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Squeezed-field path-integral description of second sound in Bose-Einstein condensates
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We propose a generalization of the Feynman path integral using squeezed coherent states. We apply this
approach to the dynamics of Bose-Einstein condensates, which gives an effective low-energy description
that contains both a coherent field and a squeezing field. We derive the classical trajectory of this action,
which constitutes a generalization of the Gross-Pitaevskii equation, at linear order. We derive the low-energy
excitations, which provides a description of second sound in weakly interacting condensates as a squeezing
oscillation of the order parameter. This interpretation is also supported by a comparison to a numerical c-field
method.
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I. INTRODUCTION

The Feynman path integral has been one of the most
fruitful concepts of theoretical physics [1]. It provides an
alternative view of quantum mechanics by formulating it as
a sum of paths. Each of these paths is weighted by a phase
given by the classical action, and therefore it recovers the
Lagrangian method in the context of quantum mechanics;
see also Ref. [2]. Path-integral formulations have been ap-
plied to both dynamic and thermodynamic quantities, and
to classical and quantum systems and processes. Numerous
analytical and numerical methods have been developed; see,
e.g., Refs. [3–5].

Further down, we present a generalization of the Feynman
path integral and exemplify this approach by applying it to
complex |φ|4 theory. This is one of the most quintessential
field theories of condensed matter and is naturally realized
in Bose-Einstein condensates of ultracold atoms. The dynam-
ics of condensates continues to be an intriguing and subtle
field of research. Phenomena such as superfluidity [6–8]
and second sound of condensates [9–11] continue to pose
questions and are under recent and current investigation in
ultracold atom systems. The phenomenon and terminology
of second sound was established for helium-II and success-
fully described within a hydrodynamic two-fluid approach
[12]. If the interactions in ultracold atom condensates are
sufficiently strong to ensure local equilibration and therefore
hydrodynamic dynamics, then this approach is equally suc-
cessful [13,14]. However, due to the tunability of interactions
of ultracold atoms, and the availability of bosonic atoms
with very weak interactions, a nonhydrodynamic regime of
dynamics can be reached. Here, even the terminology of
first and second sound, inherited from the studies of helium-
II, might have to be adjusted. Theoretical studies on sec-
ond sound in atomic condensates have been reported in
Refs. [15–19].

In this paper, we generalize the path integral by extending
the utilized set of states to squeezed coherent states. We
exemplify this approach for |φ|4 theory, which results in a

description of the weakly interacting Bose gas that explicitly
captures the squeezed nature of its ordered state. An intuitive
motivation is sketched in Fig. 1(a), which depicts the sym-
metry broken state of |φ|4 theory. It has an anisotropic dis-
tribution around its expectation value. To include this feature
explicitly in the path integral, we utilize two-mode squeezed
coherent states, instead of the commonly used coherent states.
Therefore, the squeezed distribution of the equilibrium state
is included in a single path. The resulting action that appears
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FIG. 1. (a) Illustration of the ordered state of a weakly interacting
condensate, described by |φ|4 theory. The bosons condense in the
minimum of the Mexican hat potential V (ψ ) = −μ|ψ |4 + g|ψ |4/2,
with μ, g > 0. The distribution, shown in red, is squeezed. Panel
(b) shows a sketch of a single path in the path integral in which both
the expectation value and the squeezing of the distribution vary in
time. Panel (c) shows schematically the corresponding fields ψ (t )
and η(t ).
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FIG. 2. (a) Illustration of the ground state, cf. Fig. 1(a), and its representation as an equilibrium state of the coherent field ψ0 and the
squeezing field η0. Panel (b) shows the coherent field eigenmodes, which correspond to the Bogolyubov modes, and panel (c) shows the
squeezing field eigenmodes, which are breathing modes around the equilibrium state. In panel (d), we show the dispersion of the squeezing
field h̄ωk,η as a red continuous line, its low-energy approximation h̄c2|k| as a red, dashed line, the Bogolyubov mode h̄ωk as a blue line, and its
low-energy approximation h̄c1|k| as a blue, dashed line. These are shown in units of the mean-field energy gn0 and as a function of kξ , where
ξ is the healing length ξ = h̄/

√
2mgn0.

in the weight function for each path contains not only the
complex field that describes coherent states but an additional
complex field that describes the squeezing of this field; see
Fig. 1(c). We refer to these as the coherent and the squeezing
field. A single path can be visualized as in Fig. 1(b). During
the time evolution not only the expectation value of the
distribution varies but also the quadratures around it. This
visualizes that the information in a single path of this path
integral, such as the classical path, contains information about
higher order fluctuations than the regular coherent state path
integral.

We note that the Bogolyubov approximation of the weakly
interacting Bose gas uses two mode squeezing of the momenta
k and −k, in particular,

bk = uk(ηk )βk + vk(ηk )β†
−k, (1)

where bk are the boson operators, and uk(ηk ) and vk(ηk ) are
the Bogolyubov parameters, which both depend on a squeez-
ing parameter ηk. However, the parameters ηk are constant in
the Bogolyubov approximation. They are chosen as ηk = η0

k
to diagonalize the Hamiltonian, resulting in the Bogolyubov
modes and their dispersion. The equilibrium state character-
ized by these static squeezing parameters and the ground-state
condensate amplitude is visualized in Fig. 2(a). In the path
integral that we propose here, the squeezing parameters ηk
are allowed to evolve in time and are itself a dynamical
field. We derive the equations of motion for the classical
path of the resulting Lagrange density, which generalizes the
Gross-Pitaevskii equation at linear order. We diagonalize the
equations of motion, and derive the eigenmodes. The eigen-
modes of the coherent field are the Bogolyubov modes which
are visualized in Fig. 2(b). In addition, we obtain the eigen-
modes of the squeezing field, which are breathing modes
of the equilibrium state, see Fig. 2(c), which we identify as
second sound in the weakly interacting regime. For asymp-
totically weak interactions, we demonstrate that the ratio of
the Bogolyubov velocity c1 and the second sound velocity
c2 is c2/c1 = 2. With increasing interaction strength, the
magnitude of c2 is reduced rapidly to values below c1, as the
system enters the hydrodynamic regime.

II. SQUEEZED-FIELD PATH INTEGRAL

We consider the Hamiltonian

H =
∑

k

εkb†
kbk + g

2V

∑
k,p,q

b†
k+qb†

p−qbkbp, (2)

where εk = h̄2k2/(2m) is the dispersion, m the atom mass,
g the interaction strength, and V the volume. We derive the
propagator G of this system, defined as

iG(	b, tb; 	a, ta) = 〈	b|e−iH (tb−ta )/h̄|	a〉. (3)

	a refers to the initial state at time ta, 	b to the final state
at time tb, with tb > ta. The prefactor i of the propagator is
introduced following standard convention. We use states of
the form

|	〉 =
[∏ ′

k �=0
SkDkD−k

]
D0|0〉, (4)

for |	a/b〉, with coherent state operators Dk ≡ exp(ψkb†
k −

ψ∗
k bk ) for each momentum mode k, and two-mode squeez-

ing operators Sk ≡ exp(ηkb†
kb†

−k − η∗
kbkb−k ) for each pair of

momentum modes k and −k, with k �= 0. The state Eq. (4)
is a product of a coherent state with ψ0 = √

N0 for the k = 0
mode, which is fixed throughout the derivation, and a product
of coherent squeezed states for all other momentum states.
The product operation

∏ ′
k �=0 refers to all momentum states,

but excludes double counting [20]. For fixed ψ0, these states
resolve the identity in momentum space, excluding k = 0, i.e.,
1k �=0 ⊗ |	0〉〈	0| = ∫

d	|	〉〈	|. The integration measure is
d	 = ∏ ′

k �=0d2ηk
∏

k �=0 d2ψk/(C(Nk−1)/2π2(Nk−1)), where Nk
is the number of momentum modes, and C is the area of the
complex plane. We split the time interval into N intervals of
length �t ≡ (tb − ta)/N , and we introduce the resolution of
the identity N − 1 times,

iG(	b, tb; 	a, ta) =
∫

D	

N∏
j=1

〈	 j |e−iH�t/h̄|	 j−1〉, (5)

with D	 = ∏ j=N−1
j=1 d	 j , tN ≡ tb and t0 ≡ ta. This is

schematically shown in Fig. 1(c). To take the continuum limit
�t → 0, we approximate each factor 〈	 j |e−iH�t/h̄)|	 j−1〉 ≈
e−i〈	 j |H |	 j〉�t/h̄〈	 j |	 j−1〉. The overlap 〈	 j |	 j−1〉 and its
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FIG. 3. Histogram of the field ψi(t ) at times t j , following a momentum kick at time t = 0, as given in Eq. (12). For the full time evolution
see Ref. [21]. In the upper row, we depict the full distribution, in the lower row, we remove the rotational motion. The white circle has the
radius

√
n0, where n0 is the numerically determined condensate fraction. The dynamics consist of a rotation of the cloud around the origin, as

well as a breathing motion, which we capture within the squeezed-field approach.

expansion to first order in �	 j ≡ 	 j − 	 j−1 is given in
Eqs. (A7)−(A9). In the continuum limit, the product of over-
laps approaches

N∏
j=1

〈	 j |	 j−1〉 → exp

⎧⎨
⎩
∫ tb

ta

dt

⎡
⎣∑

k �=0

ψk∂tψ
∗
k − ψ∗

k∂tψk

2

+
∑
k �=0

′
(ak∂tη

∗
k − a∗

k∂tηk )

⎤
⎦
⎫⎬
⎭. (6)

The continuum limit transforms the discrete sequence of
parameters ψk, j and ηk, j into ψk(t ) and ηk(t ). The function
ak = ak(ψk, ψ−k, ηk ) that couples to the time derivative of
ηk(t ) is given in Eq. (A9).

To evaluate 〈	 j |H |	 j〉, we first expand the interaction
term to second order in the operators bk with k �= 0, then
evaluate the expectation value of the state |	 j〉, and ex-
pand to second order in the coherent state amplitudes ψk
around ψ0

k = 0. We expand ηk around its equilibrium value
to second order, i.e., ηk = η0

k + η̃k. The equilibrium value
is η0

k = − ln(1 + 2gn0/εk )/4. This value solves gn0(u2
k,0 +

|vk,0|2)/2 + (εk + gn0)uk,0vk,0 = 0, where uk,0 = uk(η0
k ) and

vk,0 = vk(η0
k ), and diagonalizes the Bogolyubov modes.

These two expansions give 〈	 j |H |	 j〉 = Hψ + Hη, with
Hψ = ∑

k �=0 h̄ωk|ψk|2, where h̄ωk = √
εk(εk + 2gn0) is the

standard Bogolyubov dispersion and n0 is the condensate den-
sity. For the squeezing field, we have Hη = ∑′

k �=0(Ek,r η̃
2
k,r +

Ek,iη̃
2
k,i ), as derived in the Appendix A 3, where we also give

the full expressions for Ek,r and Ek,i. The fields η̃k,r/i are the
real/imaginary part of η̃k. Combining these results, the prop-
agator takes the form iG(	b, tb; 	a, ta) = ∫

D	 exp(iS/h̄),
with the action S = ∫ tb

ta
dtL. The Lagrangian is L = Lψ + Lη

with

Lψ =
∑
k �=0

ih̄

2
(ψ∗

k∂tψk − ψk∂tψ
∗
k ) − h̄ωk|ψk|2, (7)

Lη =
∑
k �=0

′
ih̄(a∗

k∂t η̃k − ak∂t η̃
∗
k ) − Ek,r η̃

2
k,r − Ek,iη̃

2
k,i. (8)

The coherent field has the dispersion h̄ωk, recovering the
standard Bogolyubov result. To diagonalize Lη, we ex-

pand ak to first order, i.e., ak ≈ const. + ak,1η̃k + āk,1η̃
∗
k,

where ak,1 and āk,1 are real-valued expansion coefficients
independent of η̃k, given in the Appendix A 3. Using
the substitution η̃k,r = [Ek,i/(4Ek,r )]1/4(ξk + ξ ∗

k ) and η̃k,i =
−i[Ek,r/(4Ek,i )]1/4(ξk − ξ ∗

k ), we obtain

Lη =
∑
k �=0

′
4ak,1

[
ih̄

2
(ξ ∗

k ∂tξk − ξk∂tξ
∗
k ) − h̄ωk,η|ξk|2

]
, (9)

where h̄ωk,η = √
Ek,rEk,i/(2ak,1) = 2ωk is the dispersion of

the squeezing mode. The low-frequency limit of this disper-
sion is h̄ωk,η ≈ h̄c2|k| with c2 = 2c1. These dispersions are
shown in Fig. 2(d).

III. SINGLE-PARTICLE GREEN’S FUNCTION

To elaborate on the physical consequences of these
modes, we determine the single-particle Green’s function
ig1(k, t2, t1) = 〈0|T [bk(t2)b†

k(t1)]|0〉 at zero temperature,
where T is the time ordering operator. In the squeezed-field
path-integral formalism this is ig1(k, t2, t1) = 〈βk(t2)β∗

k (t1)〉
with βk(t ) = uk(ηk(t ))ψk(t ) + vk(ηk(t ))ψ∗

−k(t ). We
expand uk(ηk(t )) and vk(ηk(t )) to first order around
ηk(t ) = η0

k. We use the Green’s functions of ψk
and ξk, which are 〈ψ∗

k,ωψk,ω〉 = i/(ω − ωk + iδ) and
〈ξ ∗

k,ωξk,ω〉 = i(4ak,1)−1/(ω − ωη,k + iδ) in frequency space,
and we obtain

g1(k, ω) = gB
1 (k, ω) + g(+)

k

ω − ω+
k + iδ

− g(−)
k

ω + ω+
k − iδ

, (10)

see Appendix A 4. Here, gB
1 (k, ω) is the standard Bo-

golyubov Green’s function, i.e., gB
1 (k, ω) = u2

k,0/(ω − ωk +
iδ) − v2

k,0/(ω + ωk − iδ), and g(+)
k and g(−)

k are given in
Eq. (A39). The Green’s function g1(k, ω) displays additional
side peaks at ±ω+

k = ±(ωk + ωη,k ), which are the modified
response of the single-particle Green’s function due to the
squeezing mode.

IV. COMPARISON TO C-FIELD SIMULATION

As a comparison, we consider a numerical implementation
of the c-field method; see Refs. [22,23]. We discretize space
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FIG. 4. Single-particle correlation function c1(k, ω) as a func-
tion of frequency ω and momentum kx , for the interaction U/J =
0.05. The two excitation branches are compared to the Bogolyubov
dispersion ωk, blue dashed line, and the side peak at ωk + ωk,η, red
dashed line, motivated by the pole structure of Eq. (10). The inset
shows half of the Brillouin zone, the large figure the low-energy
regime, where the approximations ωk ≈ c1|k| and ωk,η ≈ c2|k| are
used.

with discretion length l and approximate the system, Eq. (2),
with a Hubbard model

Hl = −J
∑
〈i j〉

(b†
i b j + H.c.) −

∑
i

μni + U

2

∑
i

b†
i b†

i bibi,

(11)

with ni = b†
i bi. The Hubbard parameters are related to the

continuous space parameters via J = h̄2/(2ml2) and U =
g/l3. We choose a lattice with the dimensions Nx × Ny × Nz =
128 × 32 × 32. In the semiclassical approximation that we
use here, we replace the bosonic operators bi with a complex
field ψi. We choose U/J = 0.13, and a chemical potential so
that 〈ni〉 ≈ 7. For a discretization length l = 1 μm and 7Li
atoms, this corresponds to a real space density ρ = 0.7 ×
1013 cm−3, and a scattering length a = 5.2 nm, which can
be achieved by tuning near a zero crossing of the contact
interaction, see [24]. We initialize the state via Monte Carlo
sampling at a temperature T/J = 1, and we propagate the
equations of motion for ψi(t ). At time tk , which we define
to be zero, we perform a momentum kick of the form

ψi →
√

1 − A2ψi + A exp(ikxi )ψi, (12)

with an amplitude A = 0.1, and a momentum k = (2π ×
12/Nx )ex, and we integrate the subsequent time evolution. In
Fig. 3, we show the histogram of the field amplitudes ψi,
depicted in the complex plane, with a binning size of 0.02 ×
0.02. The dynamical evolution that emerges after a few cycles
consists of a rotation of the ensemble around the origin, which
is depicted in the upper row. For the lower row, we determine
the mean value of the distributions 	m = 1

Nl

∑Nl
i ψi, where Nl

is the number of lattice sites Nl = NxNyNz, and determine its
phase φm = arctan(	m,i/	m,r ). In Fig. 3, we connect 	m and
the origin with a red, dashed line. We rotate the distribution so

that the center of mass of the ensemble is on the real, positive
axis, and zoom in. We observe that in addition to the rotation
of the ensemble, which corresponds to first sound, there is a
breathing motion which corresponds to second sound.

As a second comparison, we determine the single-particle
correlation function c1(k, ω) = 〈b†(k, ω)b(k, ω)〉, where

b(k, ω) = 1√
NlTs

∑
i

∫
dte−ikri−iωt bi(t ). (13)

Ts = 227 ms is the sampling time for the numerical Fourier
transform. In Fig. 4, we show c1(k, ω) for k = kex, for a 7Li
condensate with density ρ = 0.6 × 1013 cm−3 and tempera-
ture T/J = 4.5. We observe two excitation branches in the
numerical result, and compare them to the Bogolyubov dis-
persion ωk, and the side band ω+

k that was found in Eq. (10).
We find good agreement in the low-energy regime, which
supports our squeezed-field approach to the understanding
of second sound in the weakly interacting regime. We note
that higher order terms of the Lagrangian will couple these
modes and renormalize this weak coupling limit of the dis-
persions. This is most pronounced for the squeezing mode
excitations with energies above the mean field energy, for
which the breathing motion shown in Fig. 2(c) is reduced
in energy compared to the linearly approximated potential
around the mean value. This and the thermal dependence of
the dispersion will be discussed elsewhere. In Appendix B
we show the correlation function c1(k, ω) for increasing in-
teraction strength. The upper branch is rapidly renormalized
below the Bogolyubov branch, indicating the emergence of
the hydrodynamic regime.

V. CONCLUSIONS

In conclusion, we have developed a generalized path inte-
gral that utilizes squeezed coherent states, and have applied it
to the weak coupling limit of Bose-Einstein condensates. We
have obtained the corresponding Lagrangian, at linear order,
which contains both the standard coherent field as well as
an additional squeezing field. We have derived the equations
of motion, and determined the low-energy excitations of the
condensed state. One of the two excitation branches recovers
the Bogolyubov modes, the other one provides an analytical
estimate for the second sound dispersion in the weak cou-
pling limit. Furthermore, it provides an interpretation of the
phenomenon of second sound as a squeezing oscillation of
the order parameter. We note that the method that we have
presented here is of broad applicability. It is of conceptual
importance, because the same system, described by the same
Hamiltonian, gives different generalized Lagrangians in the
path integral, depending on the set of states that is used. As
a result, higher-order quantum fluctuations are captured in
the corresponding classical path. Furthermore, any analytical
approach that is based on a path-integral representation can be
generalized in the way that we have presented here. Finally,
any numerical method that derives from a path-integral rep-
resentation can be generalized by extending the set of states
of the path integral, for which we have paved the way in this
paper.
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APPENDIX A: ANALYTICAL CALCULATIONS

Generally, the path integral is constructed by discretizing
the propagator in time. This leads to two central objects that
determine the Lagrangian, which are the overlap of two states
at succeeding times 〈	 j |	 j−1〉 and the expectation value
of the Hamiltonian 〈	 j |H |	 j〉. In the continuum limit, we
then obtain a classical continuous Lagrangian. To calculate
the low-energy dispersions of the coherent and squeezing
field, we then expand our expressions around the equilibrium
values of our fields and derive the corresponding low-energy
equations of motion. Below, we present our calculations step
by step.

1. Overlap 〈� j|� j−1〉
We start our calculation with the overlap of the squeezed

coherent state at succeeding times. The total state at time step
j reads

|	〉 =
[∏ ′

k �=0
Sk jDk jD−k j

]
D0|0〉. (A1)

The above operators commute for different k − modes, so it
is sufficient to consider a single factor, i.e., a single pair of
modes (k,−k). Taking then the product over k, will lead to a
summation in the exponent of the exponential. We derive the
squeezed coherent state in terms of a creation operator acting
on the vacuum |0〉, based on the single mode calculation in
Ref. [25]. It is helpful to consider the coherent squeezed state,
i.e., first squeezing the vacuum, then displacing it into the
complex plane, instead of the squeezed coherent state. There-
fore, we introduce into the state |	〉 in Eq. (A1) the identity
SkS†

k = 1 and obtain SkDkS†
k SkD−kS†

k Sk|0〉 for a specific
k − mode. The squeezed coherent state is thus equivalent to
the coherent squeezed state, when we squeeze the displace-
ment operators D±k → SkD±kS†

k. According to Ref. [25], the
creation and annihilation operators transform under squeezing
in the following way:

Skb±kS†
k = ukb±k − vkb†

∓k, (A2)

where uk = cosh (|ηk|) and vk = eiφηk sinh (|ηk|). We can pull
the squeezing operators into the exponent of the displacement
operator by using the unitarity property of the squeezing
operators. This will lead us to the standard displacement
operator, but with renormalized coherent parameters ψ ′

k =
ukψ±k + vkψ

∗
∓k, which inherit the two modes coupling from

the squeezing operator. Next, we decompose our squeezing
and displacement operators into their normal ordered forms

D±k = eψ±kb†
±k e−ψ∗

±kb±k e− |ψ±k|2
2 , (A3)

Sk = e
vk
uk

b†
kb†

−k

(
1

uk

)n̂k+n̂−k+1

e− v∗
k

uk
bkb−k . (A4)

After using the Baker-Cambell-Hausdorff-Formula
exp X expY = exp

∑∞
m=0

1
m! [X,Y ]m exp X , we find the

desired representation for our squeezed state

|ηkψkψ−k〉 = D(ψ ′
k )D(ψ ′

−k )Sk|0〉

= 1

uk
exp

[
vk

uk
(b†

k − ψ∗′
k )(b†

−k − ψ∗′
−k ) (A5)

+ψ ′
kb†

k + ψ ′
−kb†

−k − 1

2
(|ψ ′

k|2 + |ψ ′
−k|2)

]
|0〉.

By projecting state Eq. (A5) onto a two mode coherent state
|αkα−k〉 with the closure relation and making use of the
definition of coherent states, we can write the kth factor of our
scalar product as a c number valued Gaussian integral which
can be calculated via the relation [26]∫

dz dz∗e−zw∗z+u∗z+z∗v = π

w
e

u∗v
w . (A6)

This procedure yields the following expression for the over-
lap:

〈ηk jψk jψ−k j |ηk j−1ψk j−1ψ−k j−1〉

= 1

uk juk j−1 − v∗
k jvk j−1

exp

{
1

uk juk j−1 − v∗
k jvk j−1[

− (uk j−1uk j − vk j−1v
∗
k j )

2
(|ψk j−1|2 + |ψ−k j−1|2

+ |ψk j |2 + |ψ−k j |2) + ψk j−1ψ
∗
k j + ψ−k j−1ψ

∗
−k j

+ (uk j−1v
∗
k j − v∗

k j−1uk j )ψk j−1ψ−k j−1

+ (vk j−1uk j − uk j−1vk j )ψ
∗
k jψ

∗
−k j

]}
. (A7)

In the following, we write this state in terms of �	 j ≡ 	 j −
	 j−1. To this end, all parameters are expanded up to first order
at time step j around their values at the previous step j − 1:
The coherent parameter is replaced by ψk j = ψk j−1 + �ψk j

and the two Bogolyubov parameters (uk j, vk j) are expanded
as functions of the real and imaginary part of ηk j . Since we
consider the exponent, i.e., ln{Eq. (A7)}, the global prefactor
takes the form ln{1/x} and the prefactor inside of the exponent
the form 1/x. Both are expanded around x0 = 1 because of
the bosonic relation u2

k j − |vk j |2 = 1. We are left with an
expression that depends only on the differences 	 j − 	 j−1

ln{〈ηk jψk jψ−k j |ηk j−1ψk j−1ψ−k j−1〉}
≈ 1

2 (ψk j�ψ∗
k j − ψ∗

k j�ψk j

+ψ−k j�ψ∗
−k j − ψ∗

−k j�ψ−k j )

+ ak j�η∗
k j − a∗

k j�ηk j, (A8)

where the parameter ak j has the following expression

ak j ≡ 1

2|ηk j |2
[− ηk j |vk j |2(|ψk j |2 + |ψ−k j |2 + 1)

− (|ηk j |2 + uk jηk jv
∗
k j )ψk jψ−k j

+ (
η2

k j − uk jηk jvk j
)
ψ∗

k jψ
∗
−k j

]
. (A9)
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Finally, we acquire the corresponding continuous form for
N → ∞, and the parameters then become continuous func-
tions of time and we obtain the prefactor ak j → ak(t ) of the
squeezing part. Taking now the product over k leads to the
sum in the exponent and we arrive at the general two mode
squeezed overlap of the Lagrangian

N∏
j=1

〈	 j |	 j−1〉 → exp

⎧⎨
⎩
∫ tb

ta

dt

⎡
⎣∑

k �=0

ψk∂tψ
∗
k − ψ∗

k∂tψk

2

+
∑
k �=0

′
(ak∂tη

∗
k − a∗

k∂tηk )

⎤
⎦
⎫⎬
⎭. (A10)

2. Expectation value 〈� j|H|� j〉
In the expectation value, succeeding times do not couple

and we can omit the time index j and consider our parameters
to be continuous. Being in the weakly interacting regime at
low temperature, we apply the Bogolyubov approximation to
our Hamiltonian in Eq. (2) of the main text. The k = 0 mode
is approximated by the c number

√
N0 and the Hamiltonian is

expanded up to second order in bk [27,28]. The Hamiltonian
under consideration is then

H = −gN2
0

2V
+
∑
k �=0

(εk + gn0)b†
kbk

+ gn0

2

∑
k �=0

(b†
kb†

−k + bkb−k ), (A11)

where εk = h̄2k2/(2m) is the free particle spectrum, g is the
interaction and n0 is the condensate density. The unitarity of
the squeezing operator is manifest in the relation S(ηk )† =
S(−ηk ). Hence the transformation Eq. (A2) is modified to

S†
kb±kSk = ukb±k + vkb†

∓k. (A12)

With this, we can now calculate the squeezed Hamiltonian
and employ the definition of the coherent state. The resulting
expectation value reads as follows:

〈	|H |	〉 = −gN2
0

2V
+
∑
k �=0

(
εk
(
u2

k+|vk|2
)+gn0|uk+vk|2

)|ψk|2

+
(

gn0

2

(
u2

k + v2
k

)+ (εk + gn0)ukvk

)
ψ∗

kψ∗
−k

+
(

gn0

2

(
u2

k + v∗2
k

)+ (εk + gn0)ukv
∗
k

)
ψkψ−k

+ εk|vk|2 + gn0

2
(|uk + vk|2 − 1). (A13)

This c-number valued Hamiltonian is diagonalized for the
equilibrium value η0

k given in the main text.

3. Expansion around equilibrium

In Appendices A 1 and A 2, we have calculated the overlap
and the expectation value, respectively, and obtained a general
two mode squeezed Lagrangian. For the weak interaction and
low temperature regime, we analyze the system around the
equilibrium parameter values up to second order.

The prefactor ak in the overlap is expanded up to first order
since it is multiplied by the time derivatives

ak = ak,1η̃k + āk,1η̃
∗
k + ak,0,

ak,0 = (h̄ωk − εk )2

8h̄ωkεkη
0
k

,

ak,1 = h̄2ω2
k − ε2

k

8h̄ωkεkη
0
k

, (A14)

āk,1 = ak,1 − ak,0

η0
k

, (A15)

where ωk is the Bogolyubov dispersion.
We get the corresponding Hamiltonian by expanding

Eq. (A13):

H = H0 +
∑
k �=0

h̄ωk|ψk|2 +
∑
k �=0

′(
Ek,r η̃

2
k,r + Ek,iη̃

2
k,i

)
,

H0 = −gN2
0

2V
−
∑
k �=0

(h̄ωk − εk )2

4εk
, (A16)

Ek,r = 2h̄ωk, (A17)

Ek,i =
(
h̄2ω2

k − ε2
k

)2

8h̄ωkε
2
k

(
η0

k

)2 . (A18)

We can see clearly that the above Hamiltonian separates into
two terms, one depending on solely the coherent field Hψ

and another on the squeezing field Hη. Subtracting these
from the corresponding overlap terms in Eq. (A10) give the
Lagrangians in Eqs. (7) and (8) of the main text. After ap-
plying the Euler-Lagrange equation, we obtain the two linear
differential equations for the coherent parameter ψk and for
the squeezing parameter ηk. The dispersion of the coherent
field can be read out directly. However, in the case of the
squeezing field, we transform the differential equation into its
matrix form:

∂t

[
η̃k,r

η̃k,i

]
= 1

2h̄

[
0 Ek,i

ak,1

−Ek,r

ak,1
0

][
η̃k,r

η̃k,i

]
. (A19)

Now, we can read out the dispersion immediately:

h̄2ω2
k,η = Ek,rEk,i

4a2
k,1

= 4h̄2ω2
k. (A20)

This gives the dispersion h̄ωη,k = √
Ek,rEk,i/(2ak,1) = 2h̄ωk,

leading to the second sound velocity c2 = 2c1.

4. Single-particle Green’s function

In this section we show that the single-particle Green’s
function has poles associated with both sound modes. The
single-particle Green’s function is defined as

ig1(k, t2, t1) ≡ 〈0|T [bk(t2)b†
k(t1)]|0〉. (A21)

According to Refs. [28] and [29], we can write the Green’s
function in terms of the evolution operator

ig1(k, t2, t1) = 〈0|T [bk(t2)b†
k(t1)U (∞,−∞)]|0〉

〈0|U (∞,−∞)|0〉 . (A22)
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FIG. 5. (a) Illustration of Eq. (A41) via Feynman diagrams, where the forward propagators correspond to particle and the backward to hole
excitations. The inclusion of the squeezing field complements the “coherent propagator” (continuous lines) with the “squeezing propagator”
(dashed lines). (b) |g1(kξ, ω)| as a function of ω and dimensionless kξ . The four branches correspond to the poles of g1(k, ω). For increasing
k, the branches that correspond to the poles ±(ωk + ωk,η ) vanish first, followed by the pole −ωk. The branch that corresponds to the pole +ωk

remains. (c) Weights of the branches in (b) as a function of kξ . The weights g(±)
k that emerged from the inclusion of the squeezing field decay

very quickly, followed by v2
k,0. The only surviving weight, i.e., u2

k,0 → 1, gives rise to the single-particle Green’s function of a free particle.

This representation of g1 enables us to construct the path
integral in the squeezed coherent representation which renders
the time expectation value an ensemble expectation value with
classical fields

ig1(k, t2, t1) = 〈βk(t2)β∗
k (t1)〉, (A23)

with

βk(t ) = uk(t )ψk(t ) + vk(t )ψ∗
−k(t ). (A24)

The single-particle Green’s function then reads as follows:

ig1(k, t2, t1) = 〈uk(t2)uk(t1)〉〈ψ∗
k (t1)ψk(t2)〉

+ 〈vk(t2)v∗
k(t1)〉〈ψ−k(t1)ψ∗

−k(t2)〉, (A25)

where we omit the (k,−k) terms and write the squeezing and
coherent correlations separately for reasons discussed in the
next subsections.

a. Expectation value

To evaluate the above single-particle Green’s function, we
write its corresponding expectation value in the frequency
domain as follows:

〈χ∗
k1,ω1

χk2,ω2〉 =
∫
D2(ψ, η) e

i
h̄

∫ T/2
−T/2 dt L

χ∗
k1,ω1

χk2,ω2

Z
,

with D2(ψ, η) ≡
∏

kx>0,ω

d2ψk,ωd2ψ−k,ωd2ηk,ω, (A26)

following Ref. [26]. And the corresponding partition function
is

Z =
∫

D2(ψ, η) e
i
h̄

∫ T/2
−T/2 dt L

, (A27)

where the complex fields χk,ω represent the coherent ψk,ω

and squeezing fields ηk,ω and L = Lψ + Lη is the expanded
Lagrangian around equilibrium, mentioned in the main text.
Our calculation simplifies, when L is diagonal. Therefore, we
write our fields in their Fourier series representation,

χk(t ) = 1√
T

∑
n

χk,ωn e−iωnt , (A28)

with ωn = 2πn/T . If the fundamental period is T → ∞, then
the frequency steps 2π/T become infinitesimal and thus the
fields are continuous in ω. Upon integrating over the funda-
mental period T , only the coherent part is already diagonal:

Sψ ≡
∫ T/2

−T/2
dt Lψ = h̄

∑
k �=0,ω

(ω − ωk )ψ∗
k,ωψk,ω. (A29)

For the squeezing part, we introduce the following transfor-
mations of the real and imaginary parts:

η̃k,r =
(

Ek,i

4Ek,r

) 1
4

(ξk + ξ ∗
k ),

η̃k,i = −i

(
Ek,r

4Ek,i

) 1
4

(ξk − ξ ∗
k ). (A30)

After inserting these into Lη and then integrating, we obtain

Sη ≡
∑

k �=0,ω

′
4ak,1

(
h̄ω −

√
Ek,rEk,i

2ak,1

)
ξ ∗

k,ωξk,ω. (A31)

Hence, the expression in the parenthesis vanishes for the same
dispersion derived in Eq. (A20):

ω =
√

Ek,rEk,i

2ak,1h̄
. (A32)

b. Wick’s theorem for squeezed coherent fields

We evaluate expectation values of the form Eq. (A26) by
calculating the expectation value of the source terms Sρ by
using Eq. (A6). The result is

〈eSρ 〉 = e
i
∑

kx>0,ω

j̄k,ω jk,ω
(ω−ωk+iδ) +i

∑′
k,ω

�̄k,ω�k,ω
4ak,1 (ω−ωk,η+iδ) ,

with

Sρ ≡
∑

k �=0,ω

j̄k,ωψk,ω + jk,ωψ∗
k,ω

+
∑
k,ω

′
�̄k,ωξk,ω + �k,ωξ ∗

k,ω. (A33)
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FIG. 6. Single-particle correlation function c1(k, ω) as a function of frequency ω and momentum kx , for the interactions U/J = 0.05, 0.09,
and 0.13. The two excitation branches are compared to the Bogolyubov dispersion ωk, lower (blue) dashed line, and the side peak at ωk + ωk,η,
upper (red) dashed line, motivated by the pole structure of Eq. (A41). The vertical dashed lines denote the inverse healing length ξ−1.

With this relation we can write the Wick formula for the
expectation values of the coherent and squeezing fields

〈(ψ∗
k1,ω1

)m(ψk2,ω2 )n(ξ ∗
k3,ω3

)r (ξk4,ω4 )w〉
= [

∂
(w)
�̄k4 ,ω4

∂
(r)
�k3,ω3

∂
(n)
j̄k2 ,ω2

∂
(m)
jk1 ,ω1

〈eSρ 〉] j̄k2 ,ω2 = 0
jk1 ,ω1 = 0
�̄k4 ,ω4 = 0
�k3,ω3 = 0

, (A34)

where we shifted the roots of Sψ and Sη into the complex plane
by adding the damping term δ. Therefore, we have

〈ψ∗
k1,rω1

ψk2,ω2〉 = iδk1,k2δω1,ω2

(ω1 − ωk1 + iδ)
,

〈ξ ∗
k1,ω1

ξk2,ω2〉 = iδk1,k2δω1,ω2

4ak,1(ω1 − ωk1,η + iδ)
. (A35)

According to our formula in Eq. (A34) the expectation
value for m = n = r = w = 1 breaks down into a product
of squeezing and coherent fields. This was to be expected
because the Lagrangian does not include the coupling between
the fields. The expressions in Eq. (A35) are related with the
original expectation values in Eq. (A25) via Fourier transfor-
mations of the type

〈χ∗
k (t1)χk(t2)〉 = 1

T

∑
ωn,ωm

〈χ∗
k,ωn

χk,ωm〉eiωnt1−iωmt2 . (A36)

Knowing the Fourier representation of the ensemble expecta-
tion value, we switch now into time domain and obtain

〈ψ∗
k (t1)ψk(t2)〉 = �(t2 − t1) e−iωk (t2−t1 ),

〈ψk(t1)ψ∗
k (t2)〉 = �(t1 − t2) e−iωk (t1−t2 ),

〈ξ ∗
k (t1)ξk(t2)〉 = �(t2 − t1)

e−iωk,η (t2−t1 )

4ak,1
, (A37)

〈ξk(t1)ξ ∗
k (t2)〉 = �(t1 − t2)

e−iωk,η (t1−t2 )

4ak,1
.

Since the Green’s function is time translational invariant,
we write from here on t ≡ t2 − t1. Next, similar to the
Lagrangian, we expand the Green’s function in Eq. (A25)
to second order and after inserting the above relations, the

single-particle Green’s function in the time domain is

ig1(k, t ) = �(t )
(
u2

k,0e−iωkt + g(+)
k e−iω+

k t
)

+�(−t )
(
v2

k,0eiωkt + g(−)
k eiω+

k t
)
, (A38)

where the newly emerged dispersions are ω±
k ≡ ωk ± ωk,η. In

Eq. (A38), we omitted the �(t )�(−t ) terms as they vanish
in the Fourier transform. Consequently, the dispersion ω−

k
vanishes. The prefactors are

g(+)
k = v2

k,0

4
, g(−)

k = v4
k,0

4u2
k,0

,

uk,0 = h̄ωk + εk

2
√

h̄ωkεk
, vk,0 = h̄ωk − εk

2
√

h̄ωkεk
. (A39)

We can now extract the poles by considering the Fourier
transform of the Green’s function

g1(k, ω) =
∫ ∞

−∞
dteiωt−δ|t | g1(k, t ), (A40)

where we introduced the small damping parameter δ > 0.
Consequently, the single-particle Green’s function is

g1(k, ω) = u2
k,0

ω − ωk + iδ
− v2

k,0

ω + ωk − iδ︸ ︷︷ ︸
=gB

1 (k,ω)

+ g(+)
k

ω − ω+
k + iδ

− g(−)
k

ω + ω+
k − iδ

. (A41)

The first two terms correspond to the single-particle Green’s
function of the Bogolyubov case, which is the usual result
in the coherent state representation. However, after includ-
ing the squeezing field into the path integral, we get an
additional Green’s function that has poles at the sum of the
Bogolyubov and the squeezing dispersions. In Fig. 5(a), we
illustrate Eq. (A41) with Feynman diagrams. The inclusion of
the squeezing fields corresponds to considering higher order
diagrams, extending the Bogolyubov picture. In Fig. 5(b) we
depict the absolute value of g1(k, ω), where we have set
the free particle dispersion to a dimensionless value εk →
εk/gn = k2ξ 2. The two branches in the middle of Fig. 5(b) are
the Bogolyubov peaks at the poles of gB

1 (k, ω) in Eq. (A41)
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and the side peaks correspond to the poles of the newly
emerged terms. For large k, the side peaks decay. Upon
increasing k further, the lower Bogolyubov peak falls off and
the upper Bogolyubov peak survives and coincides with the
free particle Green’s function. In Fig. 5(c), the corresponding
weights are shown for comparison.

APPENDIX B: SIMULATED SINGLE-PARTICLE
CORRELATION FUNCTION

In this section, we determine the single-particle corre-
lation function c1(k, ω) using the simulation technique de-
scribed in the main text, and discuss its dependence on
the interaction strength U/J . The single-particle correlation
function c1(k, ω) is defined in the main text. We consider
a homogeneous condensate of 7Li atoms with density ρ =
0.6 × 1013 cm−3 and temperature T/J = 4.5, which are the
same as in the main text. We determine c1(k, ω) at the three
different interaction strengths U/J = 0.05, 0.09, and 0.13,

and show these results in Fig. 6. We observe two excitation
branches: the Bogolyubov and second sound mode, which
are compared to the Bogolyubov dispersion ωk, and the side
band ω+

k that was found in Eq. (A41). The result in Fig. 6(a)
corresponds to U/J = 0.05 and is the same as the main text,
whereas Figs. 6(b) and 6(c) correspond to U/J = 0.09 and
0.13, respectively. In the low-energy regime, the analytical
second sound dispersion agrees for U/J = 0.05, whereas it
deviates systematically for high interactions due to higher
order terms of the Lagrangian, which are not included in this
weak-coupling limit of the dispersions. Furthermore, in the
high-energy regime, we observe in the numerical c1(k, ω) a
crossing between the Bogolyubov and second sound mode as
a function of wavevector kx. Beyond this crossing, the second
sound mode occurs below the Bogolyubov mode, which is an
indication of the onset of the hydrodynamic regime where sec-
ond sound is below first sound. This crossing is shifted to low
kx values for high interactions, which suggests that for strong
interactions one would recover the standard hydrodynamic
low temperature result c2/c1 = 1/

√
3, as in the case of liquid

helium.
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