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Entanglement and coherence in photoionization of H2 by an ultrashort XUV laser pulse
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We make a theoretical investigation of photoionization of an H2 molecule, induced by the irradiation of an
ultrashort extreme ultraviolet (XUV) laser pulse. We consider a system composed of a photoelectron ejected
from H2 and the resultant H2

+ as a bipartite system. In order to clarify how the interparticle correlations among
two electrons and two protons in H2 are reflected to the bipartite system, we examine the entanglement between
the photoelectron and the vibrational states of H2

+ as well as the coherence in the vibrational states of H2
+ by

simulating the photoionization process of one-dimensional H2. In the simulation, we solve a time-dependent
Schrödinger equation using a symmetry-adapted grid method. On the basis of the simulations with ten different
sets of three parameters characterizing an ultrashort XUV laser pulse, i.e., the pulse duration, the wavelength,
and the peak intensity, we show that the extent of the entanglement depends sensitively on the coherence in the
vibrational states of H2

+.
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I. INTRODUCTION

Properties of atomic and molecular systems composed of
particles such as electrons and nuclei are characterized by the
correlations among the constituent particles. For example, the
configuration interaction in quantum chemical calculations [1]
and the correlation energy functional in the density functional
theory [2] originate from the electron-electron correlation, and
the nonadiabatic transitions among potential energy surfaces
of molecules [3,4] originate from the electron-nuclear corre-
lation.

In recent years, the interparticle correlation in atoms and
molecules has been related to entanglement [5], which was
originally introduced by Schrödinger [6]. Especially, the en-
tanglement in a bipartite system, which has been investigated
intensively in quantum information science during the past
three decades [7–11], is now being introduced into atomic and
molecular science to explore the interparticle correlation.

Using entanglement, we can quantify the correlation be-
tween two degrees of freedom in a bipartite system. Indeed,
the correlation between an electron and a proton in the ground
state of a hydrogen atom was investigated in terms of en-
tanglement [12] by the density matrix formalism developed
in quantum information theory [13]. For a hydrogen atom,
the entanglement in one-photon ionization [14] and that in
strong-field ionization [15] were investigated. Entanglement
was also used for characterizing the correlation in molecular
systems. It was shown that the electron-electron correlation in
an H2 molecule, quantified using entanglement as a function
of internuclear distance, exhibits a different behavior from the
correlation energy, which is supposed to represent the extent
of the electron-electron correlation [16,17]. The correlation
between the electronic and the vibrational degrees of free-
dom in molecules is also evaluated by using entanglement

*kaoru@chem.s.u-tokyo.ac.jp

[18–20]. The intramolecular vibrational energy redistribution
in H2O originating from the correlation between the vibra-
tional modes was also discussed in terms of entanglement
[21].

On the other hand, the property called coherence has also
been used in describing correlation in atomic and molecular
systems. The recent development of subfemtosecond laser
pulses has enabled us to create a highly coherent superposition
of electronic states of rare gas atom ions [22]. For example, a
method of controlling the coherence in two-level atomic ions
created by ionization of Ne and Xe with an intense IR pulse
was proposed theoretically [23] and such control of the coher-
ence was demonstrated by transient absorption spectroscopy
of Kr, which is ionized by an intense few-cycle near-IR pulse
and probed by a XUV pulse whose duration is 150 as [22].
More recently, it was revealed theoretically that the extent of
coherence in a two-level atomic ion can be enhanced when
the bandwidth of the XUV pulse inducing photoionization
becomes comparable with the energy separation between the
two levels or when the XUV pulse is composed of two
colors whose frequency difference is the same as the energy
separation between the two levels of the atomic ion [24].

Considering that both of the two properties, i.e., entan-
glement and coherence, represent the correlation among the
constituent particles of the system, it would be meaningful
to clarify the difference between these two properties. The
best system with which we could learn how entanglement
and coherence are related to each other is a bipartite system
because entanglement is a property of the total system while
coherence is a property of each of the subsystems. In a recent
theoretical study on the excitation of Cs2 by a sequence of
chirped laser pulses, it was shown that the time evolution of
the entanglement between the electronic part and the vibra-
tional part of the vibronic wave packet can be characterized
by the coherence in the electronic part [25,26].

In the present study, we investigate theoretically the pho-
toionization of H2 creating a bipartite system composed of
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an entangled pair of a photoelectron and an H2
+ ion together

with a coherent superposition of the vibrational states of H2
+.

We solve the time-dependent Schrödinger equation (TDSE)
numerically for photoionization of H2, and evaluate the degree
of the entanglement between a photoelectron and H2

+ as
well as the coherence in the vibrational states of H2

+, and
examine how the entanglement and the coherence describe
the interparticle correlations in the system differently. We also
show how the entanglement and the coherence vary depending
on the laser parameters such as the wavelength, the peak
intensity, and the pulse duration of the ionization laser pulse.
Finally, we propose an experimental pump-probe scheme by
which we can extract the entanglement and the coherence
in photoionization of a molecular system. Throughout the
present paper, atomic units (a.u.) are used unless otherwise
indicated.

II. THEORY

A. Entanglement and coherence

We consider a system composed of a photoelectron and
H2

+ prepared in the electronic ground state, which are pro-
duced from one-dimensional H2 in the electronic and vibra-
tional ground state upon photoionization. We assume that two
protons and two electrons move along the one-dimensional
axis in response to a laser pulse whose polarization is along
this axis. Then, as long as we assume that the electron spin
state is singlet, a wave function of the composite system of
H2

+ + e− is written as

|�〉 =
∑
hlk

chlk|ζh〉 ⊗ 1

2
A{|ηl , α〉1 ⊗ |φk, β〉2

− |ηl , β〉1 ⊗ |φk, α〉2}, (1)

where |ζh〉 is the basis for the nuclear vibration, |ηl〉 is the
basis for the bound electron in H2

+, |φk〉 is the basis for
the photoelectron interacting with the H2

+ ionic core, α and
β are the spin functions, and A is the antisymmetrizer of
the spatial and the spin coordinates. The antisymmetrizer
is defined using the identity operator I12 and the exchange
operator E12 as A = I12 − E12, which exchanges the spatial
and the spin coordinates of two electrons.

In general, when two distinguishable particles are de-
scribed by a product state, |ϕ〉1|χ〉2, two particles are re-
garded as nonentangled, while they are regarded as entangled
when no product state can be assigned to them. When the
system is composed of indistinguishable particles, the same
entanglement criteria used for distinguishable particles cannot
be applied. Various entanglement criteria for the system of
indistinguishable particles have been proposed [27–30], but
these criteria have been developed for the system composed
of one kind of indistinguishable particle, e.g., the system
composed of electrons exclusively. In contrast, the system we
treat is composed of two kinds of indistinguishable particles,
i.e., two electrons and two protons. When the indistinguish-
able particles are spatially separated so that they can be
measured separately, the indistinguishable particles can be
treated as distinguishable particles [31] and the measure of
entanglement, which has been developed in the investigation
of distinguishable particles, can be applied.

The existence of the bijection between the
indistinguishable-particle picture and the distinguishable-
particle picture for both bipartite fermions and bipartite
bosons was proved in Refs. [31,32]. We apply this bijection
to the system of H2

+ + e− because the photoelectron is
spatially separated from the other electron contained in H2

+.
A generalized bijection between two pictures for multipartite
systems including the effect of measurement setups was given
in Ref. [33].

Because of the spatial separation of two electrons, we
can introduce a localized wave packet, |φk〉, representing
an ejected photoelectron whose distance from the rest of
the system, H2

+, is sufficiently large so that they fulfill the
orthogonality, 〈ηl |φk〉 = 0. Then, we define two projection
operators,

P1 ≡
∑

l

|ηl〉11〈ηl |,

Q2 ≡
∑

k

|φk〉22〈φk|, (2)

and by using a map defined as
√

2P1 ⊗ Q2, (3)

we can map |�〉 onto the distinguishable-particle picture [32]
as

|
〉 ≡
√

2P1 ⊗ Q2|�〉
=

∑
hlk

chlk|ζh〉 ⊗ 1√
2
{|ηl , α〉1 ⊗ |φk, β〉2

− |ηl , β〉1 ⊗ |φk, α〉2}. (4)

Then, we perform the basis transformation from the set of
{|ζh〉, |ηl〉} to the vibrational eigenstate of H2

+, {|χv〉}, as

|
〉=
∑
vk

avk
1√
2
{|χv, α〉1 ⊗ |φk, β〉2 − |χv, β〉1 ⊗ |φk, α〉2},

(5)

where v is the vibrational quantum number. We note that
|χv〉 includes the spatial part of the remaining electron. Now
we can treat |
〉 as a bipartite system composed of two
distinguishable particles, a photoelectron and H2

+.
Because we use the dipole approximation for the light-

matter interaction, the spin state does not change during and
after the light-matter interaction, and consequently, the spin
entanglement is invariant. Therefore, in order to evaluate the
laser parameter dependence of the entanglement, we only
need the density matrix for the spatial part, which we can
obtain by taking the trace over the spin coordinates, σ1 and
σ2, as

ρ ≡ Trσ1,σ2 [|
〉〈
|] =
∑
vv′kk′

avka∗
v′k′ {|χv〉〈χv′ | ⊗ |φk〉〈φk′ |}.

(6)
Without loss of generality, we can neglect the spin part and

concentrate on the spatial part of the state,

|
S〉 =
∑
vk

avk|χv〉 ⊗ |φk〉, (7)
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because |
S〉〈
S| gives the same density matrix as Eq. (6).
Therefore, we will use the spatial part |
S〉, instead of |
〉
given by Eq. (5), in the following discussion.

The entanglement of the bipartite system can be evaluated
by the reduced density matrix of either one of two subsystems.
The reduced density matrix of the vibrational state of H2

+ is
obtained by taking the trace over the photoelectron coordi-
nate as

ρvib = Tre(ρ) =
vmax∑

v,v′=0

kmax∑
k=1

avka∗
v′k|χv〉〈χv′ |, (8)

and that for the spatial part of the photoelectron is obtained as

ρe = Trvib(ρ) =
kmax∑

k,k′=1

vmax∑
v=0

avka∗
vk′ |φk〉〈φk′ |. (9)

As a quantitative measure of the extent of entanglement
[5,34,35], quantifiers such as purity [36], Von Neumann en-
tropy [37], and measurement-induced disturbance [38] have
been proposed. Among these quantifiers, we choose purity of
the reduced density matrix because it is directly related to the
coherence of the subsystem as shown below. The purity P of
ρvib is defined as the trace of ρ2

vib,

P ≡ Tr
(
ρ2

vib

) =
vmax∑

v,v′=0

∣∣∣∣∣
kmax∑
k=1

avka∗
v′k

∣∣∣∣∣
2

. (10)

When H2
+ and e− are nonentangled, P = 1 while it de-

creases as the extent of entanglement between H2
+ and e−

increases, and the minimum of the purity Pmin is equal to
Pmin = 1/N , where N = min[vmax + 1, kmax]. We take N as
N = vmax + 1 because the number of the vibrational states is
much smaller than the number of the basis functions needed
for expanding the spatial part of the photoelectron. The purity
can also be calculated by the reduced density matrix of the
spatial part of the photoelectron in the same manner as in
Eq. (10) as

P = Tr
(
ρ2

e

)
. (11)

Off-diagonal elements of the reduced density matrix are
called the coherence while the diagonal elements are called
the population. Equation (10) can be decomposed into two,
that is, the first term defined as the sum of the squared modulus
of the populations and the second term defined as the sum of
the squared modulus of the coherences, as

P =
vmax∑
v=0

|(ρvib)vv|2 +
vmax∑
v 	=v′

|(ρvib)vv′ |2 ≡ P1 + P2. (12)

In order to evaluate the correlation between two vibrational
states, we introduce the degree of coherence [22,24] defined
as

(ρ̃vib)vv′ ≡ |(ρvib)vv′ |√
(ρvib)vv (ρvib)v′v′

or 0, (13)

which satisfies 0 � (ρ̃vib)vv′ � 1. In Eq. (13), we define
(ρ̃vib)vv′ = 0 when (ρvib)vv = 0 or (ρvib)v′v′ = 0 because

avk = 0, ∀k should hold if (ρvib)vv = ∑kmax
k=1 |avk|2 = 0 is sat-

isfied, and consequently, (ρvib)vv′ = ∑kmax
k=1 avka∗

v′k = 0 is also
satisfied.

From Eqs. (12) and (13), the purity can be related to the
degree of coherence as

P =
vmax∑
v=0

|(ρvib)vv|2 +
vmax∑
v 	=v′

(ρ̃vib)vv′ 2(ρvib)vv (ρvib)v′v′ . (14)

When the population is equally distributed, i.e., (ρvib)vv =
1/vmax for all v, the purity takes the minimum value of Pmin =
1/vmax and the degree of coherence is zero. If the degree of
coherence takes its maximum value, i.e., (ρ̃vib)vv′ = 1 for all
v and v′, the purity becomes unity as

P =
vmax∑
v=0

|(ρvib)vv|2 +
vmax∑
v 	=v′

(ρvib)vv (ρvib)v′v′

=
∣∣∣∣∣
vmax∑
v=0

(ρvib)vv

∣∣∣∣∣
2

= 1, (15)

meaning that the total system is nonentangled.

B. Numerical procedure

After separating out the motion of the center of mass, the
Hamiltonian of H2 interacting with a light field within the
dipole approximation is expressed as

H = T0 + V = Te + TN + VeN + Vee + VNN + Vint, (16)

where Vint is

Vint = μE (t ), (17)

Te is the kinetic energy operator of two electrons, TN is the
kinetic energy operator of two nuclei, VeN is the Coulomb
attraction between two electrons and two protons, VNN is the
Coulomb repulsion between two protons, μ is the electric
dipole, and E (t ) is the linearly polarized electric field of light
whose polarization direction is along the one-dimensional
axis.

The explicit form of the operators is expressed as

Te + TN = − 1

2μe

(
∂2

∂x2
+ ∂2

∂y2

)
− 1

M

∂2

∂R2
, (18a)

VeN = − 1√(
x − R

2

)2 + α(R)
− 1√(

x + R
2

)2 + α(R)

− 1√(
y − R

2

)2 + α(R)
− 1√(

y + R
2

)2 + α(R)
,

(18b)

Vee = 1√
(x − y)2 + β

, (18c)

VNN = 1

R
, (18d)

where x and y are the coordinates of the two electrons whose
origin is located at the center of mass of the nuclei, R is the
internuclear distance, M = 1.836 × 103 a.u. is the mass of
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TABLE I. The ten sets of the laser parameters.

Number of set Wavelength (nm) Number of cyclesa Tpulse (fs) Intensityb (W cm−2) Keldysh parameter γ c

1 90 5 × 1012 39
2 20 6.0 1013 28
3 1015 2.8
4 3 0.9 1013 28

5 40 1013 63
20 2.7

6 1015

6.37 3 0.4 1015

8 20 40 2.7 1015

129 1015

20 1.3
10 1016 3.9

aAt the central wavelength of 20 nm, the three-cycle pulse is not considered because its bandwidth becomes so large that it can generate a very
fast electron and a quarter of the de Broglie wavelength ( λdB

4
∼= 0.8 − 0.9 a.u.) is comparable with the grid spacing of the electronic coordinate

(0.5 a.u.).
bThe peak intensities are set so that loss of the population in the ground state of H2 defined as 1 − 〈
H2

0 |
(T )〉 is in the range between 10−4

and 10−1 except set 3.
cThe Keldysh parameter is defined as γ ≡ √

IP/2UP, where IP is the ionization potential of the H2 ground state and UP is the ponderomotive
energy.

a proton, and μe = 2M/(2M + 1) is the reduced mass of an
electron. The dipole operator μ is defined as μ = x + y. The
soft-core potential [39] is applied for VeN and Vee, in which
the Coulomb singularities are eliminated by the softening
parameters, α(R) and β. The parameter α(R) is determined so
that the 1sσg potential energy curve of H2

+ [40] is reproduced.
On the other hand, β is determined so that the equilibrium
internuclear distance of H2 in the electronic ground state,
Rref.

eq = 1.401 a.u. [40], is reproduced. We solve the TDSE
numerically with a grid method called the symmetry-adapted
grid method that we have developed to efficiently calcu-
late single-ionization processes in atoms and molecules (see
Appendix A).

In the present model, 
S is a function of (x, y, R), φk is
a function of x, and χv is a function of (y, R). Because we
can adopt any type of complete orthonormal basis to describe
a photoelectron in the calculation of ρvib as long as the basis
has a vanishing overlap with the basis set describing the other
electron bound to the H2

+ core, we adopt the grid basis as
a complete orthonormal basis with which we describe the
subsystem of a photoelectron, and rewrite Eq. (7) as

|
S〉 =
vmax∑
v=0

de∑
k=1

ãvk|χv〉 ⊗ |xk〉, (19)

where de is the number of grid points along the x axis. The
grid basis {|xk〉} satisfies

〈y, R|〈xk|
S〉 = 
S(xk, y, R)�1/2
x , (20)

where �x is the grid spacing along the x axis. The reduced
density matrix is expressed as

ρvib = Tre(|
S〉〈
S|) =
vmax∑

v,v′=0

de∑
k=1

ãvkã∗
v′k|χv〉〈χv′ |. (21)

The details of the numerical procedure to calculate the
reduced density matrix are given in Appendixes A and B.

III. RESULTS AND DISCUSSION

A. Entanglement and coherence: Pulse duration dependence
and wavelength dependence

The purity and the degree of coherence are calculated using
the ten different sets of laser parameters listed in Table I. The
laser parameters are chosen so that the Keldysh parameter
satisfies γ > 2, which means that the contribution from the
tunnel ionization can be neglected. The definition of Tpulse is
given by Eq. (B3) in Appendix B. As shown in Fig. 1, the pu-
rity increases as the pulse duration decreases, or equivalently,
as the spectral bandwidth increases, reflecting the fact that it
becomes difficult to specify which one of the vibrational states
is prepared only by projecting the photoelectron on its energy
eigenstate.

In Fig. 2, we show the degree of coherence between the
vibrational ground state and the vth vibrational state, (ρ̃vib)v,0,
as a function of the vibrational quantum number v. It can be
seen that the degree of coherence decreases as the vibrational
quantum number increases. It can also be seen in Fig. 2
that the degree of coherence decreases as the pulse duration
increases for the same v.

When the bandwidth of the laser pulse is smaller than
the energy gap between the ground and the vth state, it
becomes less probable for the pair of vibrational states to
be populated coherently. Therefore, the degree of coherence
decreases when the bandwidth decreases by increasing the
pulse duration or when the energy gap between the vth
level and the ground vibrational state increases by increas-
ing the vibrational quantum number. When the bandwidth
becomes extremely small so that the respective vibrational
states are exclusively assigned to the specific kinetic energies
of the photoelectron, that is, when avka∗

v′k ∝ δvv′ is satisfied,
(ρvib)vv′ ∝ δvv′ holds from Eq. (8), representing that the de-
gree of coherence is zero.

In Fig. 1, in the case of λ = 40 nm and N = 20 cycles
(set 6: open circle) and in the case of λ = 20 nm and N = 40
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FIG. 1. The purity as a function of the pulse duration for the ten different sets of laser parameters. In the linear regime, the purity is
insensitive to the light-field intensity; e.g., in the case of (λ = 20 nm, N = 20 cycles), the purity at 1015 W cm−2 (set 9: filled triangle) and the
purity at 1016 W cm−2 (set 10: open triangle) take the same values of 0.954. Similarly, in the case of (λ = 40 nm, N = 20 cycles), the purity at
1013 W cm−2 (set 5: filled circle, P = 0.796) and the purity at 1015 W cm−2 (set 6: open circle, P = 0.795) are very close to each other.

cycles (set 8: open triangle), the purities are 0.795 and 0.825,
respectively. As shown in Fig. 2, because the degrees of
coherence of these two cases are almost the same, reflecting
the fact that their pulse durations are the same, the small
difference in their purities can be ascribed to the difference in
the populations. The dependence of the degree of coherence
on the pulse duration is consistent with the previous study on
the ionization of Xe [24], in which the degree of coherence
between two levels of Xe+ was shown to decrease as the pulse
duration increases.

B. Entanglement and coherence: Intensity dependence

1. Linear regime

We investigate the light-field intensity dependence of the
purity and the degree of coherence in the cases of set 1 and
set 2 with λ = 90 nm and N = 20 cycles. As shown in
Fig. 2, the degree of coherence at the light-field intensity of

1013 W cm−2 (set 2: open square) exhibits almost the same
dependence on the vibrational quantum number as the degree
of coherence at the light-field intensity of 5 × 1012 W cm−2

(set 1: filled square), reflecting the fact that their pulse du-
rations are the same. Because their purities are almost the
same as shown in Fig. 1, the populations in sets 1 and 2
are expected to be almost the same, which means that the
light-field intensities are in the linear regime; that is, the loss
of the population in the ground state of H2 as well as the
populations in the vibrationally excited states of H2

+ increase
linearly in this intensity range by a process corresponding
to a one-photon absorption. Indeed, we have confirmed that
the loss of the population in the ground state of H2 defined
as 1 − 〈
H2

0 |
(T )〉 is 0.033 and 0.016 at 1013 W cm−2 and
5 × 1012 W cm−2, respectively.

We can also see in Figs. 1 and 2 that, when the light-field
intensity is in the linear regime, the purity and the degree of
coherence obtained using two different sets of the wavelength

FIG. 2. The degree of coherence (ρ̃vib)v,0 as a function of vibrational quantum number and the pulse duration for ten different laser
parameters. In the linear regime, the degree of coherence is insensitive to the light-field intensity, e.g., in the case of (λ = 20 nm, N = 20
cycles), the degree of coherence at 1015 W cm−2 (set 9: filled triangle) is in good agreement with the degree of coherence at 1016 W cm−2 (set
10: open triangle). Similarly, in the case of (λ = 40 nm, N = 20 cycles), the degree of coherence at 1013 W cm−2 (set 5: filled circle) is in good
agreement with the degree of coherence at 1015 W cm−2 (set 6: open circle).
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and the number of cycles, i.e., (i) set 9 and set 10 (λ = 20 nm,
N = 20 cycles) and (ii) set 5 and set 6 (λ = 40 nm, N = 20
cycles), do not vary sensitively on the light-field intensity.

2. Nonlinear regime

As shown in Fig. 2, in the case of λ = 90 nm and N =
20 cycles, the degree of coherence at 1015 W cm−2 (set 3:
open dashed square) deviates largely from the other two
cases at 5 × 1012 W cm−2 (set 1) and 1013 W cm−2 (set 2).
At 1015 W cm−2, the (ρ̃vib)v,0 values for v = 1 and 2 are
almost the same as the corresponding values for the weaker
two cases, but, as the vibrational quantum number increases
further, for v � 3, the (ρ̃vib)v,0 value at 1015 W cm−2 becomes
larger than the corresponding values at 5 × 1012 W cm−2 and
1013 W cm−2, and the deviation becomes maximum when the
vibrational quantum number is v ∼ 11. This deviation can be
ascribed to the second- or higher-order interaction with the
light field as described below.

The loss of the ground state of H2 at 1015 W cm−2 (set 3)
is 0.94, which is much larger than the loss of the ground state
at 5 × 1012 W cm−2 (set 1) and that at 1013 W cm−2 (set 2),
showing that the light-field intensity of 1015 W cm−2 is no
longer in the linear regime. The Keldysh parameter, γ = 2.8
(see Table I), for set 3 indicates that the photoionization
proceeds through the multiphoton process.

Because the transition moment between the ground state
of H2 and the final state composed of the photoelectron and
the vibrational state of H2

+(1sσg) decreases as the photoelec-
tron energy increases, the ionization probability at 90 nm is
larger than the ionization probabilities at the other shorter
wavelengths as long as the number of cycles and the intensity
are the same. Therefore, at a 90-nm laser pulse, the second-
or higher-order interaction can no longer be neglected at the
intensity reaching 1015 W cm−2.

At 1015 W cm−2, the second-order interaction with the light
field, corresponding to the two-photon process, results in a
broader energy distribution of photoelectrons than that of
photoelectrons produced from a one-photon process. There-
fore, it is expected that the second-order interaction increases
the coherence among the vibrational states of H2

+. On the
other hand, the third-order interaction with the light field,
corresponding to a three-photon process, increases the coher-
ence not only by creating the photoelectron with a broader
energy distribution but also by inducing one-photon ionization
followed by Raman-type vibrational excitations.

For instance, if the ionization results in the formation of
|χv〉|φk〉, a Raman-type transition from |χv〉|φk〉 to |χv′ 〉|φk〉
can occur. Consequently, it becomes more probable that the
vth and the v′th states are assigned to the same kinetic energy
of the photoelectron; therefore, avka∗

v′k 	= 0 holds in the wider
range of k than in the case of the weaker intensities, resulting
in the higher coherence.

C. Purity, coherence, and population

As shown in Fig. 1, when λ = 90 nm and N = 20 cy-
cles, the purity at 1015 W cm−2 (set 3, P = 0.626) is larger
by 0.115 − 0.116 than the purities at 5 × 1012 W cm−2 (set

FIG. 3. The two contributions to the purity, the population P1 and
the coherence P2, for the ten different laser parameters. The number
inside the bar indicates the laser parameters, e.g., the set of “40, 3,
and 1015” represents the pulse characterized by the parameters of
40 nm, 3 cycles, and 1015 W cm−2.

1, P = 0.511) and 1013 W cm−2 (set 2, P = 0.510). At
1015 W cm−2, because of the transitions among the vibrational
states induced by the light field, not only the coherence but
also the population can be different from the weaker cases.
In order to evaluate the contribution from the population and
that from the coherence to the purity, we use the sum of the
squared modulus of the population P1 and the sum of the
squared modulus of the coherence P2 defined in Eq. (12).

As shown in Fig. 3, the P2 value at 1015 W cm−2 (set
3) is larger than the P2 values at 5 × 1012 W cm−2 (set
1) and 1013 W cm−2 (set 2), which is consistent with the
above explanation about the increase in the degree of co-
herence. On the other hand, the contribution from the P1

value at 1015 W cm−2 is smaller than the P1 values at 5 ×
1012 W cm−2 and 1013 W cm−2. The smaller value of P1

means that the population is more equally distributed asso-
ciated with the Raman-type transitions among the vibrational
states. Because the amount of decrease in P1 is much smaller
than the amount of increase in P2, the purity defined as the
sum of P1 and P2 becomes larger at 1015 W cm−2 than those at
5 × 1012 W cm−2 and 1013 W cm−2.

As shown in Fig. 3, the contribution from P2 is much larger
than that from P1 in all the ten cases of the laser parameters.
Because the pulse durations considered here are all short
enough, the bandwidths of the laser are wider than the energy
gaps among the vibrational states of H2

+, which results in the
large coherence. When the pulse duration becomes longer so
that the bandwidth becomes comparable with or smaller than
the energy gaps among the vibrational states, the contribution
from P1 to the purity becomes larger. In an extreme case of the
infinitely long pulse duration, corresponding to a continuous
wave (cw) laser, the coherence P2 between vibrational states
vanishes, and consequently, the purity is represented by the
population P1 exclusively.
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D. Experimental scheme for determining
the reduced density matrix

The reduced density matrix of the vibrational states can
be determined by the pump-probe experiment as proposed
in Ref. [41]. First, H2 is ionized by the pump pulse and the
resultant vibrational state of H2

+ is described using ρvib as in
Eq. (8). After a certain time delay τ , the probe VUV pulse
excites H2

+ to the 2pσu state and the photofragment, H+, is
produced via the dissociation. We set the origin of time, t = 0,
at the peak position of the temporal shape of the pump pulse
and set the peak position of the probe pulse at t = τ .

By assuming that the electric field of the probe pulse,
Eprobe, satisfies Eprobe(t − τ ) 	= 0 during t ∈ [t0, t f ], the free
propagation until the system is excited by the probe pulse is
expressed by

Ufree(τ ) = exp

[
−iH0

(
τ − Tpulse + t f − t0

2

)]
, (22)

where H0 is the field-free Hamiltonian for H2
+ and Tpulse is the

duration of the pump pulse defined in Eq. (B3) in Appendix B.
The interaction with the probe pulse is expressed in the first-
order perturbation theory as

Uprobe(t )=
[

e−iH0(t−t0 ) − i
∫ t

t0

dt1e−iH0(t−t1 )Vint (t1)e−iH0(t1−t0 )

]
,

(23)

with

Vint (t1) = μEprobe(t1 − τ ), (24)

where the probe pulse Eprobe(t1 − τ ) starts interacting with
H2

+ at t1 = t0 and ends interacting at t1 = t f .
The observation of |χu(ωu)〉, which is the dissociat-

ing eigenstate of 2pσu having the kinetic energy release
(KER), ωu, is expressed using the projection operator �u ≡
|χu(ωu)〉〈χu(ωu)| as

�uUprobeUfree(τ )ρvibU
†
free(τ )U †

probe�u

= |χu〉
vmax∑

v,v′=0

(ρvib)vv′e−i(ωv−ωv′ )(τ− Tpulse+t f −t0
2 )

×〈χu|Uprobe|χv〉〈χv′ |U †
probe|χu〉〈χu|

= |χu〉
vmax∑

v,v′=0

(ρvib)vv′e−i(ωv−ωv′ )(τ− Tpulse+t f −t0
2 )

× pv (ωu)p∗
v′ (ωu)〈χu|, (25)

where ωv is the eigenenergy of the vth vibrational state and
pv (ωu) is the transition amplitude from |χv〉 to |χu〉 defined as

pv (ωu)=−iMv (ωu)e−iωut eiωvt0t
∫ t

t0

dt1Eprobe(t1 − τ )ei(ωu−ωv )t1 ,

(26)

using the transition moment,

Mv (ωu) ≡ 〈χu|μ|χv〉. (27)

The probability of finding |χu〉 by the detector is a function
of the time delay τ and the KER, ωu, expressed as

I (τ ; ωu) ≡
vmax∑

v,v′=0

(ρvib)vv′e−iωvv′ (τ− Tpulse+t f −t0
2 ) pv (ωu)p∗

v′ (ωu),

(28)

where we defined ωvv′ ≡ ωv − ωv′ . This probability corre-
sponds to the delay-KER spectrogram defined in Ref. [41].
Because the pulse duration of the probe pulse is short enough
so that Eprobe(t1 − τ ) = 0 is satisfied when t1 < t0 or t1 > t f ,
the time integral in Eq. (26) becomes the Fourier transform of
the probe pulse represented as

pv (ωu) = −iMv (ωu)e−iωut eiωvt0 ei(ωu−ωv )τ

×
∫ t−τ

t0−τ

dt ′Eprobe(t ′)ei(ωu−ωv )t ′

= −iMv (ωu)e−iωu (t−τ )e−iωv (τ−t0 )

×
∫ ∞

−∞
dt ′Eprobe(t ′)ei(ωu−ωv )t ′

= −iMv (ωu)e−iωu (t−τ )e−iωv

t f −t0
2 Ẽ (ωu − ωv ), (29)

where Ẽ (ω) is the Fourier amplitude of the probe pulse.
By representing pv (ωu) and p∗

v′ (ωu) in Eq. (28) by Eq. (29)
and by performing the Fourier transform with respect to τ , we
obtain the frequency-KER spectrogram as

Ĩ (�; ωu) =
vmax∑
v=0

(ρvib)vv|Mv (ωu)Ẽ (ωu − ωv )|2δ(�)

+
vmax∑

v,v′=0

{Ĩvv′ (�; ωu) + Ĩvv′ (−�; ωu)}, (30)

where Ĩvv
′ (�; ωu) is defined as

Ĩvv′ (�; ωu) = (ρvib)vv′eiωvv′
Tpulse

2 Mv (ωu)M∗
v′ (ωu)

× Ẽ (ωu − ωv )Ẽ∗(ωu − ωv′ )δ(� − ωv + ωv′ ).

(31)

The left-hand side of Eq. (31) above, Ĩvv′ (�; ωu), gives
the nonzero complex amplitude only when � = ωvv′ , ωu ∼=
ωp + ωv , and ωu ∼= ωp + ωv′ are satisfied, where ωp repre-
sents the frequency component of the probe pulse. Because
Ẽ (ωu − ωv ) and Ẽ∗(ωu − ωv′ ) in Eq. (31), varying as a func-
tion of ωu, have the same width, the peak in Ĩvv′ (�; ωu)
at the beat frequency of ωvv′ is spread along the ωu axis
with the width of the product of Ẽ (ωu − ωv )Ẽ∗(ωu − ωv′ ).
Therefore, in order to obtain the reduced density matrix
element, (ρvib)vv′ , from the frequency-KER spectrogram, the
bandwidth of the probe pulse should be larger than ωvv′ . In
other words, the pulse duration of the probe pulse should be
shorter than the beat period defined as 2π/ωvv′ in the time
domain. This means that, in order to obtain the entire reduced
density matrix of ρvib, the pulse duration of the probe laser
pulse needs to be shorter than the shortest beat period of
2π/ω0,vmax = 1.5 fs.

In the frequency-KER spectrogram, there are peaks at the
zero frequency � = 0 and at the beat frequencies � = ωvv′
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as can be seen from Eq. (30). As long as the Fourier am-
plitude of the probe pulse Ẽ (ω) is known, the diagonal
elements, (ρvib)vv , and the off-diagonal elements, (ρvib)vv′ , of
the reduced density matrix are determined using the transition
amplitude Mv (ωu), which can be evaluated numerically from
the first and second terms in Eq. (30), respectively. The purity
and the degree of coherence can be calculated from Eqs. (10)
and (13), respectively, using the reduced density matrix. We
note that, even if the Fourier transform of the probe pulse is
not known in advance, the matrix elements of the reduced
density matrix can be determined from the frequency-KER
spectrogram using the iterative method recently proposed in
Refs. [41,42].

As described above, we can extract the purity and the
degree of coherence experimentally in the following steps.
First, we ionize H2 by the irradiation of an ultrashort XUV
pulse, dissociate the resultant H2

+ by the irradiation of a
subsequent probe VUV pulse, and record the KER distri-
bution of the photofragment, H+. Then, by performing the
Fourier transform of the delay-KER spectrum, we obtain a
frequency-KER spectrogram and extract the matrix elements
of the reduced density matrix of ρvib from Eq. (30). Finally,
we calculate the purity and the degree of coherence from
Eqs. (10) and (13), respectively, using the reduced density
matrix.

IV. CONCLUSION

We have investigated theoretically the photoionization pro-
cess of H2 induced by the irradiation of an ultrashort XUV
laser pulse by regarding H2

+ and a photoelectron as a bipartite
system, and have analyzed the relation between the purity,
which quantifies the entanglement between H2

+ and the pho-
toelectron, and the coherence in the vibrational states of the
moiety of H2

+.
We perform one-dimensional propagation of the wave

packet represented by the grid basis to describe the ionization
of H2 and demonstrate how the purity and the coherence
depend on the laser parameters in the range of I (peak field
intensity)= 5 × 1012 − 1016 W cm−2, λ (the central wave-
length) = 20 − 90 nm, and Tpulse (the pulse duration) = 0.4 −
6.0 fs.

(i) As the pulse duration increases the degree of coherence
decreases, reflecting the fact that it becomes less probable
for the two states to be coherently populated. The degree of
coherence also decreases as the energy gap between the two
vibrational states increases by the same reason.

(ii) As long as the laser intensity is weak enough so that
the loss of the population in the ground state of H2 depends
linearly on the laser intensity, the purity and the coherence
are insensitive to the peak intensity of the laser pulse. On
the other hand, when the laser intensity becomes so strong
that the Raman-type transitions among the vibrational states
of H2

+ cannot be neglected, the purity and the degree of
coherence vary depending on the laser intensity. In the case of
λ = 90 nm and N = 20 cycles, both the degree of coherence
and the purity increase when the laser intensity is raised to
I = 1015 W cm−2 from 5 × 1012 W cm−2 and 1013 W cm−2.

(iii) When the pulse duration is short enough so that the
bandwidth of the pulse is comparable to or larger than the

energy gaps between the vibrational states of H2
+, the coher-

ence makes the dominant contribution to the purity while the
population makes the minor contribution. Because the extent
of the entanglement increases when the purity decreases, the
extent of the entanglement between the vibrational states of
H2

+ and the photoelectron increases as the coherence among
the vibrational states decreases as long as the pulse duration is
short enough so that the bandwidth is comparable to or larger
than the energy gaps between the vibrational states.

(iv) The procedure for deriving the purity and the degree
of coherence from experimental data is proposed. Once the
experimental delay-KER spectrogram is recorded by pump-
probe measurements, the frequency-KER spectrogram is ob-
tained by the Fourier transform, from which the reduced
density matrix is obtained. Then, the purity and the degree
of coherence are calculated from the matrix elements of the
reduced density matrix.
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APPENDIX A: SYMMETRY-ADAPTED GRID METHOD

The computational scheme to obtain the reduced density
matrix of the vibrational state of H2

+ is given as follows. First,
we propagate the electronic and vibrational ground state of
H2, |
H2

0 〉, in the light field as

|
(t )〉 = U (t )
∣∣
H2

0

〉
, (A1)

where U (t ) is the propagator corresponding to the time-
dependent Hamiltonian, Eq. (16), and project out the initial
state as

|
′(t )〉 = (
1 − ∣∣
H2

0

〉〈



H2
0

∣∣)|
(t )〉. (A2)

We obtain the wave packet corresponding to the single
ionization by extracting the part of |
′(t )〉 in the domain S1 or
S2 in Fig. 4 at certain time T , which is denoted as |
S1,S2(T )〉.
The domains S1 and S2 in which one of the electrons is
emitted are defined by |x| > 30 a.u. and |y| < 30 a.u., while
the domain B in which both electrons are bound is defined by
|x| < 30 a.u. and |y| < 30 a.u. In order to analyze |
S1,S2(t )〉,
we wait until T when the singly ionized wave packet can
be described well by the product of the eigenstate of H2

+

and |xk〉.
It should be noted that the wave packet |
S1,S2(T )〉 is com-

posed of (i) a photoelectron and a bound state of H2
+(1sσg)

and (ii) a photoelectron with the dissociating H2
+ through the

continuum state of H2
+ (1sσg) above the dissociation thresh-

old or through the continuum state in an electronically excited
state of H2

+ like 2pσu. Considering that the scalar product of
|χv〉 and the dissociating states of H2

+ included in |
S1,S2(T )〉
vanish, the projection of |
S1,S2(T )〉 on |χv〉 ⊗ |xk〉 yields ãvk ,
that is,

ãvk = 〈χv|〈xk|
S1,S2(T )〉. (A3)
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FIG. 4. (a) The grid space in the conventional grid method. In
domain B both electrons are bound. The domain S represents single
ionization and the domain D represents double ionization. (b) The
grid space in the SAG method. The red peripheral region represents
the CAP. In the peripheral region (in blue color) above and below the
domain B, the reflection is avoided without using the CAP.

By using the property of the grid basis expressed in
Eq. (20), we can simplify Eq. (A3) as

ãvk = 〈χv|
S1,S2(xk, T )〉�1/2
x

=
∑
l,m

〈χv|yl , Rm〉〈yl , Rm|
S1,S2(xk, T )〉�1/2
x

=
∑
l,m

χ∗
v (yl , Rm)
S1,S2(xk, yl , Rm, T )�y�R�1/2

x , (A4)

where |yl〉 and |Rm〉 are the grid bases for the respective
coordinates. From Eqs. (21) and (A4), we can obtain the
reduced density matrix from which the purity and the degree
of coherence are calculated.

We integrate the time-dependent Schrödinger equation nu-
merically by adopting the grid method. We perform the time
propagation using the split-operator method expressed as

U (t ) = exp

[
−i

�t

2
V

(
t + �t

2

)]
exp(−i�tT0)

× exp

[
−i

�t

2
V

(
t + �t

2

)]
, (A5)

where V (t ) is the potential including the laser-matter in-
teraction and T0 is the kinetic energy operator [Eq. (16)].
For the numerical differentiation, we employ the fast Fourier
transform (FFT).

Because we neglect the double ionization, the grid space
can be reduced significantly. By following the scheme intro-
duced by Rapp and Bauer [43], we developed a symmetry-
adapted grid (SAG) method by which we propagate the wave
packet described in the two-dimensional grid space [Fig. 4(b)]
by making full use of the symmetry property of the electronic

wave function. In Fig. 4(a), the domain B represents H2 in
which both electrons are bound, the domain S represents the
single ionization, and the domain D represents the double
ionization. Because the spatial wave function of the electronic
ground singlet state is symmetric under the exchange of the
two electron coordinates, the two domains, S1 and S′

1, are
equivalent; so are the two domains, S2 and S2

′. In the SAG
method, we can reduce the computational cost significantly.
Indeed, the wave packet propagation only in the domains B,
S1, and S2 [Fig. 4(b)] is sufficient for describing the wave
packet corresponding to the single ionization.

In order to avoid the spurious reflection at the edge of
the grid space, a complex absorbing potential (CAP) [44] is
applied to the red peripheral region in Fig. 4. Because the
wave packet being propagated from the domain S into D
should be absorbed in the SAG method, the CAP is applied to
the red-colored upper and lower boundary regions in Fig. 4(b).

Because the wave packet going into the domain S′
1 from

B should not be absorbed, the CAP cannot be applied in the
blue-colored upper and lower regions in Fig. 4(b). However,
if there is no CAP there, a spurious reflection could occur.
We can solve this problem by utilizing the symmetry of the
wave function and the symmetry of the Hamiltonian under the
exchange of two electronic coordinates.

By denoting the wave function after the operation of the
first term of the propagator in Eq. (A5) as

|
′〉 ≡ exp

{
−i

�t

2
V

(
t + �t

2

)}
|
〉, (A6)

the operation of the second term in the propagator on the wave
function reads

exp(−i�tT0)|
′〉= exp

{
−i�t

1

M

∂2

∂R2

}
exp

{
−i�t

1

2μe

∂2

∂x2

}

× exp

{
−i�t

1

2μe

∂2

∂y2

}
|
′〉. (A7)

In the SAG method, the differentiation along y is rewritten
by utilizing the symmetry of the wave function and the kinetic
energy operator as

exp

{
−i�t

1

2μe

∂2

∂y2

}
|
′〉

→ PxyQB

[
exp

{
−i�t

1

2μe

∂2

∂x2

}
|
′〉

]

+ QS

[
exp

{
−i�t

1

2μe

∂2

∂y2

}
|
′〉

]
, (A8)

where Pxy exchanges x and y, and QB and QS extract the wave
packets in the domains B and S, respectively. The second term
represents the differentiation along y in the domain S.

We note here that we can apply the SAG method to the
triplet state by modifying Eq. (A8) as

exp

{
−i�t

1

2μe

∂2

∂y2

}
|
′〉

→ PxyQB

[
− exp

{
−i�t

1

2μe

∂2

∂x2

}
|
′〉

]

+ QS

[
exp

{
−i�t

1

2μe

∂2

∂y2

}
|
′〉

]
, (A9)
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FIG. 5. Spatial distributions of the wave packet along (a) the x direction and (b) the y direction obtained by the SAG method (red dashed
curve) and those obtained by the conventional grid method (black solid curve) at the propagation time of 7.257 fs after the interaction with the
laser pulse. The enlarged view of (a) is shown in (c). In (a),(c), the boundaries between domain B and domains S1 and S2 are indicated by the
vertical dashed lines at x = ±30 a.u.

by taking into account the fact that the spatial wave function
of a triplet state is antisymmetric.

In order to examine the accuracy of the SAG method,
we performed test calculations with the nuclei fixed at the
equilibrium distance of H2. The electronic ground state of
H2 is obtained by imaginary-time propagation. We stop the
wave-packet propagation 7.257 fs after the interaction with
the laser pulse (40 nm, 20 cycles, and 1.0 × 1015 W cm−2).
The spatial distributions of the wave packet along the x
direction, ρx, and y direction, ρy, defined as

ρx =
∫

dy|
(x, y)|2, ρy =
∫

dx|
(x, y)|2, (A10)

are shown in Fig. 5. In this test calculation, the grid space for
the conventional grid method is defined as |x|, |y| � 500 a.u.,
and for the SAG method as |x| � 500 a.u., |y| � 30 a.u.; i.e.,
the grid space is reduced by about 500/30 ∼= 17 times. For the
longer time propagation, the grid space needs to be enlarged.
When the size of the two-dimensional grid space is as L × L,
the required memory size is proportional to L in the SAG
method while it is proportional to L2 in the conventional
method.

In Figs. 5 and 6, the black curves show the results with
the conventional grid method, while the red ones show the
results with SAG method. In Fig. 5(a) the relative error is
smaller than 2% in the domains S1 and S2, where the red
and the black curves overlap each other almost completely.
In Fig. 6(a), the photoelectron spectra obtained by the Fourier
transform of the wave packet in the domains S1 and S2 are
normalized by their own maxima, where the red and the
black curves overlap each other almost completely. There are
two peaks at 0.66 and at 0.13 a.u. By comparing the photon

energy, 1.139 a.u., with the energy gap between the initial
state and 1sσg of H2

+, 0.482 a.u., and with the energy gap
between the initial state and 2pσu of H2

+, 1.006 a.u., the
higher energy peak corresponds to the direct ionization to 1sσg

while the lower energy peak corresponds to the ionization to
2pσu, which is called a shake-up process. In Fig. 6(b), the
difference between the two spectra calculated by subtracting
the amplitude obtained by the conventional method from the
amplitude obtained by the SAG method is plotted. As shown
in this figure, the absolute values of the difference are smaller

FIG. 6. (a) Photoelectron energy distributions obtained by the
SAG method (red dashed curve) and those obtained by the con-
ventional grid method (black solid curve). (b) Magnified difference
defined as “the red curve” and “the black curve” in (a).
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FIG. 7. The softening parameter α(R) in Eq. (18b) as a function
of the internuclear distance.

than 0.001 32 even in the photoelectron kinetic energy regions
of 0.05–0.30 a.u. and 0.57–0.80 a.u.

As mentioned in the paragraph before Eq. (A3), the wave
packet |
S1,S2(T )〉 has the contribution from the electroni-
cally excited states of H2

+ like 2pσu. However, we eliminate
the contribution from such electronic states by projecting
|
S1,S2(T )〉 on the electronic ground state of H2

+, by which
we can calculate the reduced density matrix of the vibrational
states in the electronic ground state.

APPENDIX B: TIME PROPAGATION

We obtain first the initial state by the imaginary-time
propagation [45]. As the grid spacing, we adopt �x =
�y = 0.50 a.u. and �R = 0.08 a.u. The grid size is |x| �
500 a.u., |y| � 30 a.u., and 0.08 a.u. � R � 40.96 a.u. The
softening parameter for the electron-nuclear attraction α(R)
is shown in Fig. 7 and that for the electron-electron re-
pulsion is β = 0.35. In the time propagation by the split-
operator method, we adopt FFT [46–48]. The time step for
the imaginary-time propagation, �τ , is �τ = 0.05 a.u. for

H2
+ and that for H2 is �τ = 0.10 a.u. In order to resolve

the small energy difference among the vibrationally highly
excited states of H2

+, we adopt the smaller time step for H2
+.

We calculate the energy and the equilibrium internu-
clear distance of H2 in the electronic ground state to be
E0 = −1.036 a.u. and Req = 1.397 a.u., respectively, which
are in good agreement with the reference values of E ref.

0 =
−1.165 a.u. and Rref.

eq = 1.401 a.u., obtained by solving the
time-independent Schrödinger equation with the exact poten-
tial energy curve [40].

The functional form of the complex absorbing potential
(CAP) is

V ξ
CAP =

{−iηξ (|ξ | − ξCAP)2, |ξ | � ξCAP

0, elsewhere
, (B1)

where ξ = x, y, and R. We adopt ηx = ηy = 0.05, xCAP =
450 a.u., yCAP = 25 a.u., ηR = 0.01, and RCAP = 32.96 a.u.

We consider that a hydrogen molecule in the ground state
is exposed to a Fourier-limited laser pulse having a cosine-
squared envelope,

E (t ) =
{

E0cos2
(

π
Tpulse

t
)

cos(ωt ), |t | � Tpulse/2

0, otherwise
, (B2)

where Tpulse defined as

Tpulse = N
2π

ω
(B3)

is referred to as the pulse duration and N is the number
of optical cycles. The light-field intensity is in the range of
I = 5 × 1012−1016 W cm−2 and the central wavelength of the
light field is in the range of λ = 20−90 nm. The time step
is �t = 0.1 a.u. After the light field vanishes, the field-free
propagation proceeds until certain time T . The reduced den-
sity matrix is calculated and renormalized so that Tr(ρvib) = 1
is satisfied.
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