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Relativistic effects in the multiphoton ionization of hydrogenlike ions
by ultrashort infrared laser pulses
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The direct multiphoton ionization (MPI) of hydrogenlike ions by intense, linearly polarized, ultrashort infrared
laser pulses is investigated within the framework of the strong field approximation (SFA) for laser peak intensities
and angular frequencies where relativistic effects are important. We obtain an expression for the differential
MPI probability using the Dirac equation and demonstrate that, for the particular case of light ions, the Dirac
spin-unresolved MPI probabilities agree with those obtained using the Klein-Gordon equation as well as the
relativistic Schrödinger equation. As an example, the interaction of hydrogenlike neon ions with an intense four-
cycle Ti:sapphire laser pulse is considered. We show that, in contrast to the nonrelativistic regime, for ultrashort
pulses in the relativistic regime, interference effects do not play a role in determining the main features of the
energy-resolved photoelectron spectrum. Moreover, we find that the angle-integrated photoelectron spectrum
can be obtained using the well-known nonrelativistic SFA formula, properly adjusted to account for the electron
drift along the laser propagation direction.
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I. INTRODUCTION

Table-top infrared lasers systems have been developed that
are capable of producing short pulses with peak intensities ex-
ceeding 1022 W/cm2 [1,2]. The interaction of atomic systems
with pulses produced by these lasers must be described by a
relativistic theory, as in this frequency and intensity regime
the quiver, or ponderomotive, energy of an electron in the
pulse is larger than its rest mass energy. In this paper we will
investigate, using the strong field approximation (SFA) [3–5],
the direct (i.e., without recollisions) multiphoton ionization
(MPI) of hydrogenlike ions interacting with intense, linearly
polarized, ultrashort, infrared laser pulses.

At lower laser peak intensities, where a nonrelativistic de-
scription is appropriate, the SFA has proved to be a successful
approach for describing the interaction of atomic systems
with laser pulses in the low frequency regime where the
Keldysh parameter is small [6,7]. Moreover, it provides a
simple quasiclassical interpretation of the MPI process [8].
In addition to applications to direct MPI, the SFA has also
been used to investigate high harmonic generation [9,10],
recollision effects [11], and double ionization processes [12]
in intense laser fields. Coulomb corrections, which are neces-
sary for describing features of the low-energy ejected electron
spectrum, have also been incorporated within the framework
of the SFA [13–16].

The extension of the SFA to the relativistic regime has
been considered by Reiss [17], and has been used in recent
studies of relativistic MPI [18–20]. For laser pulses having
very low frequencies, an adiabatic approximation can be
made, and the total MPI probability can be calculated using
tunneling formulas [21–23]. Coulomb corrections [24], spin
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effects [25,26], as well as MPI by ultrashort pulses [27] have
also been investigated.

We would also like to mention recent studies in which the
Dirac equation has been solved numerically to obtain ioniza-
tion probabilities. In particular, Bauke et al. [28] considered
the ionization of highly charged hydrogenlike ions in short
intense laser pulses as a function of the laser pulse parameters.
Investigations have also been carried out in higher frequency
regimes [29–32].

In the following section we state the basic results that will
be needed to obtain the Dirac direct ionization amplitude
in the SFA. We then give the SFA direct MPI amplitude,
evaluate it using the saddle point method. and obtain the
spin-unresolved ionization probability. In the subsequent two
sections, we derive the SFA MPI amplitudes using the Klein-
Gordon and relativistic Schrödinger equations, respectively.
As an example, the theory is then applied to the ionization of
hydrogenlike neon by an ultrashort, intense Ti:sapphire laser
pulse. We conclude by summarizing our findings.

II. THE DIRAC EQUATION

Our starting point is the Dirac equation in S.I. units describ-
ing an electron of mass m and charge −e in an electromagnetic
field:

ih̄
∂

∂t
�(r, t ) = HD �(r, t ), (1)

where the Dirac Hamiltonian is

HD = HD
0 + HD

Int + V

= cα · (−ih̄∇ + eA) + βmc2 + V, (2)

with HD
0 = cα · (−ih̄∇) + βmc2 and HD

Int = ceα · A. Here
c is the speed of light, α = (αx, αy, αz ) and β are 4×4
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matrices that, in the Dirac representation, are given by

α =
(

0 σ

σ 0

)
, β =

(
I 0
0 −I

)
. (3)

The Pauli matrices are defined as

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

(4)

The electron interacts via the Coulomb potential with a nu-
cleus having atomic number Z , so that

V (r) = − e2Z

(4πε0)r
= −cαh̄Z

r
, (5)

where α is the fine structure constant. The laser pulse is
described by the vector potential

A(η) = ε̂A0 cos(η + ϕ)ζ (η), (6)

with η = ωt − kL · r and kL = k̂Lω/c, where ω is the carrier
angular frequency. Here ζ (·) is the laser pulse envelope func-
tion and ϕ is the carrier-envelope phase. The laser propagation
direction is along k̂L (which is perpendicular to ε̂) and E0 =
ωA0 is the peak electric field strength of the laser field.
Hereby a constant wave-front approximation is made, which
is applicable when the laser pulse is not tightly focused.

In the absence of the laser field, the unperturbed Dirac
Hamiltonian describing the hydrogenlike ion is HD

0 + V . The
eigenstates of this Hamiltonian are known, and the wave
function of the ground state of the system can be expressed
as [33]

φ0s(r, t ) = v0s(r̂)ψD
0 (r) exp[i(Ip − mc2)t/h̄] (7)

with

ψD
0 (r) =

(
κ3(2 − γ )

π�(3 − 2γ )

)1/2

(2κr)−γ exp(−κr) (8)

and

v0s(r̂) =
(

χ s

iσ · r̃χ s

)
. (9)

Here γ = Ip/(mc2), Ip = mc2 − (m2c4 − c2 h̄2κ2)1/2, h̄κ =
mcZα, and �(·) is the Euler gamma function. In addition, we
have introduced the vector r̃ = Ipr̂/(cκ ) as well as the spinors

χ↑ = (1
0) and χ↓ = (0

1) corresponding to the spin-up (s =↑)
and spin-down (s =↓) electron states, respectively.

The Dirac-Volkov (DV) wave function [34], which is a
solution of Eq. (1) with V = 0 in HD, is given by

χDV
ps (r, t ) = J (η)upsχp(r, t ) (10)

with the plane-wave positive energy four-component spinor
ups being

ups = N1/2

(
χ s

σ · p̃χ s

)
, (11)

and the normalization factor, N = (Ep + mc2)/(2Ep), has
been chosen such that the plane-wave density is constant.
We have also made use of the dimensionless quantity

p̃ = cp/(Ep + mc2). The Klein-Gordon-Volkov (KGV) laser-
dressed plane waves are

χp(r, t ) = (2π h̄)−3/2 exp[i(p · r − Ept )/h̄]g(η) (12)

with momentum p having components (pE , pB, pk ) along the
laser electric field, magnetic field, and propagation directions,
respectively, and energy

Ep = (m2c4 + c2 p2)1/2. (13)

The function g(η) appearing in Eq. (12) satisfies the ordinary
differential equation

i
d

dη
g(η) = β(η)g(η). (14)

The quantity

β(η) = 1

2h̄ωm�
[2ep · A(η) + e2A2(η)] (15)

is dimensionless, as is

� = Ep − cpk

mc2
, (16)

which is a constant of the motion. The initial condition g(η →
−∞) = 1 must be satisfied, hence the required solution of
Eq. (14) is

g(η) = exp

(
−i

∫ η

−∞
dη′β(η′)

)
. (17)

Finally, the matrix J (η) in Eq. (10) is defined as

J (η) = I + (I + α · k̂L)α · Ã(η), (18)

where I is the unit matrix and Ã(η) = eA(η)/(2mc�).
In what follows, we will work in the Göppert-Mayer gauge,

obtained by applying the unitary transformation

� ′ = exp[ier · A(η)/h̄]�. (19)

The resulting Hamiltonian, which now depends on the electric
field component of the laser pulse, E = −∂A/∂t , is

HD = cα · [−ih̄∇ − e

c
(r · E )k̂L] + βmc2 + er · E + V,

(20)

and the KGV wave function becomes

χp(r, t ) = (2π h̄)−3/2 exp[i(p · r − Ept )/h̄]g(r, η), (21)

with g(r, η) = exp[ier · A(η)/h̄]g(η).

III. THE SFA DIRECT MULTIPHOTON
IONIZATION PROBABILITY

The SFA direct MPI amplitude is given by

T SFA
ps′,0s = 1

ih̄

∫ ∞

−∞
dt

〈
χDV

ps′ (t )
∣∣HD

Int (t )|φ0s(t )〉. (22)
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It is convenient to write

HD
Int (t ) = [

HD
0 + HD

Int (t )
] − (

HD
0 + V

) + V, (23)

and then to perform the integration in Equation (22) by parts,
which yields

T SFA
ps′,0s = 1

ih̄

∫ ∞

−∞
dt

〈
χDV

ps′ (t )
∣∣V |φ0s(t )〉. (24)

The spin-unresolved probability density that the unpolarized
atom or ion will eject an electron having a kinetic energy E =
Ep − mc2 within the interval (E , E + dE ) and into the solid
angle d p̂ centered about p̂ is then given by

dPSFA(E , p̂) = 1

2

[
E (E + mc2)2(E + 2mc2)

c6

]1/2

×
∑

s,s′=↑,↓

∣∣T SFA
ps′,0s

∣∣2
dE d p̂. (25)

Returning to the transition amplitude Eq. (24) and making
use of Eq. (21), allows us to write

T SFA
ps′,0s = 1

i(2π )3/2h̄5/2

∫ ∞

−∞
dt

∫
dr Ms′s

p (η, r̂)

× exp(−i[p · r − (E + Ip)t]/h̄)g∗(r, η)V (r)ψD
0 (r)

= 1

ih̄

∫ ∞

−∞
dt〈π(t )|Ms′s

p (ωt )V
∣∣ψD

0

〉
exp[iS(t )]. (26)

In this expression, we have introduced the spin transition
amplitude

Ms′s
p (η, r̂) = u†

ps′J†(η)v0s(r̂) (27)

and have defined the shifted momentum π(t ) = p − qh̄kL +
eA(ωt ), with q = (E + Ip)/(h̄ω). In Equation (26), the quasi-
classical action is

S(t ) = qωt + ω

∫ t

−∞
dt ′β(ωt ′). (28)

It will be convenient to work instead with the quantity

S̃(t ) = qωt − ω

∫ ∞

t
dt ′β(ωt ′), (29)

which introduces an immaterial phase factor to the transition
amplitude.

The spin transition amplitude Ms′s
p (η, r̂) consists of two

contributions. The first couples the large components of the
initial and final state spinors, respectively, and is given by

Ms′s
L,p(η) = N1/2χ s′

[(1 + p̃ · Ã)I − iσ · (kL − p̃) × Ã]χ s,

(30)

while the second term,

Ms′s
S,p(η, r̂) = N1/2χ s′

[(kL × Ã) · p̃I + iσ

· ( p̃ + Ã − (kL × Ã) × p̃)]σ · r̃χ s, (31)

couples the corresponding small components.
When evaluating Eq. (26), the following atomic transition

matrix elements appear:

〈p|V ∣∣ψD
0

〉 = 1

k
Cγ f (−γ , κ, k) (32)

and

〈p|r̂V ∣∣ψD
0

〉 = ik̂
k

Cγ

[
1

k
f (−1 − γ , κ, k)

− d

dk
f (−1 − γ , κ, k)

]
. (33)

In these expressions, k = kk̂ = p/h̄, and we have introduced
the quantity

Cγ = −cZα(2κ )−γ

2π

(
(2κ )3(2 − γ )

h̄�(3 − 2γ )

)1/2

(34)

as well as the function

f (a, κ, k) =
∫ ∞

0
dr ra exp(−κr) sin (kr)

= �(1 + a) sin[(1 + a) arctan(k/κ )]

(κ2 + k2)(1+a)/2
(35)

for a > −2.
The integration over time in Eq. (26) can be carried out

numerically. However, we will follow the usual procedure and
obtain an approximation based on the saddle point method
[35]. The complex saddle times, ts, are determined by the
condition dS̃(t )/dt = 0, or

qh̄ω + 1

2m�
[2ep · A(ωts) + e2A2(ωts)] = 0, (36)

which leads to

eA(ωts) = −pE ±
√

p2
E − 2qmh̄ω�. (37)

We note that this equation may also be written as

eA(ωts) = −pE ± i
√

(E/c − pk )2 + p2
B + 2mIp�

= −pE ± i
√

m2c2(� − 1)2 + p2
B + 2mIp�. (38)

Equation (37) or (38) can be readily solved numerically to
obtain the saddle times.

Considering now the limit Ip → 0, we see that the saddle
times correspond to the classical detachment times in the laser
field. Hence ts is real, with pE = ±(2mE )1/2, pk = E/c =
p2

E/(2mc), pB = 0, and � = 1. This provides the motivation
to make the approximation

ts 
 td + itc, (39)

where td is the classical detachment time and tc is assumed
to be small. The imaginary part of the saddle time gives
rise to a complex quasiclassical action, the imaginary part of
which can be identified as a tunneling ionization amplitude.
To calculate the segment of the time integral from itc to td , we
use the fact that eA(ωtd ) 
 −pE , and obtain

ImS̃(ts) 
 1

3m�

[
2m(E + Ip)� − p2

E

]3/2

|eE (ωtd )| . (40)

When γ = Ip/(mc2) � 1 and for fixed pE , the quantity
ImS̃(ts) is minimized when pk 
 pm

k = γ mc/3 +
p2

E/(2mc)(1 + γ /3), so that electron emission is most
probable along a parabola in the pE -pk plane.
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Let us now return to Eq. (31). This quantity is zero when
evaluated at the classical detachment time td , and is of order γ

smaller than the amplitude given by Eq. (30) when evaluated
at the complex saddle time ts and with pk given by its most
probable value. When considering light hydrogenlike ions, as
we do here, the contribution to the SFA direct ionization of
the small components of the initial (and final) wave function
can therefore be safely neglected.

We now point out that the atomic transition matrix element
of Eq. (32) is singular at the saddle time, as in the limit t → ts
we have that π2(ts) = −h̄2κ2. Here we focus on ions with
γ � 1, hence the evaluation of the transition amplitude (26) at
the saddle time can be performed by setting γ = 0. Expanding
the denominator in the resulting approximation for Eq. (32) in
powers of (t − ts), and assuming that there is no confluence
of saddle times, results in the following expression for the
amplitude:

T SFA
ps′,0s = −cαZ (2κ )3/2

4m(h̄)1/2�

∑
ts

Ms′s
L,p(ωts)

exp[iS̃(ts)]

S̃′′(ts)
. (41)

The procedure used to obtain Eq. (40) gives

S̃′′(ts) 
 i|eE (ωtd )|
mh̄�

[
2m(E + Ip)� − p2

E

]1/2
(42)

for the second derivative of the quasiclassical action at the
saddle time. Choosing the quantization axis to be along
the laser magnetic field direction and making use of Eq. (38),
the components of the spin transition amplitudes of Eq. (30)
can be expressed as

M++
L,p (ωts) = M−−

L,p (ωts) 
 N1/2

1 + (ε/2)

×
{

1 +
(εγ

4

)1/2
+ i

[(ε

2

)1/2
−

(γ

2

)1/2
]}

,

M+−
L,p (ωts) = M−+

L,p (ωts) = 0, (43)

where we have set pk and pB to their most likely values. In
addition, we have introduced the quantity ε = E/(mc2) and
have only included the terms of lowest order in powers of γ .
Then,

1

2

∑
s,s′=↑,↓

∣∣T SFA
ps′,0s

∣∣2 = 1

2

∣∣T SFA
p,0

∣∣2 ∑
s,s′=↑,↓

∣∣Ms′s
L,p(ωts)

∣∣2

= 1 + (γ /2)

1 + ε

∣∣T SFA
p,0

∣∣2 
 mc2

E + mc2

∣∣T SFA
p,0

∣∣2

(44)

where the spin-independent SFA transition amplitude

T SFA
p,0 =

∑
ts

aion(ts)afield(ts) (45)

is expressed in terms of two amplitudes. The first is the
ionization amplitude

aion(ts) = icαZ (2h̄κ )3/2

4h̄|eE (ωtd )|[2m(E + Ip)� − p2
E

]1/2

× exp

(
−

[
2m(E + Ip)� − p2

E

]3/2

3m�|eE (ωtd )|

)
(46)

that depends on the magnitude of electric field component of
the laser pulse at the classical detachment times. The second
is associated with the evolution of the ejected electron in the
laser field,

afield(ts) = exp[iS̃(td )]. (47)

Making use of Eq. (44) the spin-unresolved SFA direct MPI
probability density, Eq. (25), becomes

dPSFA(E , p̂) =
[

m2E (E + 2mc2)

c2

]1/2∣∣T SFA
p,0

∣∣2
dE d p̂.

(48)

This expression is of exactly the same form as in the nonrel-
ativistic SFA. Indeed the well-known SFA result is obtained
by setting � = 1 in Eq. (46) and in Eq. (15) when evaluating
S̃(td ). Of course in this nonrelativistic limit h̄κ = (2mIp)1/2,
Ip = mc2Z2α2/2, and E = p2/(2m). We will return to the
relationship between the relativistic and nonrelativistic SFA
MPI probabilities below.

IV. KLEIN-GORDON SFA

As we only consider the spin-unresolved MPI probabilities,
it is of interest to neglect from the onset the spin degrees of
freedom of the atomic system. In this section we compare
the Dirac-SFA direct MPI probability obtained above with the
corresponding result obtained within the framework of the
Klein-Gordon equation. Making use of the two-component
formalism of Feshbach and Villars [36], the Klein-Gordon
equation in the Hamiltonian form is expressed as

ih̄
∂

∂t
�̄(r, t ) = HKG�̄(r, t ), (49)

where HKG = HKG
0 + HKG

Int + V is a matrix operator with

HKG = 1

2m
(−ih̄∇ + eA)2(iσy + σz ) + mc2σz + V, (50)

HKG
0 = 1

2m
(−ih̄∇)2(iσy + σz ) + mc2σz. (51)

The wave function �̄(r, t ) has two charge components, which
we label by “−” and “+”, respectively.

It is readily verified that for the initial state of the system
these components are given by

φ∓
0 (r, t ) = 1

2

(
1

1 + γ

)1/2(
1 ±

[
1 − γ − V (r)

mc2

])

×ψ0(r) exp[i(Ip − mc2)t/h̄], (52)

where for the particular case of a hydrogenlike ion in its
ground state the ionization potential is [37]

Ip = mc2 − mc2[1 + 4Z2α2/(1 + σ )2]−1/2 (53)

and the time-independent wave function ψ0(r), which is the
ground state solution of the second-order Klein-Gordon equa-
tion, is

ψ0(r) =
[

(2κ )3

4π�(σ + 2)

]1/2

(2κr)(σ−1)/2 exp(−κr). (54)

Here σ = (1 − 4Z2α2)1/2 and h̄κ = (2mIp − I2
p /c2)1/2.
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For the case in which the electron is interacting with
the laser field and V = 0, one finds that the wave function
components can be expressed in terms of the KGV wave
function of Eq. (12) as

χ∓
p (r, t ) = [mc2 ± {Ep + h̄ωβ(η)}]

2(mc2Ep)1/2
χp(r, t ). (55)

In the nonrelativistic limit where c → ∞, the negatively
charged “−” components of the Klein-Gordon wave func-
tions given in Eqs. (52) and (55), respectively, tend to the
corresponding solutions of the nonrelativistic Schrödinger
equation, while the “+” components vanish.

Making use of the Göppert-Meyer gauge transformation,
we find that

HKG = 1

2m

[
−ih̄∇ − e

c
(r · E )k̂L

]2
(iσy + σz ) + mc2σz

+ er · E + V. (56)

The Klein-Gordon SFA direct MPI amplitude is given by

T KG−SFA
p,0 = 1

ih̄

∫ ∞

−∞
dt〈χ̄p(t )|HKG

Int (t )σz|φ̄0(t )〉

= 1

ih̄

∫ ∞

−∞
dt〈χ̄p(t )|V σz|φ̄0(t )〉. (57)

where in the second line of this equation we have, as above,
integrated by parts. We now note that the positive charge
component of the initial state, φ+

0 (r, t ), is a factor γ smaller
than the negative charge component. We also observe that the
final state positive charge component evaluated at the classical
detachment time vanishes, that is, χ+

p (r, td ) = 0, and at the
saddle time χ+

p (r, ts) is a factor γ smaller than the correspond-
ing final state negative charge component. Neglecting terms
of order γ and higher in the transition amplitude therefore
yields

T KG-SFA
p,0 = 1

ih̄

∫ ∞

−∞
dt

(
E + 2mc2 + h̄ωβ(ωt )

2mc2(1 + ε)1/2(1 + γ )1/2

)

×〈π(t )|V |ψ0〉 exp[iS̃(t )], (58)

with ε = E/(mc2), as above. The Coulomb matrix element is

〈p|V |ψ0〉 = Cσ

1

k
f [(σ − 1)/2, κ, k] (59)

with

Cσ = − cZα(2κ )(σ+2)/2

(2π2h̄)1/2�(σ + 2)
. (60)

Proceeding as before, we approximate the integral over
time using the saddle point method and handle the resulting
singularity in the Coulomb matrix element by setting σ = 1.
We find that, making use of Eq. (45),

∣∣T KG−SFA
p,0

∣∣2 = mc2

E + mc2

∣∣T SFA
p,0

∣∣2
. (61)

We have hereby obtained the result that, for light ions, the
Klein-Gordon SFA transition probability is equal to the spin-
unresolved Dirac SFA transition probability. This is consistent

with the two-step interpretation of the ionization process. In
the first step, the tunnel ionization of the electron is only
weakly influenced by the electron spin, while the dynamics of
the electron during the second step, namely the time-evolution
of the “free” electron in the laser field, is essentially classical.
We will return to this point below.

V. THE RELATIVISTIC SCHRÖDINGER EQUATION

We have seen that the negative energy components of
the initial and final state Dirac wave functions give negli-
gible contributions to the SFA direct ionization probability.
Similarly, the positive charge components of the initial and
final Klein-Gordon wave functions can also be neglected.
This suggests that, to further simplify our treatment of the
problem, we may use a manifestly single-particle relativistic
theory. This can be accomplished by diagonalizing either the
Dirac or Klein-Gordon Hamiltonian and then constructing
approximate solutions of the resulting wave equations. An
alternative approach, which we will consider here, is to make
use of the relativistic Schrödinger equation (RSE) [7].

The RSE is not an obvious choice, and its shortcomings are
well documented. In particular, the RSE cannot be expressed
in a covariant form and it is “nonlocal” in the sense that the
kinetic energy operator depends on all positive powers of the
momentum operator. On the other hand, it is a single-particle
theory and therefore the Born rule provides an interpretation
of the RSE wave function.

Our starting point is the RSE describing a spinless particle
in an electromagnetic field:

ih̄
∂

∂t
�(r, t ) = HRS�(r, t ), (62)

where HRS = W + V and

W = [m2c4 + c2(−ih̄∇ + eA)2]1/2. (63)

The RSE satisfies the following second-order equation:(
ih̄

∂

∂t
− V

)2

�(r, t ) =
[
W 2 + [W,V ] + ih̄

(
∂W

∂t

)]
�(r, t ).

(64)

As a consequence, for the particular case in which the electron
is moving only in the static potential V (r) given by Eq. (5),
the solution �(r, t ) of the RSE also satisfies the second-order
equation (

ih̄
∂

∂t
− V

)2

�(r, t ) = W 2
0 �(r, t ), (65)

where

W0 = [m2c4 + c2(−ih̄∇)2]1/2. (66)

This is the Klein-Gordon equation for a particle moving in a
Coulomb potential. The ground state wave function, ψ0(r), is
given by Eq. (54).

Turning now to the situation in which V = 0, so that the
particle interacts with only the laser pulse, Eq. (64) becomes(

ih̄
∂

∂t

)2

�(r, t ) =
[
W 2 + ih̄

(
∂W

∂t

)]
�(r, t ). (67)
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An approximate solution of this equation for a particle having
momentum p is

χRSV
p (r, t ) =

(
Ep + h̄ωβ(η)

Ep

)1/2

χp(r, t ). (68)

It can be shown that these solutions are normalized to a Dirac
delta function (for example, see the calculation of Boca in
[38]), but are not orthogonal.

As usual, we will work in the Göppert-Mayer gauge, which
yields

W =
(

m2c4 + c2

[
−ih̄∇ − e

c
(r · E )k̂L

]2)1/2

+ er · E .

(69)

The RSE SFA direct MPI amplitude is given by

T RSE−SFA
p,0 = 1

ih̄

∫ ∞

−∞
dt

〈
χRSV

p (t )
∣∣HRS

Int (t )|φ0(t )〉. (70)

In this equation the initial state of the atomic system is
|φ0(t )〉 = exp[i(Ip − mc2)t/h̄]|ψ0〉 and the interaction Hamil-
tonian can be written as

HRS
Int (t ) = W − (W0 + V ) + V. (71)

Integrating Eq. (70) by parts leads to

T RSE−SFA
p,0 = 1

ih̄

∫ ∞

−∞
dt

〈
χRSV

p (t )
∣∣V |φ0(t )〉

= 1

ih̄

∫ ∞

−∞
dt

(
E + mc2 + h̄ωβ(ωt )

E + mc2

)1/2

× 〈π(t )|V |ψ0〉 exp[iS̃(t )]. (72)

Once again the integral over time is approximated using
the saddle point method and the resulting singularity in the
Coulomb matrix element is handled by setting σ = 1. Making
use of Eq. (45), we find that

∣∣T RSE−SFA
p,0

∣∣2 = mc2

E + mc2

∣∣T SFA
p,0

∣∣2
, (73)

which is in agreement, for light ions, with the results obtained
using both the Dirac and Klein-Gordon equations.

VI. NUMERICAL EXAMPLE

In this section we present the results of numerical calcula-
tions of the SFA energy resolved direct MPI probability for
hydrogenlike neon ions interacting with an ultrashort laser
pulse. Let Up = e2E2

0 /(4mω2) be the electron ponderomotive
energy. The ionization amplitude can then be parameterized
in terms of four quantities. Firstly, the Keldysh parameter,
γK = [Ip/(2Up)]1/2, which is the ratio of the laser and tun-
neling frequencies and serves to help distinguish between the
regimes where ionization can be understood as occurring via
a tunneling process (γK comparable or less than unity) or
by multiphoton ionization (γK larger than unity). Secondly,
the scaled electric field strength F̄ = meE0/(2mIp)3/2 that,
in the tunneling regime, must be small enough to preclude

FIG. 1. The vector potential A(ωt ) (solid line) and the scaled
electric field E (ωt )/ω (dashed line) along the laser pulse polarization
direction ε̂, in arbitrary units, as a function of time, in units of the
laser period, for the four-cycle pulse described in the text. The arrows
point to particular moments during the pulse when the electric field
is zero. The significance of these points in time is explained in the
text.

over-the-barrier ionization while being sufficiently large to
allow ionization to occur with a significant probability. For
the latter to be true, E0 must scale as Z3. The nonrelativistic
and relativistic regimes of the ejected electron dynamics can
be demarcated via the scaled ponderomotive potential, Ū =
Up/(mc2). Finally, we have the scaled kinetic electron energy
Ē = E/(2Up) which, classically, is restricted to positive val-
ues less than or equal to unity.

For our example, we consider a four-cycle Ti:sapphire
laser pulse of peak “instantaneous” intensity 3.00 × 1020

W/cm2, which falls within the domain of currently achievable
intensities of table-top Ti:sapphire laser systems. The laser
pulse peak electric field and wavelength are, respectively,
E0 = 92.5 a.u. (atomic units) and λ = 800 nm. For hydrogen-
like neon, γ = Ip/(mc2) = 2.66 × 10−3 and Ū = 35.1 so that
the bound electron dynamics are essentially nonrelativistic
while the ejected electron dynamics are typically relativis-
tic. The scaled electric field strength is F̄ = 9.25 × 10−2

and the Keldysh parameter γK = 6.16 × 10−3, which implies
that, at the peak of the pulse, ionization occurs deep in
the tunneling regime. We also assume an ultrashort four-
cycle pulse with duration T = 8π/ω and envelope function
ζ (η) = sin2[πη/(ωT )], and we set the pulse carrier-envelope
phase to ϕ = π/4. In Fig. 1, A(η) as well as E (η)/ω are
shown as a function of time along the laser polarization
direction ε̂.

Figures 2 and 3 illustrate how each of the saddle times
contributes to the probability of the electron being ejected
with a particular final energy along the parabola in the pE -pk

plane described above. Referring to Eq. (37), every value of
|A(ωt )| during each of the half-cycles of the pulse gives rise
to a saddle time contribution. As a consequence, there are two
curves per half-cycle corresponding, respectively, to electron
emission during the rise and fall of |A(ωt )|. During the half-
cycle, the highest energy electrons are emitted as |A(ωt )|
reaches its local maximum (and |E (ωt )| passes through zero).
At this point the two curves coalesce; the time during the
laser pulse that these particular electrons are emitted is la-
beled in Fig. 1, the corresponding curves being labeled in
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FIG. 2. The incoherent ionization probability corresponding to
each saddle time that contributes to the emission probability of
hydrogenlike neon at a given energy (in units of 2Up) for electron
emission at the angle of most probable emission (see text) in the right
half of the ε̂-k̂L plane (pE > 0). The laser pulse parameters are given
in the text. The contributions corresponding to the highest electron
energy per half-cycle, which are labeled 2R, 3R, and 4R, arise when
the electric field of the laser pulse passes through zero (see Fig. 1).
The contribution from 1R is negligible.

Figs. 2 and 3. Figure 2 corresponds to electron emission with
the momentum component pE along ε̂ in the ε̂-k̂L plane,
while for Fig. 3 emission is in the opposite half-plane. The
calculations were carried out using Eq. (46). Referring to
Figs. 1 and 3, the dominant contributions come from the
half-cycle in which |A(ωt )| is largest. In the ultrashort pulse
regime, the saddle time contributions depend strongly on the
choice of the pulse duration and the carrier-envelope phase ϕ

[39]. However, typically the main contributions come from
the saddle times that correspond to the cycle(s) when the
pulse envelope is maximum. This is the case here, and is
in agreement with the findings of Bauke et al. [28], who
found that ionization in few-cycle intense laser pulses depends
sensitively on the intensity at the peak of the pulse.

In Fig. 4 the angle integrated electron emission probability,

dPSFA(E )

dE
=

[
m2E (E + 2mc2)

c2

]1/2 ∫ ∣∣T SFA
p,0

∣∣2
d p̂, (74)

FIG. 3. The same as Fig. 2, but for electron emission in the left
half of the ε̂-k̂L plane (pE < 0). The contributions corresponding to
the electrons emitted with the highest energy per half-cycle, which
are labeled 1L, 2L, and 3L, arise when the electric field of the laser
pulse passes through zero (see Fig. 1).

FIG. 4. The angle integrated energy resolved electron emission
probability for the system discussed in the text. Also shown (gray
dashed curve) is the same quantity obtained in the nonrelativistic
theory. The curves are indistinguishable, aside from small differences
near the classical cutoff energy.

is shown as a function of the electron energy, together with
the results obtained using the nonrelativistic SFA. To obtain
the results of Fig. 4 we have integrated over the incoherent
sum of the saddle point contributions:

∣∣T SFA
p,0

∣∣2
d p̂ 


∑
ts

|aion(ts)|2d p̂. (75)

The angle-integrated ionization probability is then a smooth
function of E . Indeed, here we are interested in the main
features of the electron energy distribution. These appear over
energy scales that are much larger, of the order of mc2, than
the energy scales over which interference effects typically
occur, namely, of the order of h̄ω. In particular, the width of
the distribution of the ejected electrons in the ε̂-k̂L plane and
about the most likely polar emission angle θm, where sin θm 

[2mc2/(E + 2mc2)]1/2, scales approximately as (F̄γ 2

K )1/2. We
recall that interferences are governed by the phases between
saddle contributions with ionization amplitudes having com-
parable magnitudes. The rate at which these phases vary as a
function of the polar angle θ is much greater than (F̄γ 2

K )1/2.
Therefore, the phases vary rapidly with respect to changes in
the emission angles that are small relative to the width of
the angular distribution. This has the consequence that the
MPI process of an ion in the (ultrashort) laser pulse can be
understood in terms of the well-known adiabatic semiclassical
model [7]. In this model, the electron is first ejected by a
tunneling mechanism with probability proportional to |aion|2,
thereby emerging with near zero momentum in the laser field.
The electron is subsequently treated as a classical particle
that interacts with the laser field, whereby it acquires its final
momentum p.

In Fig. 4, the angle-integrated ionization probability calcu-
lated using the nonrelativistic SFA MPI formula is also shown.
With the exception of the small differences at high electron en-
ergies, the agreement between the relativistic and nonrelativis-
tic results is good. In order to understand why the relativistic
and nonrelativistic results are in close agreement, let us eval-
uate the SFA direct MPI probability density about the most
probable angle of emission, where � 
 1 − γ /3 
 1 and θ 

θm. Using the approximation of Equation (75) and defining
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δθ = θ − θm and δpk = pk − pm
k 
 −p sin θm sin(δθ ) as the

difference between pk and its most likely value, we see that

dPSFA(E , p̂) 
 (2m3E )1/2dE d (δθ )dφ
∑

ts

(cαZ )2h̄κ3

4Ip|eE (ωtd )|2

× exp

(
−2[(δpk )2 + p2

B + 2mIp]3/2

3m|eE (ωtd )|
)

,

(76)

where pB = p sin(θm + δθ ) sin φ. This expression is of ex-
actly the same form as the corresponding nonrelativistic
formula [7]. However, in the nonrelativistic limit emission
is most probable along ±ε̂ (θm = π/2, φ = 0, π ) so that
δpk = −p sin(δθ ) and pB = p cos(δθ ) sin φ. It would be of
interest to extend Eq. (76) to include heavier ions by including
high-order corrections involving the parameter γ .

VII. CONCLUSION

We have investigated the MPI of light hydrogenlike ions
by ultrashort, infrared laser pulses with peak intensities that
are sufficiently high that relativistic effects are important. We
have shown that the spin-unresolved differential SFA MPI
probability obtained using the Dirac equation agrees with
both the Klein-Gordon and RSE differential MPI probabil-
ities. Moreover, deep in the tunneling regime, the angle-
integrated SFA MPI probabilities are given by the correspond-
ing nonrelativistic formula, properly adjusted to account for
the momentum component of the electron in the laser pulse
propagation direction. This provides a very simple framework
for analyzing the angle-integrated electron energy spectrum
of ions interacting with short, intense infrared laser pulses
well into the relativistic regime. Our work also indicates
that, for spin-unresolved investigations of intense-laser atom
interactions, the Klein-Gordon equation could be used as a
simpler alternative to the Dirac equation.
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