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Finite-duration interaction quench in dilute attractively interacting Fermi gases: Emergence
of preformed pairs
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We investigate the nonequilibrium behavior of dilute, attractively interacting Fermi gases subjected to finite-
duration ramps of their internal interaction strength. We identify three dynamical regimes as a function of ramp
duration using a time-dependent version of the Bardeen-Cooper-Schrieffer theory of superconductivity to model
these systems. For short ramp durations, these systems become nonsuperconducting; however, fermions with
opposite momenta remain paired albeit with reduced amplitudes, and the associated pair amplitude distribution
is nonthermal. In this first regime, the disappearance of superconductivity is due to the loss of phase coherence
between pairs. By contrast, for intermediate ramp durations, superconductivity survives but the magnitude of the
order parameter is reduced and presents long-lived oscillations. Finally, for long ramp durations, phase coherence
is almost fully retained during the finite-duration interaction quench, and the steady state is characterized
by a thermal-like pair amplitude distribution. Using this approach, one can therefore dynamically tune the
coherence between pairs to control the magnitude of the superconducting order parameter and even engineer
a nonequilibrium state made of preformed pairs.
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I. INTRODUCTION

The properties of quantum materials are extremely sen-
sitive to external stimuli. In these systems, the interactions
associated with, for example, the spin, charge, lattice, and
orbital degrees of freedom are often similar in magnitude with
the electronic kinetic energy. The delicate balance between
competing states can therefore be readily altered via external
perturbations leading to the emergence of novel properties.
Taking advantage of this distinctive characteristic of quantum
materials and building on the tremendous technical progress
achieved in the last decade, scientists can now dynamically
engineer complex states and follow their nonequilibrium evo-
lution. Phase transitions were photoinduced in strongly in-
teracting solid-state compounds using ultrafast optical pulses
[1–4], and similar achievements were also reported in ultra-
cold atomic systems using time-dependent electromagnetic
fields [5,6]. For example, in a striped-order cuprate, a Joseph-
son plasmon, a hallmark of the superconducting state, was
activated above the critical temperature by the application of
midinfrared femtosecond pulses [7]. While these results are
truly remarkable, the mechanisms underlying the nonequilib-
rium dynamics of strongly correlated matter are still being
investigated.

Identifying the processes governing the evolution of order
parameters when interactions are tuned over time remains
an open question. As order parameters are global quantities
often made up from sums of local or quasilocal (in position
or momentum space) expectation values, one would like to
understand how the time-dependent behavior of these dif-
ferent local components conspires to control the dynamics
of the global order parameter. Fermionic systems described
within the Bardeen-Cooper-Schrieffer (BCS) theory of super-
conductivity constitute an interesting example as in these the

collective order parameter is built out of individual Cooper
pair states labeled by their internal momentum. A similar
situation also arises in magnets where the magnetization is
a sum over all local spins.

Going back to our first example, superconductivity, in this
case understanding the dynamics arising from the subtle in-
terplay between the BCS collective mode and its constituting
elements following a sudden quench of the pairing strength
has been the focus of various works [8–20]. The renewed
interest for this problem has been triggered, in part, by the
possibility in dilute fermionic gases cooled below degeneracy
to control the interaction strength using Feshbach resonances
[5]. For the case of a sudden quench, using both analytical and
numerical methods, three different dynamical regimes were
unveiled in a space spanned by the ratio of the equilibrium
superconducting order parameters of the initial to final states.
When this ratio is sufficiently small, the order parameter
oscillates without damping, while for intermediate ratios, it
is damped, exhibits decaying oscillations and saturates at
an asymptotic value. In contrast, for larger ratios, the order
parameter is overdamped following the sudden interaction
quench and ultimately superconductivity is destroyed.

Experimentally, quenches are typically realized within a
finite ramp duration. This can be achieved, for example,
by exciting phononic modes in solids [21] or in cold gases
by ramping a magnetic field. We study in this article the
dynamics of the BCS order parameter when the interaction be-
tween fermions is changed in time following a finite-duration
schedule amenable to cold atom setups. Within BCS theory,
we focus on the dynamical region where a sudden change
of the interaction strength would have obliterated the super-
conducting order parameter. In contrast to the sudden quench
case, we find, as shown in Fig. 1, that for such quenches three
different dynamical regimes emerge as a function of the ramp
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FIG. 1. Time-averaged value of the superconducting order pa-
rameter 〈〈|�|〉〉 and of the sum over the magnitude of the pair
amplitudes 〈〈|P|〉〉 as a function of ramp duration. The interaction
strength is ramped down from 1/(kFa) = −0.1072 (|�0,i| = 0.60EF)
to 1/(kFa) = −1.3493 (|�0,f| = 0.11EF), and the time-average is
taken between 100h̄/EF and 400h̄/EF. These two quantities signal
three different dynamical regimes (highlighted by shaded regions).
For short quenches, the system is characterized by preformed pairs
(incoherent pairing state). For intermediate quench durations, super-
conductivity is maintained but with only partial phase coherence;
while, for longer ramp durations, phase coherence is mostly unaf-
fected and the order parameter asymptotes to �0,f (value marked
by the arrow). The boundary between the partial phase coherence
and BCS superconductor regimes is located at |〈〈|�|〉〉 − 〈〈|P|〉〉| ∼
10−4EF. Inset: Evolution of the order parameter as a function of time
for three different ramp durations.

duration. In particular, for short ramp durations, a state made
of incoherent preformed pairs, the so-called phase-disordered
superconductor [22], is stabilized. In the remainder of this
article, we detail further the three regimes and the subtle
mechanism responsible for their dynamics.

II. TIME-DEPENDENT BCS THEORY

We consider a situation applicable to both solid-state sys-
tems and cold atom gases: a three-dimensional gas made
of two species of fermions described by the BCS s-wave
Hamiltonian

HBCS =
∑

k,σ={1,2}
εk nk,σ +

∑
k

[� c†
k,1c†

−k,2 + H.c.], (1)

where c(†)
k,σ are the fermionic annihilation (creation) operators,

nk,σ is the particle number operator of momentum k and
species σ = {1, 2}, and εk = h̄2k2/(2m) is the single-particle
dispersion. The superconducting order parameter enters this
Hamiltonian as

� = g

V

∑
k

Pk, (2)

with V the system volume and g the interaction strength. Here,
the expectation value Pk = 〈c−k,2ck,1〉 relates to individual
Cooper pairs. Additionally, to assess the individual pairing

strength, we introduce a second quantity corresponding to
the sum over the magnitude of the momentum-dependent pair
amplitudes

P = g

V

∑
k

|Pk|. (3)

For ultracold gases, the strength of the interaction between
the fermions of two different hyperfine states can be tuned via
Feshbach resonances [5], and at sufficiently low temperatures
the s-wave scattering is the dominant contribution. In this
situation, the interaction can be parametrized by a single
parameter, the s-wave scattering length a, via 1

kFa = 8πEF

gk3
F

+
2
π

√
EC
EF

with kF and EF the Fermi momentum and energy,
respectively, and EC a suitably chosen energy cutoff.

The equilibrium phase diagram for a system described by
this Hamiltonian has been thoroughly studied (see [23] and
references therein). For 1

kFa < 0, the interaction is attractive
and below the critical temperature, Tc, this system arranges
into a superfluid of Cooper pairs. In this situation, the value of
the superconducting order parameter decreases with increas-
ing temperature as the thermal generation of single-particle
excitations leads to the breaking of Cooper pairs.

Here, we consider finite-duration interaction changes of the
parameter 1

kFa < 0 using the schedule

1

kFa(t )
= 1

kFa(tf )
+ h(t, ti, tf )

[
1 − sin2

(
π

2

t − ti
δtramp

)]
,

where h(t, ti, tf ) = �(tf − t )[1/(kF a(ti )) − 1/(kF a(tf ))],
δtramp = tf − ti with ti and tf the times at which the interaction
ramp begins and ends, and � is the Heaviside function.
δtramp → 0 corresponds to a sudden interaction quench while
δtramp → ∞ would correspond to an adiabatic interaction
change. The sinusoidal nature of the ramp protocol allows for
a smooth (differentiable) change of the interaction strength,
thereby avoiding additional excitations at the beginning
and end of the ramp. We focus on the situation where the
interaction strength is ramped down such that the initial
equilibrium value of the superconducting order parameter,
�0,i, is larger than the final equilibrium value, �0,f.

To understand the dynamics of the order parameter, we
obtain a set of coupled differential equations connecting the
superconducting order parameter to the expectation values of
individual pairs and atom densities:

h̄
∂

∂t
〈c−k,2ck,1〉 = i{−2εk〈c−k,2ck,1〉 + �(〈nk,1〉

+ 〈n−k,2〉 − 1)},

h̄
∂

∂t
〈nk,1〉 = −2 Im{�∗〈c−k,2ck,1〉},

h̄
∂

∂t
〈n−k,2〉 = −2 Im{�∗〈c−k,2ck,1〉}. (4)

Solving numerically this set of equations together with the
self-consistency condition for �, Eq. (2), we compare and
contrast the nonequilibrium evolution due to a sudden interac-
tion change, δtramp → 0, to ones due to longer ramp durations.
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III. EMERGENCE OF THREE DISTINCT DYNAMICAL
REGIMES

The main results are summarized in Fig. 1 comparing
the time-averaged superconducting order parameter 〈〈|�|〉〉
and the time-averaged sum over the magnitude of the pair
amplitudes 〈〈|P|〉〉. Here, the time average of a time-dependent
quantity f (t ) is given by

〈〈 f (t )〉〉 = 1

δt

∫ t0+δt

t0

dt f (t ), (5)

where EFt0 = 100h̄ is the beginning of the averaging window,
chosen well after the end of the ramp, and EF δt = 300h̄ its du-
ration, taken suitably long to average over several oscillations
in the postramp state.

For a sudden interaction change and for ramp times up to
3h̄/EF, the superconducting order parameter 〈〈|�|〉〉 is found
to average to zero whereas, for slower interaction ramps, this
order parameter retains a finite value. The precise ramp dura-
tion at which the crossover occurs depends on the interaction
strength and the cutoff. In contrast, we find that the time-
averaged sum over the magnitude of the pair amplitudes 〈〈|P|〉〉
remains finite for all ramp times. This important difference
in behavior between these two quantities signals that the
evolution of the relative phase between individual pairs plays
a crucial role in the dynamics. As the amplitude of pairs is
reduced but remains finite, the destruction of superconduc-
tivity for short ramp durations is associated with the loss of
phase coherence between pairs. Therefore, phase unlocking
is the main mechanism responsible for the suppression of
superconductivity.

This is in stark contrast to the finite-temperature equilib-
rium scenario where superconductivity is suppressed by an
increase in thermal fluctuations resulting in pair breaking.
Interestingly, this result implies that stabilizing a state made
of preformed pairs is possible via a fast ramp. Within the
scope of the BCS model, this state is long-lived. However,
in experimental realizations, various mechanisms, such as
electron-phonon coupling in solids, could likely affect the
long-time stability of this state such that it would only remain
stable up to intermediate timescales.

Unexpectedly, 〈〈|P|〉〉, the sum over the magnitude of the
pair amplitudes, is nonmonotonous as a function of ramp
duration: it first decreases with increasing ramp durations and
then increases again. For a sudden quench, this quantity has
a large value due to the freezing of the initial state which
is then projected onto the new Cooper pairs. Within this
new basis, this frozen state contains excited quasiparticle
pairs which contribute to the sum over the magnitude of
pair amplitudes. As these quasiparticle pairs are not coherent,
their contributions to the total order parameter dephase after a
short time resulting in the suppression of the superconducting
order parameter. For short but finite ramp durations, the
same mechanism persists until the sum over the magnitude
of the pair amplitudes reaches a minimum. For longer ramp
durations, this quantity rises again and the dephasing becomes
less important such that the value of the superconducting order
parameter is finite at longer times.

In the following, we analyze carefully the behavior
of the excitations responsible for the emergence of the

FIG. 2. Sudden quench of the interaction strength from
1/(kFa) = −0.1072 to 1/(kFa) = −1.3493. (a) Distribution of the
magnitude of the pair amplitude as a function of momentum: (i,
blue) ground state at 1/(kFa) = −0.1072; (ii, red) ground state
at 1/(kFa) = −1.3493; (iii, pink) snapshot at 3h̄/EF; (iv, orange)
snapshot at 10h̄/EF; and (v, green) time-average between 100h̄/EF

and 400h̄/EF. This distribution is already hardly distinguishable
form its steady-state configuration at 10h̄/EF. It is nonthermal and
signals the presence of preformed pairs. Note that lines (iv) and
(v) are on top of each other. (b) Phase of the pair amplitude as a
function of momentum. Rapid phase unlocking is responsible for the
destruction of superconductivity. Note: The legend is in descending
order. (c) Fourier transform of the momentum-dependent pair am-
plitude |F[Im[Pk (t )]]|. The sudden quench generates quasiparticle
pair excitations along the parabolic line ±2Ek − 2μf (marked by
the red crosses and stars, respectively; red circles mark the coherent
evolution at −2μf).

nonequilibrium states detailed above. Useful information can
be obtained by analyzing the momentum distribution of the
Cooper pair amplitudes. As displayed in Figs. 2(a), 3(a), and
4(a), initially the distribution of pair amplitudes follows the
zero temperature and interaction-dependent expression Pk =
1
2

√
1 − ξ 2

k/E2
k with ξk = εk − μi where μi is the chemical po-

tential at the initial interaction strength. For 1
kFa = −0.1072,

this distribution (see curve (i)) has a maximum close to
the Fermi momentum and drops down for larger momentum
values. In contrast, the distribution corresponding to the final
ground state of an adiabatic quench to 1

kFa = −1.3493 [see
curve (ii)] is strongly peaked around the Fermi momentum
and is much lower in value than the initial distribution.

To understand the time evolution of the distribution of pair
amplitudes, we consider both snapshots of |Pk| at particular
times and values denoted by 〈〈|Pk|〉〉 that are time-averaged be-
tween 100h̄/EF and 400h̄/EF. As shown in Fig. 2, for a sudden
ramp, the magnitudes of the pair amplitudes settle quickly as
the snapshot distribution at EFt = 3h̄ already agrees approx-
imately with the one obtained via time-averaging. However,
even at long times, this distribution takes much larger values
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FIG. 3. Slow quench performed in EFδtramp = 6h̄ (same interac-
tion strengths as in Fig. 2). (a) Distribution of the magnitude of the
pair amplitude as a function of momentum: (i, blue) and (ii, red)
same as in Fig. 2; (iii, black dashed) thermal distribution at 1/(kFa) =
−1.3493, T = 0.89Tc is chosen such that 〈〈|�|〉〉 = �(T ); (iv, pink)
snapshot at 3h̄/EF; (v, green) time-average between 100h̄/EF and
400h̄/EF. The time-averaged distribution is nonthermal, and |Pk |
exhibit strong oscillations represented, together with (v), by vertical
bars (peak-to-peak amplitude of the oscillations). (b) Phase of the
pair amplitude as a function of momentum. Note: The legend is in
descending order. (c) Fourier transform of the momentum-dependent
pair amplitude |F[Im[Pk(t )]]|. While this quench generates quasipar-
ticle pair excitations, all Pk signals have a strong in-phase component
at −2μf.

than the ones expected in equilibrium at the final interaction
strength 1

kFa = −1.3493. This result explains the large finite
value of the sum over the magnitude of the pair amplitudes
presented in Fig. 1 signaling that Cooper pairs survive through
the quench (even though with a smaller amplitude than in the
initial state).

As shown in the central panel of Fig. 2, for the sudden
ramp, each pair rapidly acquires a particular phase propor-
tional to 2Ek leading to complete dephasing such that already
at EFt = 10h̄ the superconducting order parameter is totally
obliterated.

The evolution of the phases can be understood via the
Fourier transform of the pair amplitudes, |F[Im[Pk(t )]]|, and
as Im[Pk(t )] and Re[Pk(t )] provide the same information
about the phase evolution, we only consider the former
without loss of generality. From this quantity, we see that the
sudden quench generates quasiparticle pairs at −2μf ± 2Ek
(see lower panel of Fig. 2) with μf the chemical potential at
the final interaction strength. These quasiparticle pairs are at
the origin of the parabolic distribution of the phases (central
panel). This result indicates that the system dynamically
organizes into a nonthermal state made of preformed but
dephased Cooper pairs.

FIG. 4. Slow quench performed in EFδtramp = 30h̄ (same inter-
action strengths as in Fig. 2). (a) Distribution of the magnitude of
the pair amplitude as a function of momentum: (i, blue) and (ii,
red) same as in Fig. 2; (iii, black dashed) thermal distribution at
1/(kFa) = −1.3493, T = 0.35Tc is chosen such that 〈〈|�|〉〉 = �(T );
(iv, pink) snapshot at 10h̄/EF; (v, orange) snapshot at 30h̄/EF; (vi,
green) time-average between 100h̄/EF and 400h̄/EF. The steady-
state distribution is thermal. Note that lines (ii), (iii), (v), (vi) are
on top of each other. (b) Phase of the pair amplitude as a function
of momentum. Phase coherence is only slightly lost near kF. Note:
The legend is in descending order. (c) Fourier transform of the
momentum-dependent pair amplitude |F[Im[Pk(t )]]|. Quasiparticle
pairs are only generated near kF (red crosses and stars). Pk are
dominated by the coherent phase evolution at −2μf.

The pair amplitude distributions are also nontrivially af-
fected when the interaction strength is slowly ramped down.
For the ramp duration EFδtramp = 6h̄, both the snapshot and
time-averaged distributions are clearly finite and nonthermal.
Only the small and large momentum tails of the time-averaged
distribution agree with the thermal equilibrium distribution at

1
kFa = −1.3493. The temperature T used in Fig. 3 is found by
solving the finite-temperature gap equation [24] assuming that
〈〈|�|〉〉 = �(T ).

As we see in the lower panel of Fig. 3, the EFδtramp = 6h̄
ramp creates fewer quasiparticle pairs at −2μf ± 2Ek and
all Pk signals have a strong component at −2μf. At short
times compared to the ramp duration, the phase remains fully
locked, then as the evolution goes on, in the momentum
interval where most of the quasiparticle pairs are generated,
each Cooper pair begins accumulating a particular phase. This
process leads to a partial loss of phase coherence, but, as
shown in Fig. 1, the Cooper pairs are still sufficiently synchro-
nized for superconductivity to survive at the considered times.

Finally, for EFδtramp � 20h̄, we find that the dynamics
enters a different regime as the distribution of pair amplitudes
becomes thermal. As one sees from Fig. 4, for EFδtramp = 30h̄
the distribution obtained at the end of the ramp strongly
resembles the one expected for a superconducting system
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in equilibrium at T = 0.35Tc for an interaction strength of
1

kFa = −1.3493. For this ramp schedule, quasiparticle pairs
are solely generated in a small momentum region around kF

(see lower panel of Fig. 4). The phase coherence remains
for the most part undisturbed by the interaction ramps. As
illustrated in Fig. 4, during the ramp the phase starts to ripple
around kF, the region where quasiparticle pairs are generated,
but phase locking is for the most part maintained throughout
the system.

IV. CONCLUSION

To summarize, we analyze the nonequilibrium dynamics
of dilute attractively interacting Fermi gases described within
BCS theory when their interaction strength is ramped down
within a finite duration. We identify three different dynamical

regimes and, in particular, we demonstrate the dynamical cre-
ation of a steady state of preformed pairs without global phase
coherence. The insights gained from this study will likely pave
the way to employ slow quenches to create other steady states
with novel properties absent in thermal equilibrium.

ACKNOWLEDGMENTS

We thank Kuiyi Gao for useful discussions. We ac-
knowledge funding from the European Research Council
(ERC) under the Horizon 2020 research and innovation
program, Grants No. 648166 (Phonton) and No. 616082
(UpFermi), and from the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) Project No. 277625399:
TRR 185 project B4 and Project No. 277146847: CRC1238
project C05.

[1] D. N. Basov, R. D. Averitt, D. van der Marel, M. Dressel, and
K. Haule, Rev. Mod. Phys. 83, 471 (2011).

[2] J. Orenstein, Phys. Today. 65(9), 44 (2012).
[3] J. Zhang and R. Averitt, Annu. Rev. Mater. Res. 44, 19

(2014).
[4] C. Giannetti, M. Capone, D. Fausti, M. Fabrizio, F. Parmigiani,

and D. Mihailovic, Adv. Phys. 65, 58 (2016).
[5] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885

(2008).
[6] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore,

Rev. Mod. Phys. 83, 863 (2011).
[7] D. Fausti, R. I. Tobey, N. Dean, S. Kaiser, A. Dienst, M. C.

Hoffmann, S. Pyon, T. Takayama, H. Takagi, and A. Cavalleri,
Science 331, 189 (2011).

[8] R. A. Barankov, L. S. Levitov, and B. Z. Spivak, Phys. Rev.
Lett. 93, 160401 (2004).

[9] G. L. Warner and A. J. Leggett, Phys. Rev. B 71, 134514
(2005).
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