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Near-threshold photodetachment microscopy in the presence of a transverse magnetic field
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Near-threshold photodetachment microscopy of mononegative ions is theoretically studied when a homoge-
neous transverse magnetic field B is superimposed to the static electric field E. The electron flux distribution is
obtained using two different approaches: the quantum source theory with the energy-Green function evaluated
by means of the stationary phase approximation and the closed-orbit theory. Here we describe the physical
ideas while developing the theory in detail. Both theoretical methods yield consistent descriptions for all field
intensities and angular momentum of the detached electrons we have investigated and also reproduce reported
experimental results. From our calculations, we have found that the presence of the transverse magnetic field
leads to a global displacement of the recorded electron flux distribution along the E × B direction. Furthermore,
we found that the shape of the recorded interference pattern changes from circular to elliptical as the magnetic
field increases. We have theoretically characterized and quantified those effects on the interference pattern due
to the presence of the transverse magnetic field.
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I. INTRODUCTION

For the study of the matter-waves interference phenomena
in atomic physics the electron properties have been widely
used [1–4]. Hence electron interference effects rapidly be-
came the core of photodetachment microscopy experiments
[5–7], that is a technique introduced to describe the process of
observing and measuring the phenomenon of photoelectrons
interference [8–10]. The crucial idea considers electrons, pro-
duced due to photodetachment of negative ions in the presence
of a uniform static electric field, and the field accelerates the
electron towards a position-sensitive two-dimensional detec-
tor located at a macroscopic distance, so that the photoelectron
spatial distribution is observed from the signal recorded. Un-
der this configuration the interference pattern observed shows
concentric rings. This pattern is explained as the interference
of the electrons following two classical paths linking the
atom with the detector [11–13]. In this sense, the external
field provides a virtual double-slit environment that allows for
probing the energy of the emitted electron, and thereby the
electron affinity of the ion, with extreme accuracy [14,15].

The relevance of the technique demanded the study of
more complex field configurations. So far, the electron prop-
agation in solely homogeneous magnetic field [16], as well
as parallel electric and magnetic fields, has been studied
theoretically [17,18]. In the aforementioned cases, the spatial
electron distribution at the detector could be obtained in a
closed form using quantum theory, but also by semiclassical
methods that provide clear physical insights about the nature
of the phenomenon. On the other hand, photodetachment
microscopy in crossed electric and magnetic fields has been
implemented experimentally [7], and some of their results
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have been discussed and explained from classical theory [19],
but despite the attempts the theoretical quantum solution in a
closed form is still absent [19–21]. From those experiments,
it has been obtained that the combination of electric and
magnetic fields imprints a nontrivial structure on the spatial
electron distribution [18,22].

Recently, we have addressed the issue of the photodetach-
ment microscopy in the presence of crossed homogeneous
electric and magnetic field, from the theoretical point of view,
using two approaches: the quantum source theory and the
closed-orbit theory [22]. We obtained identical interference
patterns out of the two theoretical approaches for given
values of the angular momentum of the photoelectron. Our
findings confirmed previous experimental [7] and theoretical
[19] explanations: the presence of a perpendicular magnetic
field produces a global displacement of the classical electron
trajectories along the E × B direction, which is translated in a
global displacement of the interference pattern in the recorded
spatial electron distribution. Furthermore, we theoretically
studied the effects of increasing the magnetic-field intensity
into a region which has not been experimentally studied so
far, unraveling that, in addition to the global displacement
of the interference pattern, the shape of the pattern changes
from circular to elliptical as the intensity of the field increases.
We focused our attention on photoelectrons emitted with
isotropic and anisotropic angular distribution, in particular,
with angular momentum l = 0, 1, corresponding to s waves
and p waves. In Fig. 1 a diagram showing the microscope
configuration and effects of the magnetic field are depicted.

In this article, we aim to present the details of the theo-
retical formulation and the analytical expressions that allow
one to fully quantify the effects of the perpendicular B field
in near-threshold photodetachment microscopy of negative
ions. Let us briefly describe the article structure. In Sec. II
we present the physical situation under study and set the
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FIG. 1. Photodetachment microscopy from negative ions
scheme. The electric and magnetic fields are perpendicular to
each other. The emitted electron is considered not only isotropic
(s waves) but also anisotropic (p waves). For p waves, sublevel
m = 0 corresponds to a laser field polarized parallel to the electric
field, whilst m = −1, 1 corresponds to perpendicular polarization.
In the absence of magnetic field the spatial electron distribution
shows concentric circular rings. Meanwhile, in the presence of the
perpendicular magnetic field, the spatial distribution is displaced
along the E × B direction and the interference rings are no longer
circular.

magnitudes of the parameters for the numerical experiments.
Section III is devoted to the study of the classical equation
of motion describing the electron trajectories, as well as the
caustic surface and the classically allowed region for the
electrons arriving at the detection plane. In the following two
sections we construct the outgoing electron wave function,
for isotropic (s waves) and anisotropic (p waves) emissions.
In detail, Sec. IV introduces the quantum source theory for
the description of the wave function corresponding to the
physical phenomena, while in Sec. V the closed-orbit theory
is presented and the wave function constructed. Section VI
describes the numerical results obtained from both theoretical
approaches when the two-dimensional spatial distribution is
recorded; the two main effects due to the presence of the
transverse magnetic field are highlighted. Finally, in Sec. VII
a discussion of the results and conclusions are presented.

II. PHOTODETACHMENT MICROSCOPY

In the photodetachment microscopy scheme electrons are
detached from negatively charged ions X − due to the inter-
action with a laser field: X − + h̄ωl → X + e−, where ωl is
the photon frequency of the laser. The electron is emitted
with a definite energy E = h̄ωl + Eb, with Eb the binding
energy of the specific atomic species and with a given angular
momentum. Here we focus our attention on the generation of
electronic s waves and p waves [6,7,19,23–26]; for instance,
these conditions have been achieved in experiments using
S− and H−, respectively. Then, the electron wave propagates
outward from the atomic source to a spatial region where
external electric E and magnetic B fields are present. The
configuration under study is such that the electric field acceler-
ates the electron to a detection plate, while the magnetic field
is oriented perpendicularly. Finally, the electron reaches a
detector oriented perpendicular to the electric field and placed
at macroscopic distances. The fields lead to the formation of

an interference pattern on the detector. Favorable conditions
for the conspicuous fringe occur when photoelectrons leave
the atom mainly along the same direction as the electric
field. This is achieved only for m = 0 in the case when
photon polarization is parallel to the electric field, while for
perpendicular polarization to the field m = ±1 [8].

Henceforth, for the theoretical model we will consider
electrons with charge −q (q the elementary charge) and
mass m released outward from the monovalent anion with a
definite energy E (near-threshold E → 0). The electric field
is E = −E k̂, E > 0, and transverse to it the magnetic field
is B = B ı̂, B > 0. The detector is at z = zD. A schematic
view of the situation described is shown in Fig. 1. In order to
numerically study the effects of the transverse magnetic field
we are going to fix the following magnitudes: E = 350 V/m,
E = 120 μeV, and the detector position zD = 0.50 m, while
varying the magnetic-field intensities.

Within the quantum theory, the physical system could be
described by a total Hamiltonian of the form

Htotal = 1

2m
(p + qA)2 − q�(r) + Vc + VL, (1)

where p is the momentum operator of the electron, A is the
magnetic vector potential, and �(r) is the electric potential
associated to the external fields. The potential Vc accounts
for the interaction of the detached electron with the remaining
atom and VL takes into account the interaction with the laser
pulse that produces the detachment.

In order to compare with experiments, the quantity of
interest is the normal component to the detector of the current
density distribution associated to the outgoing electron; it is
given by

jz(r) = h̄

m
Im[ψ (r)∗ ∇zψ (r)] + qAz

m
|ψ (r)|2. (2)

This is directly related to the spatial distribution of photoelec-
trons recorded at the detector [20].

However, the solution of the corresponding Schrödinger
equation for the photodetached electron wave function ψ (r) is
not available in a closed analytic form. Therefore, we consider
that, sufficiently far from the atom, the wave propagates
according to semiclassical mechanics and it is correlated to
classical trajectories [20,21,27–29].

III. CLASSICAL MOTION

It is known that some properties of the classical motion
prevail in the quantum-mechanical case. Given the robustness
of semiclassical methods and in preparation for our later
derivation of the electron wave function, we first develop the
classical formalism describing the motion of the electron in
external fields. Since in photodetachment from monovalent
negative ions the remaining atom is neutral, we neglect the
interaction with the remaining atom, i.e., Coulomb interac-
tion. Similarly, for the sake of simplicity, we do not study the
mechanism of generation of electrons. Therefore, we consider
that the motion of the photoelectron is governed only by the
force exerted by the external electric E and magnetic B fields.
Standard Newtonian mechanics can be used to examine the
classical trajectories that the photodetached electrons follow
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FIG. 2. Schematic representation for the photodetachment mi-
croscopy in a Cartesian system. Red lines (dashed and dot-dashed)
indicate that there are two trajectories linking the atom to a final
position in the detection screen. In the inset, classical trajectories are
followed by the photodetached electron in the yz plane. Dotted blue
lines are the trajectories in the case in which there is no magnetic
field present. Red lines correspond to electron trajectories when a
transverse magnetic field is present.

from the ion (source) placed at r0 = x0 ı̂ + y0 ĵ + z0 k̂ at
initial time t0 = 0 to the detection plane z = zD after a time
of flight T . Figure 2 shows a scheme for this configuration
within a Cartesian system. The classical motion of the electron
is determined by the Lorentz force

F = −q(E + v × B), (3)

where v denotes the velocity of the electron. However, for the
purpose of the description of the classical motion, we proceed
within the Lagrangian formalism. In rectangular coordinates
the Lagrangian L(r, ṙ; t ) of an electron interacting with static
electric and magnetic fields is given by

L(r, ṙ; t ) = m

2
(ẋ2 + ẏ2 + ż2) + q(� − A · ṙ). (4)

The electric potential is � = Ez and the magnetic vector
potential in the Coulomb gauge is A = 1

2 B × r = B
2 (−z ĵ +

y k̂). Then, we can rewrite the Lagrangian as

L(r, ṙ; t ) = m

2
[ẋ2 + ẏ2 + ż2 + ω(zẏ − yż) + 2γ z], (5)

where we have introduced the cyclotron frequency ω = qB/m

and the electron acceleration γ = qE/m.
From the Euler-Lagrange equations, the motion of the

electron in the Cartesian system is determined by

x(t ) = x0 + v0,xt, (6a)

y(t ) = y0 − γ t

ω
+ γ

ω2
sin(ωt ) + v0,y

ω
sin(ωt )

− 2v0,z

ω
sin2(ωt/2), (6b)

z(t ) = z0 + 2γ

ω2
sin2(ωt/2) + 2v0,y

ω
sin2(ωt/2)

+ v0,z

ω
sin(ωt ). (6c)

Furthermore, the canonical momentum p = mṙ − qA can
be directly computed. It gives

px(t ) = mv0,x, (7a)

py(t ) = mω

2
z0 − mγ

ω
sin2(ωt/2)

+ mv0,y cos2(ωt/2) − mv0,z

2
sin(ωt ), (7b)

pz(t ) = −mω

2
y0 + mγ

2

(
t + sin(ωt )

ω

)

+ mv0,y

2
sin(ωt ) + mv0,z cos2(ωt/2). (7c)

The initial velocity v0 = v0,x ı̂ + v0,y ĵ + v0,z k̂ can be con-
veniently written in spherical coordinates (v0, θ, φ) as

v0,x = v0 sin(θ ) cos(φ),

v0,y = v0 sin(θ ) sin(φ),

v0,z = v0 cos(θ ),

with v0 the initial speed and the angles 0 � θ < π , 0 � φ <

2π determine the initial orientation of the photoelectron. The
classical trajectories followed by the electron are shown in
Fig. 2 for different initial emission angles (θ, φ). A global
drift of the trajectories along the E × B direction is observed
when they are compared with the case with no magnetic field,
as a result of the Lorentz force.

Since the electron must reach the detection plane at zD,
from Eq. (6c) we can clear the time the electron needs to reach
the detector as a function of the initial releasing direction
(θ, φ), assuming that ωt < π ∀t ; then

t f (θ, φ) = 1

ω
arccos

×
[

γ + ωv0 sin(θ ) sin(φ) − ω2(zD − z0)√
[γ + ωv0 sin(θ ) sin(φ)]2 + [ωv0 cos(θ )]2

]

− 1

ω
arctan

[
ωv0 cos(θ )

γ + ωv0 sin(θ ) sin(φ)

]
. (8)

Thus a parametrization of the path of the charged parti-
cle as a function of its emission angles, initial speed, and
temporal variable can be theoretically available. However, the
emission angles (θ, φ) are not accessible in the realization of
the experiment. Instead, in experiments, the electron travels
from a known initial position r0 to an observed final point
r f on the detector. Hamilton-Jacobi theory is more suitable
dealing with paths defined by such initial and final conditions.
Therefore, we change our point of view and alternatively treat
the problem of the electron in crossed electric and magnetic
fields within this framework. We start with the classical action
functional S (r, r0; T ) that is minimized by classical paths

S (r, r0; T ) =
∫ T

0
dt L(r, ṙ; t ). (9)

In order to integrate the Lagrangian, Eq. (5), it is conve-
nient to rewrite the particle trajectory Eq. (6) in terms of the
quantities that remain constant in the course of the variation
of the classical action. We express the components of initial
velocity as a function of the initial position r0, the final
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position (the detector) r f = x f ı̂ + y f ĵ + zD k̂, and the time
of flight T the electron spends between r0 and r f ,

v0,x = x f − x0

T
, (10a)

v0,y = ω

2
[zD − z0 + (y f − y0) cot(ωT/2)]

− γ

ω

(
1 − ωT

2
cot(ωT/2)

)
, (10b)

v0,z = −γ T

2
− ω

2
(y f − y0)

+ ω

2
(zD − z0) cot(ωT/2). (10c)

Replacing Eqs. (10) in the equations of motion (6), and
then into Eq. (5) and finally integrating allows us to obtain the
propagator

S (r f , r0; T ) = m

2T
(x f − x0)2

+ mω

4
cot(ωT/2)[(y f − y0)2 + (zD − z0)2]

− mγ

ω

(
1 − ωT

2
cot(ωT/2)

)
(y f − y0)

+ mγ T

2
(z f + z0) + mω

2
(z0y f − y0zD)

− mγ 2T

2ω2

(
1 − ωT

2
cot(ωT/2)

)
. (11)

This propagator presents a natural link between quantum and
classical mechanics [30–33].

Since the potential energy is time independent, for a given
trajectory r(t ) the electron energy E is conserved, and we may
simplify the expression for the classical action by introducing
the Hamilton’s characteristic function W (r f , r0; E ) via the
Legendre transformation

S (r f , r0; T ) = W (r f , r0; E ) − ET . (12)

In this way the total energy E can be obtained out of the
classical action as E (r f , r0; T ) = −∂S/∂T ; it casts

E (r f , r0; T ) = −mγ z0 + m

2T 2
(x f − x0)2 + mω2

8
csc2(ωT/2)

×
[(

y f − y0 − γ

ω2
[sin(ωT ) − ωT ]

)2

+
(

zD − z0 − 2γ

ω2
sin2(ωT/2)

)2]
. (13)

Since near-threshold photodetachment of negative ions
provides an electron with sharply defined energy E , rather
than the times of flight T to reach the detector, only those
trajectories fulfilling Eq. (13) are allowed. This transcendental
equation needs to be solved numerically for the times of flight
Tj (r f , r0; E ) provided that the total energy is E = mv2

0/2 −
mγ z0; here j labels the number of trajectories found. As
a result, the Hamilton’s characteristic function will not be

unique, but has j branches depending on the choice of the
trajectory,

W j (r f , r0; E ) = S (r f , r0; Tj (r f , r0; E ))

+ E Tj (r f , r0; E ). (14)

A. Caustic surface

We need to study the formation of caustics due to the
photodetached electron trajectories. The caustic is the surface
enveloping the family of classical trajectories emitted in any
possible direction. Due to the singularities at the caustic
boundaries between classically allowed and classically for-
bidden events, a poor behavior from a primitive semiclassical
description of the wave function is generally obtained near
that surface [17,18,34]. In the time-of-flight picture, the points
on the caustic surface 
 are such that they match the particle
energy and, additionally, the energy as a function of T reaches
a minimum there. Thus r
 is on the caustic surface if the two
following equations,

∂S (r
, r0; T )

∂T
= −E,

∂2S (r
, r0; T )

∂T 2
= 0,

hold simultaneously. The first equation has been already
shown, Eq. (13), and the second derivative of the classical
action reads

∂2S (r, r0; T )

∂T 2
= −mγ 2

2ω
tan(ωT/2) + m(x − x0)2

T 3

+ mω3

8
csc2(ωT/2) cot(ωT/2)

[
(z − z0)2

+
(

y − y0 − γ

ω2
[2 tan(ωT/2) − ωT ]

)2
]

.

(15)

However, in the field arrangement we are studying these two
equations cannot be simplified to obtain an explicit equation
for the caustic surface in configuration space. Therefore, we
solved them numerically to get a qualitative description.

Figure 3 shows the projection on the yz plane of the
caustic surface as an envelope of electron trajectories when
the transverse magnetic field is present. From our numerical
analysis of the classical trajectories, we have found that every
arrival point on the detection plane is linked to the source
by two classical trajectories, for instance, the trajectories
labeled as 1 and 2 in the figure. We notice that only one of
them will always reach the caustic surface and folds back.
This illustrates the simplest case of caustic, the fold type,
where the classical electron trajectories turn back. For this
type of caustic, the inevitable divergence observed due to
the coalescence of two classical trajectories can be accurately
approximated by Airy functions [34].

B. Classically allowed region at the detection plane

Once the electrons are detached and travel through the
region where the external fields are, they are measured on
the plane z = zD. As seen from the caustic surface, for given
initial conditions of the electron and magnitudes of the fields,
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FIG. 3. Electron trajectories (thin red solid lines) projected on
the yz plane when crossed electric and magnetic fields are present.
The caustic surface is shown (thick black dashed line). Two classical
trajectories reaching to one final point (black solid lines) are high-
lighted. Here, for the sake of the understanding and illustration, we
have enhanced the effects by choosing E = 3.2 meV, E = 250 V/m,
and B = 0.8 mT.

there is a well-defined accessible region at the detection plane
where the electron can classically arrive. From the classical
analysis we can determine that region in the plane, i.e., the
classically allowed region. The solution Eq. (6) leads to a
clear distinction between a classically allowed region and a
classically forbidden region.

In order to characterize the classically allowed region in
the detection plane, we study the trajectories by means of
Eq. (13). It is obtained that for the given initial energy E and
field intensities at most two trajectories exist that connect the
photoelectron initial position r0 and the detector at r f . On
the other hand, for certain choice of final points no classical
trajectory with real times of flight are found; this defines the
classically forbidden region, later we will associate it as the
quantum region, accessible by tunneling effect.

The characterization is performed replacing the known
energy E in Eq. (13), such that we have

(
2v0

ω
sin(ωT/2)

)2

=
(

2

ωT
sin(ωT/2)(x f − x0)

)2

+
(

y f − y0 − γ

ω2
[sin(ωT ) − ωT ]

)2

+
(

zD − z0 − 2γ

ω2
sin2(ωT/2)

)2

, (16)

which can be related to a conic section at z = zD;
specifically, an ellipse. At the detection plane the
maximal radial extension occurs for nearly perpendicular
emission of photoelectrons, i.e., θ � π/2, provided
that the detector is placed farther than any atomic
scale E/mγ � zD − z0. Combining Eqs. (6) and (8),

we get

x(φ) ≈ x0 + 2v0

ω
cos(φ) arcsin

[
ω

√
zD − z0

2[γ + v0ω sin(φ)]

]
,

(17)

y(φ) ≈ y0 − 2γ

ω2
arcsin

[
ω

√
zD − z0

2[γ + v0ω sin(φ)]

]

+
√

zD − z0

ω

√
2[γ + v0ω sin(φ)] − ω2(zD − z0).

(18)

Therefore, varying the azimuthal angle φ we can describe the
contour of the ellipse, which in the following we will refer to
as the classical boundary for the electron trajectories.

The equation of the ellipse describing the classically al-
lowed region at the detection plane is

(x − xc)2

R2
x

+ (y − yc)2

R2
y

= 1, (19)

where the coordinates of the center of the ellipse, from
Eqs. (17) and (18), are given by

xc ≈ x(0) + x(π )

2
, yc ≈ y

(
π
2

) + y
(

3π
2

)
2

, (20)

which explicitly read

xc � x0, (21)

yc � y0 + 1

2ω
(A+ + A−)

− γ

ω2
(arcsin[B+] + arcsin[B−]). (22)

Instead the principal radii are obtained from

Rx ≈ x(0) − x(π )

2
, Ry ≈ y

(
π
2

) − y
(

3π
2

)
2

, (23)

which cast

Rx � 2v0

ω
arcsin

[
ω

√
zD − z0

2γ

]
, (24)

Ry � 1

2ω
(A+ − A−)

+ γ

ω2
arcsin

⎡
⎣ ω

2
√

γ 2 − v2
0ω

2
(A+ − A−)

⎤
⎦. (25)

The following functions have been introduced:

A+ =
√

2(γ + v0ω)(zD − z0) − ω2(zD − z0)2, (26)

A− =
√

2(γ − v0ω)(zD − z0) − ω2(zD − z0)2, (27)

B+ = ω

√
zD − z0

2(γ + ωv0)
, (28)

B− = ω

√
zD − z0

2(γ − ωv0)
. (29)

For a fully geometrical parametrization of the classically
allowed region of the photodetachment electron at the detector
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FIG. 4. Calculated geometric center along the E × B direction
of the spatial electron distribution in the detection plane for near-
threshold photodetachment microscopy as a function of the intensity
of a transverse magnetic field (red line). Vertical orange dashed line
indicates Bmax. Shadowed orange region highlights the forbidden
B-field intensities.

we can compute its eccentricity

e =
√

1 − (Rx/Ry)2. (30)

It is worth mentioning that, in the limit ω → 0, corresponding
to no magnetic field, all these results converge to the known
results for the standard photodetachment microscopy [6,13].

From all the above, for a meaningful physical interpretation
of those quantities we require that they have to be real. The
classical analysis of the arrival region at the detector allows
us to set an upper limit for the intensity of the magnetic field.
In terms of the controlled parameters the intensity of the field
must be such that

B �
√

2m

q(zD − z0)
(
√
E + mγ zD −

√
E + mγ z0). (31)

The right-hand side on the equation above fixes the maximum
value of the magnetic field, Bmax. Since E/mγ (zD − z0) � 1,
we can further approximate

Bmax ≈ m

q

√
2γ

zD − z0

(
1 −

√
z0

zD − z0
+ E

mγ (zD − z0)

)
.

(32)

Following a primitive analysis of the electron dynamics
we have fully characterized the arrival region at the detec-
tion plane z = zD. Given the initial photoelectron energy,
the magnitude of the electric field, and the position of the
detector in the configuration shown in Fig. 2, the intensity of
the transverse magnetic field must be B < Bmax; otherwise,
the electron does not reach the detection plane at zD and no
electron is detected. For the set of values we have fixed for
our studies, see Sec. II, Bmax ≈ 89.16 μT.

Additionally, we have seen that the geometric center of the
classically allowed region varies along the E × B direction,
Eq. (22), as a function of the intensity of the field. Figure 4
shows the center position, yc, versus the magnetic field. Notice
that the maximum displacement of the center is bounded by

FIG. 5. Radii along the principal axes and eccentricity of the
classically allowed region in the xy plane on the detector as a
function of the transverse magnetic-field intensity. In the left axis,
the variation of the radii, Rx (red dashed line) and Ry (blue dot-
dashed line), are represented and, in the right axis, the calculated
eccentricity (solid purple line). The inset shows the variation of the
radii, Rx and Ry, for weaker intensities to highlight when they become
distinguishable. Vertical orange line at Bmax determines the upper
limit of magnetic-field intensity.

Bmax. As theoretically calculated, in near-threshold photode-
tachment microscopy, the region where the spatial electron
distribution is recorded has an elliptic shape and its properties
depend on the magnitude of the magnetic field. Figure 5
shows the variation of the principal radii Rx and Ry as a
function of the magnetic-field intensity and the eccentric-
ity calculated from Eq. (30). We notice that Rx does not
vary significantly with B, while Ry does. This indicates that
the spatial electron distribution is not only displaced along the
E × B direction, but its shape is also elongated along it. In the
particular set of magnitudes considered, we see that Rx ∼ Ry

up to 20 μT; in consequence the shape of the classically
allowed region will look circular, eccentricity e ∼ 0.3. For
higher intensities the difference between the two principal
axes becomes greater and the elliptic shape becomes evident.
The quantitative analysis indicates that the eccentricity e may
take any value from zero (when B = 0) to close to but less than
one (when B → Bmax). All these clearly determine the contour
of the shape of the electron distribution in the detection plane.

IV. APPROXIMATION OF QUANTUM SOURCE THEORY

In the quantum description of the photodetachment process
we can replace the photon-ion interaction by an electron-
generating mechanism, a source that emits electrons with
proper angular characteristics. This is the so-called quantum
source theory [20,21,35,36]. Within this treatment, the motion
of the electrons in the static fields is governed by the inhomo-
geneous stationary Schrödinger equation

(E − Hqst )ψ (r) = σ (r), (33)

where σ (r) describes the source of electrons and Hqst is
the Hamilton operator governing the dynamics of the de-
tached electron; it can be decomposed as Hqst = H + V . The
first term, H, stands for the canonical quantification of the
Hamiltonian obtained from the Legendre transformation of
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the Lagrangian Eq. (5),

H = dr
dt

· p − L = 1

2m
(p + qA)2 − q �(r), (34)

whereas the second term V describes the interaction with the
remaining neutral atomic core.

We introduce the energy-Green function G(r, r0; E ), such
that (E − Hqst )G(r, r0; E ) = δ(r − r0). A solution for the
electron wave function in terms of the convolution integral
reads

ψ (r) =
∫

d3r′ G(r, r′; E )σ (r′). (35)

The theory of quantum sources becomes particularly sim-
ple for point sources and that is the first approximation we use.
For a pointlike source at r0 (which later we will resume as the
origin of the coordinate system), such that σ (r) ∼ δ(r − r0),
the electron wave function ψ (r) is just proportional to the
energy-Green function G(r, r0; E ) itself. This approximation
is justified in near-threshold scattering E → 0, since the
emerging wave effectively obliterates the internal structure
of the source. However, this leads to isotropic emissions,
i.e., s waves, whereas the source in practice might provide
photodetached electrons with nonzero angular momentum.
In order to take into account multipole waves a description
by analogy with the multipole formalism commonly used in
potential theory has been introduced [37].

The internal orbital structure of the pointlike sources is
imprinted onto the energy-Green function by means of the
spherical tensor gradient. This follows from the definition of
the multipole point sources δlm(r − r0) via the spherical delta
functions [38]

δlm(r − r0) = Ylm(∇0)δ(r − r0), (36)

where Ylm(∇0) is the spherical tensor gradient given by
[39,40]

Ylm(∇0) =
[

2l + 1

4π
(l + m)!(l − m)!

]1/2

×
∑
ν�0

(−∂x0 − i ∂y0

)m+ν(
∂x0 − i ∂y0

)ν(
∂z0

)l−m−2ν

2m+2ν (m + ν)!ν!(l − m − 2ν)!
.

(37)

Notice that the differentiation proceeds with respect to the
Cartesian coordinates of the source position r0.

Then, the inhomogeneous Schrödinger equation for the
multipoles (E − Hqst )Glm(r, r0; E ) = δlm(r − r0) is formally
solved by the multipole Green functions Glm(r, r0; E ), which
are available from G(r, r0; E ) by differentiation

Glm(r, r0; E ) = Ylm(∇ 0) G(r, r0; E ). (38)

Thus the resulting electron wave function with orbital angular
momentum l and magnetic number m is simply

ψlm(r) ∝ Glm(r, r0; E ). (39)

Here, we focus our attention on the case of s waves and
p waves, so that the corresponding multipole Green function
can be obtained from Eq. (37) and Eq. (38) by

G00(r, r0; E ) =
√

1

4π
G(r, r0; E ), (40)

G10(r, r0; E ) =
√

3

4π

∂

∂z0
G(r, r0; E ), (41)

G1±1(r, r0; E ) = ∓
√

3

8π

(
∂

∂x0
± i

∂

∂y0

)
G(r, r0; E ). (42)

Thereupon we address our attention to determine the
isotropic energy-Green function G(r, r0; E ). The second main
approximation arises from ignoring the interaction of the
photodetached electron with the remaining atom, i.e., V → 0.
Therefore, the energy-Green function is computed only for
the interaction with the external fields governing the electron
motion. We introduce the time-dependent quantum propagator
K (r, r0; T ), which is determined by the action functional
S (r, r0; T ) through the path-integral formulation of quantum
mechanics [30,32,33]

K (r, r0, T ) =
√

det

[
i

2π h̄

∂2S
∂r∂r0

]
exp

[
i

h̄
S (r, r0; T )

]
.

(43)

Given the action, Eq. (9), we can write [21,41,42]

K (r, r0, T ) = mω

4π ih̄

√
m

2π ih̄T sin2(ωT/2)

× exp

[
i

h̄
S (r, r0; T )

]
. (44)

Then, the energy-Green function can be obtained via the
Laplace transformation

G(r, r0; E ) = 1

ih̄

∫ ∞

0
dT eiET/h̄K (r, r0; T ). (45)

However, this integral cannot be solved in a closed form ana-
lytically and an exact numerical evaluation results demanding
efforts beyond our scope. Therefore, in order to evaluate it,
we use the stationary phase approximation together with the
uniform Airy approximation to overcome the divergences at
the classical boundary [13,17,18,34]. The phase in Eq. (45) is
given by [ET + S (r, r0; T )]/h̄, which is proportional to the
Hamilton characteristic function, Eq. (14). We have already
determined that, for every final position r f , the phase has
two stationary points in the classically allowed region, say
T1 and T2, the solutions of Eq. (13). They satisfy T1 < T2;
see Fig. 3. This notation is chosen in such a way that T1 and
T2 correspond to a phase minima and phase maxima, respec-
tively; i.e., ∂2S/∂T 2|T1 > 0 and ∂2S/∂T 2|T2 < 0. Hence the
energy-Green function that remains finite at the coalescence
points on the classical boundary is given by

G(r f , r0; E ) = C(O+ζ 1/4Ai(−ζ ) − iO−ζ−1/4Ai′(−ζ )),
(46)

where the Airy function Ai(−ζ ) appears explicitly, as well as
its derivative Ai′(−ζ ) = dAi(−ζ )/d (−ζ ) [43]. Accordingly,
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we have also introduced

ζ =
(

3

4h̄
(W2 − W1)

)2/3

. (47)

For a shorter notation W j = S (r f , r0; Tj (r f , r0; E )) +
E Tj (r f , r0; E ). Also the functions

C = mω

4h̄2

√
m

iπ
exp

[
i

2h̄
(W1 + W2)

]
(48)

and

O± =
(

T1 sin2(ωT1/2)
∂2S
∂T 2

∣∣∣∣
T1

)−1/2

±
(

−T2 sin2(ωT2/2)
∂2S
∂T 2

∣∣∣∣
T2

)−1/2

. (49)

Notice that, in Eq. (49), appears Eq. (15) evaluated at T1

and T2.
Once we have Eq. (46), we can compute the corresponding

electron wave function via the energy-Green function for s
waves and p waves. We immediately notice that for s waves
Eq. (46) differs from Eq. (40) only by a factor 1/

√
4π .

Instead, for p waves differentiation with respect to the coor-
dinates of the initial (source) position are needed, Eqs. (41)
and (42). We have found that those derivatives can, in short,
be written as

∂G(r f , r0; E )

∂r0
= 1

2h̄
C
(
D+,r0 ζ

1/4 Ai(−ζ )

− iD−,r0 ζ−1/4 Ai′(−ζ )
)
. (50)

The coefficients introduced here are

D+,r0 = 2h̄
∂O+
∂r0

+
( O+

4ζ 3/2
+ i(O+ − O−)

)
∂W2

∂r0

−
( O+

4ζ 3/2
− i(O+ + O−)

)
∂W1

∂r0
, (51a)

D−,r0 = 2h̄
∂O−
∂r0

−
( O−

4ζ 3/2
+ i(O+ − O−)

)
∂W2

∂r0

+
( O−

4ζ 3/2
+ i(O+ + O−)

)
∂W1

∂r0
. (51b)

By appropriate substitution of r0 by any of the initial Carte-
sian coordinates x0, y0, z0, we can straightforwardly construct
the wave functions, Eq. (39), according to Eqs. (41) and (42).
In the Appendix all the derivatives needed to compute the
energy-Green function for p waves are shown.

V. CLOSED-ORBIT THEORY

On the other hand, a well established semiclassical ap-
proximation to the time-independent wave function is the
closed-orbit theory [23,44,45]. In the same way, when the
ion absorbs a photon the released electron propagates away
from the atom to large distances; however, this approach
takes into account that near the atomic core a semiclassical
approximation cannot be applied. The standard procedure of
the aforementioned approximation consists of dividing the
space into two regions around the ion core (placed at the origin

of a Cartesian system as in Fig. 2), namely inner and outer
regions. We choose as the boundary a spherical surface of
radius Rs ∼ 10–50a0, with a0 the Bohr radius. Generally, the
vector and electric potential are far smaller than the kinetic
energy in the inner region. Therefore, the external fields can
be reasonably neglected in this region, and the interaction
with the remaining neutral atomic core ignored. Within these
approximations the Hamiltonian in the inner region takes the
form Hin = p2

/2m. And the electron wave function must satisfy
the inhomogeneous Schrödinger equation [46]

(E − Hin )ψin = Dϕ, (52)

where D is the dipole operator accounting for the interaction
with the laser, ϕ is the initial atom state, and E is the energy
of the electron. The solution on the surface can be written
as [47]

ψs(rs) = C(k0)Ylm(θ, φ)
eik0Rs

Rs
, (53)

with C(k0) a constant related to energy, the vector position
rs on the surface between the two regions is given by the set
of spherical coordinates (Rs, θ, φ), and Ylm are the spherical
harmonics for quantum numbers l and m related to the angular
momentum, as usual.

Meanwhile, in the outer region the electron wave function
propagates according to semiclassical mechanics; therefore,
it can be constructed with the classical trajectories r(θ, φ, t )
obtained from Eqs. (6). Contrary to the analysis in Sec. IV
where the initial position was considered to be the origin
of the Cartesian system, same as the atom position, under
the current circumstances, we consider the initial position
r0 in Eqs. (6) to be the position of the electron on the
boundary between the two regions rs, i.e., (x0, y0, z0) =
[Rs sin(θ ) cos(φ), Rs sin(θ ) sin(φ), Rs cos(θ )]. In a global
asymptotic form the wave function is [27,44,45]

ψ (r) =
∑

j

ψs(rs, j )Aj exp

[
i

(
S j

h̄
− π

2
μ j

)]
, (54)

where the sum is over all the classical trajectories r(θ, φ, t )
going from rs on the limiting surface to the final position
r on the detection plane; S j (r, rs, t ) is the time-dependent
Hamilton’s principal function. The classical trajectory family
density along the jth trajectory is Aj . The Maslov index
μ j represents the relative phases of various terms in the
superposition and it increases by one (for the particular fold
caustic we face here) when Aj passes a singularity.

The Hamilton’s principal function is given by

S j (r f , rs, t f ) = S0(rs, j ) +
∫ r f

rs, j

p j · dr j, (55)

where p j is the canonical momentum for the jth trajectory,
Eq. (7). On the surface S0(rs, j ) must satisfy dS0(rs, j ) = ps, j ·
rs, j ; therefore,

dS0(rs, j ) = mω

2
R2

s [sin(θ j ) cos(θ j ) cos(φ j )dφ + sin(θ j )dθ ],

which can be safely neglected. From Eq. (6) and Eq. (7) we
can write Sj (r f , rs, t f ) as an expansion in terms of Rs as

S j (r f , rs, t f ) = s0
j + s1

j Rs, (56)
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with

s0
j = mt f

2ω2

(
γ 2 + v2

0ω
2
) + mv2

0

2ω
cos2(φ j ) sin2(θ j )[ωt f − sin(ωt f )]

+ mγ

ω2
(2v0 cos(θ j ) + γ t f + v0ωt f sin(θ j ) sin(φ j )) sin2(ωt f/2) − m

2ω3

(
γ 2 − v2

0ω
2 − v0ω

2γ t f cos(θ j )
)

sin(ωt f ), (57)

s1
j = m

2ω
(γ [sin(ωt f ) − ωt f ] cos(θ j ) − 2 sin2(ωt f/2){v0ω cos2(θ j ) + [γ + v0ω sin(θ j ) sin(φ j )] sin(θ j ) sin(φ j )}). (58)

Meanwhile, for the density of classical trajectories Aj , we first need to define the Jacobian

J (t, r) = ∂ (x, y, z)

∂ (t, θ, φ)
=

∣∣∣∣∣∣
∂x/∂θ ∂x/∂φ ∂x/∂t
∂y/∂θ ∂y/∂φ ∂y/∂t
∂z/∂θ ∂z/∂φ ∂z/∂t

∣∣∣∣∣∣ , (59)

from which in order of Rs we get

J (t, θ, φ) = v2
0 sin(θ )

ω2

(
jo(t, θ, φ) + 1

v0
j1(t, θ, φ) Rs + ω

v2
0

j2(t, θ, φ) R2
s

)
(60)

and the coefficients are

jo(t, θ, φ) = a(t, θ, φ) sin(ωt ) + 4 b(t, θ, φ) sin2(ωt/2),

j1(t, θ, φ) = ω a(t, θ, φ) + ω[v0 + b(t, θ, φ)] sin(ωt )

+ 2[2γ cos(θ ) − ωt c(θ, φ)] sin2(ωt/2),

j2(t, θ, φ) = v0ω + γ cos(θ ) sin(ωt ) − 2 c(θ, φ) sin2(ωt/2),

with

a(t, θ, φ) = v0ωt[1 − sin2(θ ) cos2(φ)],

b(t, θ, φ) = γ t cos(θ ) + v0 sin2(θ ) cos2(φ),

c(θ, φ) = γ sin(θ ) sin(φ) + v0ω[1 − sin2(θ ) cos2(φ)].

Thus we may refer to the definition of the density of
classical trajectories and compute it as

Aj =
∣∣∣∣ J (0, r)

J (t f , r)

∣∣∣∣
1/2

. (61)

Substituting, it takes the form

Aj ≈ Rsω√
v0

(4γ t f cos(θ j ) sin2(ωt f/2)

+ 4v0 cos2(φ j ) sin2(θ j ) sin2(ωt f/2)

+ v0ωt f [1 − sin2(θ j ) cos2(φ j )] sin(ωt f ))−1/2, (62)

where we have conveniently neglected terms ∝R2
s and higher.

The time t f is given in terms of (θ, φ) as in Eq. (8).
According to Sec. III A, for near-threshold photodetach-

ment microscopy in the presence of a transverse magnetic
field two trajectories connect each point in the detection plane
with the source. Let us consider the two sets of initial emission
angles, (θ1, φ1) and (θ2, φ2), which are obtained for the times
of flight T1 and T2, Eq. (13), by numerically solving Eq. (8).
Also, in this case, the two sets of emission angles determine
the two classical trajectories arriving at the same point in the
classically allowed region on the detector. We labeled as 1
the trajectory going to the detection plane without touching
the caustic surface, while 2 is the one touching it; see Fig. 3.

Then, the Maslov index takes the value μ1 = 0, and μ2 = 1,
for any final point r f .

Finally, the primitive semiclassical approximation for the
electron wave function at the final point r constructed from
the closed orbit theory can be written as

ψ (r) = C(k0)
exp(ik0Rs)

Rs
[A1Ylm(θ1, φ1)eiS1/h̄

+ A2Ylm(θ2, φ2)ei(S2/h̄−π/2)]. (63)

The divergence in this constructed wave function around
caustics can be fixed by the application of the Airy uniform
approximation [31,34].

VI. ELECTRON FLUX DISTRIBUTION

From the electron wave function the probability density
and the probability current become easily accessible, and
they can be linked to the two-dimensional spatial distribu-
tion usually recorded at the detector in experiments. This
can be achieved by either of the two theoretical approaches
used, namely quantum source theory and closed-orbit theory.
Within the semiclassical formalism, the probability current
along the normal component of the imaging detector, Eq. (2),
can be consistently approximated as [16,37,48]

jz = vz |ψ (r)|2, (64)

with vz ≈
√

(zD − z0)[2γ − ω2(zD − z0)]. The value of vz can
be considered as the same for every trajectory and final point
since the electron is accelerated greatly by the static electric
field along that direction.

In the interest of studying the effects of the initial angular
distribution of the electrons, we explore the cases where the
initial emitted electronic state corresponds to s waves and p
waves, which could be associated to experiments with S− and
H−, respectively. In Fig. 6, we compared the profile of the
electron probability density obtained from the two theoretical
approaches. It is worth remarking that, for improved accuracy
near the boundary of the classically allowed region, we have
used a uniform Airy approximation. The probability density
profile was extended into the classically forbidden region, in
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FIG. 6. Electron probability density profile along the positive y
direction for different initial electron states and their corresponding
calculated interference patterns. The result for an s wave (l = 0)
is shown on the top panel, for the p wave identified as p0 (l = 1
and m = 0) is in the middle, while in the bottom panel it is for p1

(l = 1 and m = ±1). The solid red lines correspond to the solution
from the closed-orbit theory, while the blue squares correspond to the
energy-Green function method. The classically forbidden region has
been shadowed in yellow. The physical parameters used correspond
to E = 120 μeV, E = 350 V/m, and B = 2 μT, and the detector
placed at a distance zD = 0.5 m; for those Ry ≈ 0.82 mm.

yellow in the figure, by analytic continuation of its behavior
near the boundary, i.e., we include the exponentially sup-
pressed contributions of tunneling trajectories; interference is
absent there. The results out of the two theoretical methods
are virtually indistinguishable for any value of the orbital
angular momentum and fields intensities studied. As seen also
from the profile, the interference patterns show different inner
structure depending on electronic orbital angular momentum
and its magnetic number, albeit the classical boundary is
independent of those initial conditions. Since both approaches
show identical results, in the following we will show only the
patterns obtained by the use of the closed-orbit theory which
are numerically easier to access.

As obtained from the classical equations of motion the
numerically simulated patterns show the same features as the
experimental results in the presence of a transverse magnetic
field: a global shift of the center of the distribution along
the E × B direction depending on the field intensity [7]. As
seen from Fig. 6, the ring distribution depends on the angular
momentum of the detached electron, but its number, four
for this particular set of values, remains the same. However,
when the intensity of the magnetic field increases some other
phenomena are observed [22]. We have previously determined
the dependence of the position of the center of the interference
pattern on the xy plane at zD as a function of the strength of
the magnetic field, Eqs. (21) and (22). Figure 7 depicts the
changes of the shape of the interference pattern as a function
of the B field; on top of those we have also drawn the variation
of the center of the pattern, theoretically determined. Notice
that for no magnetic field we obtain the known results: the
two-dimensional spatial distribution is circular and centered

FIG. 7. Calculated center of the interference pattern obtained in
photodetachment microscopy along the E × B direction as a function
of the intensity of the magnetic field (solid red line). The interference
pattern corresponds to an isotropic emission (electron s wave). The
vertical blue line determines the maximum value allowed for the
B-field intensity. Amplified (×15) interference patterns for different
intensities of the magnetic field are shown along the line. Detailed
interferograms are shown in insets (a) and (b) for magnetic-field
intensities of 20 μT and 87 μT, respectively.

at the atom position [5]. For weak intensities of the transverse
field the interference pattern is drifted but qualitatively the
pattern looks like a circle [7,22]. Meanwhile, for stronger
intensities of the magnetic field the displacement of the pat-
tern becomes larger, with a faster growing behavior when
the intensity approaches Bmax. Under these circumstances
we have shown the unambiguous change of the shape of
the interference pattern: the pattern is elongated along the
orthogonal direction of the magnetic field, i.e., y direction.
From there we confirmed our classical findings: in absence of
the B field the pattern is circular (e = 0), and then it becomes
elliptical (e → 1) as the magnetic field increases and reaches
its maximum value.

VII. DISCUSSION AND CONCLUSIONS

In summary, we have presented a detailed theoretical de-
scription of the near-threshold photodetachment microscopy
when a transverse magnetic field is superimposed to the
standard electric field. Since the exact quantum solution is
not accessible in a closed form, we have consistently used
two different approaches to determine the outgoing electron
wave function, namely the quantum source theory with the
energy-Green function evaluated by means of the stationary
phase approximation and the closed-orbit theory. We have
discussed the theoretical derivations for each method and
compared their results. In these experiments, the energy of
the particles is often controlled, while the time of travel is not;
and under these circumstances the energy-dependent Green
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function is relevant for the description of the system. Although
the quantum source formalism provides an excellent basis for
the theoretical analysis of the electron propagation in the re-
gion with external fields, in this particular case, the commonly
used approximation to calculate wave functions associated
to regular trajectories, the closed-orbit theory, yields faster
numerical results.

Both approaches rely on the study of the classical motion
and the family of classical trajectories from the source to the
detection plane. In this regard, we have found that within the
sector of classically allowed motion all the possible arrival
points at the detector are reached by two trajectories, as
in the standard case of only the electric field accelerating
the photodetached electron. In consequence, we extended for
this field’s configuration the argument that the interference
pattern observed can be explained by the interference between
the two classical paths [5,9,13,37,49]. Moreover, we have
described the surface enveloping all the allowed classical
trajectories—the caustic surface. In this configuration, the
caustic surface is not as simple as the paraboloid obtained
when only the electric field is present. Indeed, a function of the
surface cannot be explicitly obtained, but from the numerical
analysis of the classical trajectories we have observed and
qualitatively described the effects of the magnetic field on
the envelope: a global drift due to the shift of the trajectories
[7,19]. Consequently, we have studied the boundary between
the classically allowed and classically forbidden zones at the
detector, which confines the recorded electron flux distribu-
tion in photodetachment microscopy.

In the crossed fields configuration, two different effects
on the recorded spatial electron distribution have been stud-
ied in detail: (i) the global shift of the pattern along the
E × B direction and (ii) the changes of the shape of the
interference pattern when the intensity of the magnetic field
is increased. For the first one, the Lorentz force produces
a global drift of all the classical trajectories of the electron
along the E × B direction, such that the measured spatial
electron distribution is displaced with respect to the no B-field
case. We have successfully obtained theoretical expressions
to quantify the displacement of the recorded pattern, show-
ing that it becomes larger as the intensity of the transverse
magnetic field increases. This matches early experimental
and theoretical demonstrations [7]. Regarding the shape of
the interference pattern, we focused on the characterization of
the classically allowed region and its border, since it confines
the electron spatial distribution. The commonly claimed cir-
cular pattern turns over an elliptic shape while the magnetic
field becomes stronger. We have fully described the ellipse
and its eccentricity as a function of the quantities controlled
in the experiment. Pursuing this observation, we notice that
the variation on the eccentricity is produced as a consequence
of a quick elongation of the length of the pattern along the y
axis and its slower variation along the x axis in the presence
of the transverse magnetic field.

The dependence of the recorded electron distribution on
the angular momentum has been investigated for s waves
and p waves. The features concerning the pattern position
and its shape, within the descriptions here developed, are
rooted in classical dynamics and are independent of the nature
of the negative ion and the electron angular distribution.

However, the ring distribution does depend on the orbital
angular momentum and magnetic number of the emitted
electron, as depicted in Fig. 6. It is worth noticing that the
equation

Nrings
∼= 2

3π

E
h̄γ

√
2E
m

, (65)

which estimates the number of rings for the case with only
static electric field [6], still holds for the case with a transverse
magnetic field. Similarly, the intensity of the electric field in
order to observe interference patterns must be such that

E <

√
2m

3π h̄q
E3/2, (66)

and together with a set of other inequalities provided the
resolution of the experimental apparatuses, as reported [6].
Hence, in order to fully determine the conditions and set the
proper orders of magnitude for the observation of the char-
acteristic interference pattern in photodetachment microscopy
with crossed electric and magnetic fields, we remarked that
the transverse magnetic field must satisfy Eq. (31), which
fixes an upper limit for its allowed intensity. As a result,
the displacement of the pattern is limited, as well as the
eccentricity (e < 1).

The results, in either approach, are in agreement with the
findings in reported photodetachment experiments [7,19,22],
and they offer a clear prediction about the physical phenom-
ena to be observed for the whole range of allowed intensities
of the transverse magnetic field. Furthermore, this problem
serves to illustrate the power of both semiclassical methods
and their correspondence. We hope this contribution encour-
ages further experiments on these topics.
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APPENDIX: CALCULATION OF DERIVATIVES FOR
THE CONSTRUCTION OF THE MULTIPOLE

ENERGY-GREEN FUNCTIONS

In this Appendix, we present the derivatives with respect to
the coordinates of the initial position r0 = {x0, y0, z0} needed
to explicitly write Eq. (51) in terms of the experimental
parameters.

First, we have faced the terms

∂W j

∂r0
= ∂S (r f , r0; T )

∂r0

∣∣∣∣
Tj

, (A1)

where j may take the values 1 and 2, in reference to the two
classical trajectories with times of flight T1 and T2. Thus, given
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the classical action, Eq. (9), we get

∂W j

∂x0
= −m(x f − x0)

Tj
,

∂W j

∂y0
= −mω

2

(
zD − 2γ

ω2

)

− mω

2
cot(ωTj/2)

(
y f − y0 + γ Tj

ω

)
,

∂W j

∂z0
= mω

2

(
y f + γ Tj

ω

)
− mω

2
cot(ωTj/2)(zD − z0).

(A2)

The following terms also appear,

∂O±
∂r0

= ∂ξ1

∂r0
± ∂ξ2

∂r0
, (A3)

where we have introduced the function ξ j with j = 1, 2 as

ξ j =
(

(−1)1+ jTj sin2(ωTj/2)
∂2S
∂T 2

∣∣∣∣
Tj

)−1/2

. (A4)

In this way, we focus on the differentiation of ξ j with respect
to the source coordinates. Then

∂ξ j

∂r0
= − (−1) j+1

2
ξ 3

j

{
Tj sin2(ωTj/2)

∂

∂r0

(
∂2S
∂T 2

)∣∣∣∣
Tj

+
[

Tj sin2(ωTj/2)
∂3S
∂T 3

∣∣∣∣
Tj

(
∂2S
∂T 2

∣∣∣∣
Tj

)−1

+ sin2(ωTj/2) + ωTj

2
sin(ωTj )

]
∂E
∂r0

∣∣∣∣
Tj

}
. (A5)

Here, the energy E refers to Eq. (13) and their derivatives
cast

∂E
∂x0

= −m(x f − x0)

T 2
, (A6a)

∂E
∂y0

= −mω2

4
csc2(ωT/2)

×
(

y f − y0 − γ

ω2
[sin(ωT ) − ωT ]

)
, (A6b)

∂E
∂z0

= −mω2

4
csc2(ωT/2)

(
zD − z0 − 2γ

ω2
sin2(ωT/2)

)
− mγ .

(A6c)

On the other hand, considering Eq. (15), we compute

∂3S
∂T 3

= −3m

T 4
(x f − x0)2 − mω4

16
[2 + cos(ωT )] csc4(ωT/2)

×
[(

y f − y0 + γ T

ω

)2

+ (zD − z0)2

]

+ 3mγ

4
csc2(ωT/2) cot(ωT/2)

× [ω2(y f − y0) + γωT − γ tan(ωT/2)]
and

∂

∂x0

(
∂2S
∂T 2

)
= −2m(x f − x0)

T 3
, (A7a)

∂

∂y0

(
∂2S
∂T 2

)
=−mω3

4
cot(ωT/2) csc2(ωT/2)

×
(

y f − y0 − γ

ω2
[2 tan(ωT/2) − ωT ]

)
,

(A7b)

∂

∂z0

(
∂2S
∂T 2

)
= −mω3

4
cot(ωT/2) csc2(ωT/2)(zD − z0).

(A7c)

Given all the above equations, the energy-Green functions
Eqs. (40)–(42) are fully determined via Eq. (46) and Eq. (50);
consequently, the construction of the multipole electron wave
functions go straightforwardly. The explicit expressions in
terms of T1, T2, r f , r0, ω, and γ are rather long and compli-
cated in the writing, and do not contribute to the understanding
of the phenomena; therefore, they are not shown here.
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