
Appendix C.

The Gi(k1, k2, θ ) expressions above exhibit the following
properties: (1) The first three Gi’s (i = 1–3) are associated
with two-particle eigenstates whose momentum parts are sym-
metric under the exchange of the two momenta k1 and k2.
Consequently, the underlying nodal structure does not allow a
zero valley along the main diagonal. These three cases depend
on the statistical angle θ . Thus, their time-of-flight measure-
ment will provide a signature for anyonic statistics. (2) The
statistical angle θ appears only in conjunction with cosine
or sine terms containing the sum k1 + k2 in their arguments.
Cosine or sine terms containing only the difference k1 − k2 of
the two momenta are independent of θ . This is a reflection
of the fact that the vector solutions of the anyonic matrix
Hamiltonians [see Eqs. (A4) and (B3)] contain the phase eiθ

only in the NOON-state component [16–18] [of the form
(|2, 0〉 ± eiθ |0, 2〉)/

√
2 or |↑↓, 0〉 ± eiθ |0,↑↓〉, see Appen-

dices A and B], and not in the Einstein-Podolski-Rosen-state
component [56] (of the form |1, 1〉 or |↓,↑〉 ± |↑,↓〉). (4)
Only the fourth one (i = 4, corresponding to the constant
energy E4 = 0) is associated with a two-particle eigenstate
whose momentum part is antisymmetric under the exchange
of k1 and k2; consequently, the underlying nodal structure
enforces a zero valley along the main diagonal. This state,
which corresponds to two indistinguishable fermions (e.g.,
two 6Li atoms in a triplet excited state) or bosons, is devoid of
anyonic statistics.

Figure 2 displays three cases (corresponding to the ground
state and the two excited states with energies E2 and E4) of
second-order momentum correlation maps that illustrate the
above properties. Keeping with property (2) above, the vari-
ation of the interference patterns as a function of θ are more
intense the larger the U -dependent contribution of the k1 +
k2 terms in the total G (the k1 + k2 contributions produce
interference fringes parallel to the antidiagonal). We note the
alternation from a ridge to a valley along the antidiagonal
in Fig. 2(C1) (ground state at attractive U = −20) and vice
versa in Fig. 2(C4) (E2 state independent of U ). For the

ground state in the absence of interactions [Fig. 2(C2)], visible
modifications (as a function of θ ) of a plaid-type theme persist
in the interference patterns. For the case when the k1 + k2

terms have a small (or vanishing) contribution, the variations
of the maps are minimal [see Fig. 2(C3)] [or are absent,
see Fig. 2(C5), top frame]; in this case, the dominance of
the θ -independent k1 − k2 contributing terms is reflected in
fringes parallel to the main diagonal. The bottom frame in the
C5 column offers a complementary view of the θ dependence
by plotting the curves K(θ ) = πGS

1 (k1 = 0, k2 = 0, θ )/(4s2)
that correspond to Figs. 2(C1), 2(C2), and 2(C3) for the
ground state.

For completeness, the case of the excited state with energy
E3 is presented in Appendix D; see Fig. 3.

IV. SUMMARY

To summarize, the paper introduced the subject of matter-
wave interferometry of massive and interacting anyons that
can be realized with trapped 1D ultracold atoms in optical
lattices. Furthermore, it analyzed the pertinent signatures in
the framework of time-of-flight experiments, and it estab-
lished analogies with the interferometry of massless and non-
interacting photonic anyons in waveguide lattices [16–18]. In
particular, for two ultra-cold-atom anyons in a double-well
confinement, this analogy is reflected in the fact that the
NOON-state component of the massive bianyon is also of the
form (|2, 0〉 ± eiθ |0, 2〉)/

√
2, where θ is the statistical angle

determining the commutation (anticommutation) relations for
the anyonic exchange.

ACKNOWLEDGMENTS

This work has been supported by a grant from the Air Force
Office of Scientic Research (AFOSR, USA) under Award
No. FA9550-15-1-0519. Calculations were carried out at the
GATECH Center for Computational Materials Science.

APPENDIX A: SOLUTION FOR TWO BOSONIC-BASED
SPINLESS ANYONS

Using the bosonic basis kets,

|2, 0〉 , |1, 1〉 , |0, 2〉 , (A1)

where |nL, nR〉 (with nL + nR = 2) corresponds to a permanent
with nL (nR) particles in the L (R) site, one derives the follow-
ing matrix Hamiltonian associated with the anyonic Hubbard
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Hamiltonian in Eq. (4):

H =
⎛
⎝

U −√
2e−iθ J 0

−√
2eiθ J 0 −√

2J
0 −√

2J U

⎞
⎠. (A2)

The three eigenenergies of the matrix (A2) are given by

E1 = J

2
(U −

√
U2 + 16),

E2 = JU = U, (A3)

E3 = J

2
(U +

√
U2 + 16),

where U = U/J . These eigenenergies are plotted in Fig. 1.
The corresponding three normalized eigenvectors are

V1 = {B(U )e−iθ /
√

2,A(U ), B(U )/
√

2}T ,

V2 = {e−iθ /
√

2, 0,−1/
√

2}T , (A4)

V3 = {E (U )e−iθ /
√

2,D(U ), E (U )/
√

2}T ,

where the coefficients A, B, D, and E are given by

A(U ) = U + √
U2 + 16√

2
√
U2 + U

√
U2 + 16 + 16

,

B(U ) = 4√
2
√
U2 + U

√
U2 + 16 + 16

,

D(U ) = −A(−U ),

E (U ) = B(−U ). (A5)

APPENDIX B: SOLUTION FOR TWO SPIN-1/2 ANYONS

We seek solutions for states with Sz = 0 (vanishing total
spin projection). In this case, the natural basis set is given by
the four kets (note the choice of the ordering of these kets),

|↑↓, 0〉 , |↓,↑〉 , |↑,↓〉 , |0,↑↓〉 . (B1)

In first quantization, these kets correspond to permanents
for bosons and to determinants for fermions. Employing this
basis, one can derive the following 4×4 matrix Hamiltoni-
ans associated with the spin-1/2 Hubbard Hamiltonians in
Eqs. (7) and (10),

H =

⎛
⎜⎜⎝

U ∓e−iθ J −e−iθ J 0
∓eiθ J 0 0 ∓J
−eiθ J 0 0 −J

0 ∓J −J U

⎞
⎟⎟⎠, (B2)

where the upper minus sign in ∓ applies for bosons and the
bottom plus sign applies for fermions.

The four eigenenergies of the matrices (B2) are given by
the quantities Ei, i = 1, . . . , 3 in Eq. (A3) and E4 = 0; they
are independent of the ∓ alternation in sign. The correspond-
ing four normalized eigenvectors are

V1 = {B(U )e−iθ /
√

2,±A(U )/
√

2,A(U )/
√

2,B(U )/
√

2}T ,

V2 = {e−iθ /
√

2, 0, 0,−1/
√

2}T ,

V3 = {E (U )e−iθ /
√

2,±D(U )/
√

2,D(U )/
√

2, E (U )/
√

2}T ,

V4 = {0, 1/
√

2,∓1/
√

2, 0}T , (B3)

where the upper sign (in ± or ∓) applies for bosons and the
bottom sign applies for fermions.

APPENDIX C: SECOND-ORDER MOMENTUM
CORRELATION MAPS

To generate the second-order momentum correlation
maps, one needs to transit from the ket notation to the
wave-function notation by employing the single-particle
momentum-dependent site-localized orbitals ψL(k) and ψR(k)
given in Eq. (16). Indeed, in the first representation, the kets
correspond to permanents for bosons or to determinants for
fermions made of the ψL(k) and ψR(k) orbitals.

One finds the following correspondence for spinless
anyons:

|1, 1〉 → �S1(k1, k2),

e−iθ |2, 0〉 − |0, 2〉 →
√

2�S2(k1, k2, θ ), (C1)

e−iθ |2, 0〉 + |0, 2〉 →
√

2�S3(k1, k2, θ ),

and

|↑,↓〉 ± |↓,↑〉 →
√

2�S1(k1, k2)X1,

e−iθ |↑↓, 0〉 − |0,↑↓〉 →
√

2�S2(k1, k2, θ )X2,

e−iθ |↑↓, 0〉 + |0,↑↓〉 →
√

2�S3(k1, k2, θ )X3,

|↑,↓〉 ∓ |↓,↑〉 →
√

2�A(k1, k2)X4 (C2)

for spin-1/2 anyons where the upper sign applies to bosonic-
based anyons and the bottom sign applies to fermionic-based
ones. Xi = χ (1, 0) for i = 1–3 and X4 = χ (0, 0) for bosons
and Xi = χ (0, 0), i = 1–3 and X4 = χ (1, 0) for fermions;
χ (0, 0) and χ (1, 0) are the singlet and triplet spin eigenfunc-
tions, respectively. The � functions are as follows:

�S1(k1, k2) = [ψL(k1)ψR(k2) + ψR(k1)ψL(k2)]/
√

2 = 2s√
π

e−s2(k2
1+k2

2 ) cos[d (k1 − k2)],

�S2(k1, k2, θ ) = [e−iθψL(k1)ψL(k2) − ψR(k1)ψR(k2)]/
√

2 = −i
2s√
π

e−s2(k2
1+k2

2 )e−iθ/2 sin[d (k1 + k2) + θ/2)],

�S3(k1, k2, θ ) = [e−iθψL(k1)ψL(k2) + ψR(k1)ψR(k2)]/
√

2 = 2s√
π

e−s2(k2
1+k2

2 )e−iθ/2 cos[d (k1 + k2) + θ/2)],

�A(k1, k2) = [ψL(k1)ψR(k2) − ψR(k1)ψL(k2)]/
√

2 = −i
2s√
π

e−s2(k2
1+k2

2 ) sin[d (k1 − k2)]. (C3)
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For the ground state, with energy E1, one finds the following second-order momentum correlations:

GS
1 (k1, k2, θ ) = |A(U )�S1(k1, k2) + B(U )�S3(k1, k2, θ )|2

= 4s2

π
e−2s2(k2

1+k2
2 ){A(U )2 cos2[d (k1 − k2)] + B(U )2 cos2[d (k1 + k2) + θ/2]

+ 2A(U )B(U ) cos[d (k1 − k2)] cos[d (k1 + k2) + θ/2] cos(θ/2)}. (C4)

For the excited state with energy E2, one finds the following second-order momentum correlations:

GS
2 (k1, k2, θ ) = |�S2(k1, k2, θ )|2 = 4s2

π
e−2s2(k2

1+k2
2 ) sin2[d (k1 + k2) + θ/2)]. (C5)

For the excited state with energy E3, one finds the following second-order momentum correlations:

GS
3 (k1, k2, θ ) = | − A(−U )�S1(k1, k2) + B(−U )�S3(k1, k2, θ )|2

= 4s2

π
e−2s2(k2

1+k2
2 )[A(−U )2 cos2[d (k1 − k2)] + B(−U )2 cos2[d (k1 + k2) + θ/2]

− 2A(−U )B(−U ) cos[d (k1 − k2)] cos[d (k1 + k2) + θ/2] cos(θ/2)]. (C6)

Finally, for the excited state with energy E4 = 0, one finds
the following second-order momentum correlations:

GA
4 (k1, k2, θ ) = |�A(k1, k2)|2

= 4s2

π
e−2s2(k2

1+k2
2 ) sin2[d (k1 − k2)]. (C7)

With regard to the derivation of the expressions in
Eqs. (C4)–(C7), we note that, generally, the second-order
(two-particle) space density ρ(x1, x′

1, x2, x′
2) for a N-particle

system is defined as an integral over the product of the many-
body wave function 
(x1, x2, . . . , xN ) and its complex conju-
gate 
∗(x′

1, x′
2, . . . , xN ), taken over the coordinates x3, . . . , xN

of N − 2 particles. To obtain the second-order space corre-
lation function G(x1, x2), one sets x′

1 = x1 and x′
2 = x2. The

second-order momentum correlation function G(k1, k2) is ob-
tained via a Fourier transform (from real space to momentum
space) of the two-particle space density ρ(x1, x′

1, x2, x′
2) [8,9].

In the case of N = 2, the above general definition reduces to a
simple expression for the two-particle correlation functions as
the modulus square of the two-particle wave function itself;
this applies in both cases, whether the two-particle wave
function is written in space or in momentum coordinates. This
simpler second approach was followed here for deriving above
the second-order momentum correlations for two anyons.

APPENDIX D: PLOTS OF CORRELATION MAPS FOR THE
EXCITED STATE WITH ENERGY E3

Figure 3 displays the second-order correlation maps for the
excited state with energy E3. It complements Fig. 2 where
the corresponding maps for the three eigenstates with energies
E1, E2, and E4 = 0 were displayed. For a description of these
states as a function of the interparticle on-site interaction U ,
see Fig. 1.

=0
=

/2
200-20

=

4

0

-4

k1

-4 0 4
k2

FIG. 3. Second-order momentum correlations of the excited state
with energy E3 of two interacting anyonic ultracold atoms trapped
in a double well [see Eq. (19)], demonstrating dependence on
the statistical angle θ . Top row: θ = 0 (pure bosons or fermions).
Middle row: θ = π/2 (intermediate anyons). Bottom row: θ = π

(hard bosons or pseudofermions). Column C1: attractive interparticle
interaction U = −20. Column C2: vanishing interparticle interaction
U = 0. Column C3: repulsive interparticle interaction U = 20. The
remaining parameters are as follows: interwell distance 2d = 2 μm
and the width of the single-particle orbital s = 0.2 μm. k1 and k2 are
in units of 1/μm. The dashed white lines are a guide to the eye. Blue
represents the zero of the color scale. The white color corresponds to
the maximum value of GS

3 (k1, k2, θ ). (Blue is rendered into black in
the printed version.)
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