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We identify the contribution of Floquet-Bloch states to the high-order harmonic generation (HHG) in solids by
numerically solving the time-dependent Schrödinger equation for both a one-dimensional and a two-dimensional
model. Results from the single k point and the full Brillouin zone are compared to each other and the symmetry-
breaking effect is discussed. We show that the observed phenomena can be explained under the framework of
the Floquet-Bloch theory and the strong-field approximation, respectively. Our results indicate that the total
yield of the harmonic radiation increases nonmonotonically with the intensity of the driving pulse. After a
rough consideration of the focusing volume effects, we find that the yield of the harmonics shows a steplike
structure, which is similar to several recent experimental observations. The present work can contribute to a
better understanding of the channel-closing effect in the HHG of solids and may provide a way to detect the
Floquet-Bloch bands in a laser field.
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I. INTRODUCTION

In the past few years, high-order harmonic generation
(HHG) in solids shined by strong laser pulses has attracted
great attention since its experimental observation [1–4]. HHG
in semiconductors can be used to study the dynamics of
the electron on ultrafast timescales [3] and to explore the
properties of energy bands in solids [4–6]. Recent experimen-
tal measurements have been carried out for two-dimensional
(2D) materials such as graphene [7,8] and magnetic materials
[9].

The time-dependent Schrödinger equation [10,11], the
semiconductor Bloch equation [12–14], and the time-
dependent density function theory [15] are the main theo-
retical methods to study the HHG in solids. The advantages
and disadvantages of these methods have been discussed [16].
There used to be a debate between the interband and the
intraband transition mechanisms for HHG in solids [1,10,
17–20], which comes from the momentum-dependent gap en-
ergy and band nonparabolicity, respectively. Now it seems that
a consensus has been reached that both mechanisms coexist to
give a first cutoff which linearly scales with the electric-field
strength of a laser pulse. Apart from the two-band models,
the electron can actually be excited to higher conduction
bands when the laser intensity is further increased. Under
this circumstance, many energy bands should be considered
in the generation of harmonics [11,21]. It has been shown
that the interband transitions between multiple bands play an
essential role in the harmonic radiation [21–24], e.g., multiple
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plateaus have been observed. The orientation and ellipticity
dependence of HHG in solids have been recently observed
experimentally [4,25–29] and discussed theoretically [30–33].
In addition, the HHG can be controlled by the carrier-envelope
phase (CEP) of the driving pulse [26,34], which demonstrates
a potential way to the subcycle control of the electron dynam-
ics in crystals.

The systems of a crystalline structure interacting with
a monochromatic laser field can be studied by using the
Floquet-Bloch theory since they are both spatially and tem-
porally periodic. Faisal and Genieser used the Floquet-Bloch
theory to show the exact dispersion relation for the Krönig-
Penney model [35]. By studying the modification of the
laser-modified band structure, they also predicted that a semi-
conductor medium is more efficient in generating high-order
harmonics than either an insulator or a metal film, which has
been confirmed in recent experiments [1,2]. They also used
the Floquet analysis to predict the formation of a plateau struc-
ture existing in both the photocurrent and the spectrum of the
HHG radiation at the surface of solid. Alon and co-workers
used a space-time system to characterize the modifications of
the electron energy levels induced by circularly polarized laser
fields in quantum rings, thin crystals, and carbon nanotubes
[36]. Tight-binding models combined with the Floquet theory
have been widely used to analyze the Floquet-Bloch shift of
the band structure [37] and the blueshift of the band edge [38],
and the dynamic symmetry based on the selection rules in
the graphite system [39]. Park investigated the interference
between the Floquet states and laser-assisted photoemission
effect during the photoemission [40].

Experimentally, Wang and co-workers observed the
Floquet-Bloch bands in solids by using time- and angle-
resolved photoemission spectroscopy [41]. This pump-probe
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FIG. 1. (a) Left panel: the first three energy bands of the one-dimensional model. Right panel: the corresponding quasienergies as a function
of the amplitude of the vector potential. The solid lines and dashed lines represent states with different parities. (b) The yield of the 11th-order
harmonic induced by a trapezoidal (blue solid line) and cosine square (yellow dashed line) envelope at various A0. The full HHG spectrum is,
respectively, shown in (c) for the trapezoidal envelope and (d) for the cosine square envelope. The black dashed line and white dashed line are
�C1(A0) − �V2(A0) and EC1(A0) − EV2(A0), respectively.

method has been frequently used to study the Floquet-Bloch
states. One can use the absorption spectrum of the probe laser
pulse to examine the modification of the band structure, which
is caused by the interaction with the pump laser pulse.

In the present work, we will mainly focus on the harmonics
induced by a quasimonochromatic midinfrared laser field.
By varying the peak intensity of the laser pulse, we identify
resonance peaks in the spectrum. This phenomenon is caused
by the resonance enhancement between different Floquet-
Bloch states. Then we use all k points from the full Brillouin
zone (BZ) to calculate the high-order harmonic generation, in
which case we find the channel-closing effect, analog to that
in the atomic systems. By applying a rough focusing volume
averaging of the laser pulse, we observe steplike structures
in the harmonic yield as a function of the laser intensity,
which may explain similar phenomena observed in recent
experiments [1,6,28,42].

The rest of the paper is organized as follows. We start
with our basic observation of the contributions of the Floquet-
Bloch states to the harmonic generation in a one-dimensional
model. Then we provide two theoretical frameworks to un-
derstand and calculate the observed phenomena. Finally, we
present our main results and discussions, including the com-
parisons between the results from different theoretical meth-

ods, the consideration of all the k points in the full BZ, the
generation to a two-dimensional model, and the averaging
over the focusing volume.

II. BASIC OBSERVATION

Let us start with our basic observation from a 1D model,
which has been used in our previous work to discuss the
Michelson interferometry of high-order harmonic generation
in solids [43]. In this model, the periodic potential is taken to
be

V (x) = V0

(
1 + cos

2πx

a

)
, (1)

where V0 = −0.37 a.u. and the lattice constant of the crystal
a = 8 a.u. The lowest three energy bands are shown in the left
part of Fig. 1(a), where one has two valence bands (V1, V2)
and one conduction band C1. The laser-matter interaction is
described in the velocity gauge under the dipole approxima-
tion, with the vector potential of the laser pulse given by

A(t ) = A0 f (t ) cos(ω0t ), (2)
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where A0, f (t ), and ω0, respectively, stands for the peak
vector potential, the pulse envelope, and the central angular
frequency.

The corresponding time-dependent Schrödinger equation
(TDSE) can be easily solved [24,43]. For a clear demonstra-
tion of the contribution of Floquet-Bloch states to HHG, we
first choose the V2 as the initial state and temporally consider
the transition from a single point at k = 0. In Fig. 1(c), we
present the harmonic spectrum as a function of the peak
vector potential A0 for an eight-cycle laser pulse with ω0 ≈
0.014 a.u. (λ = 3200 nm) and f (t ) being trapezoidal with one
cycle ramp on and one cycle ramp off. The peak intensity of
the pulse is given by I0 = ω2

0A2
0. As can be seen, the spectrum

shows two set of structures: the horizontal ones being the
usual odd harmonics and the unexpected slanted fringes. The
latter intensity-dependent fringes remind us of the channel-
closing effect in the atomic ionization due to the Up shift (see,
e.g., [44]).

To check this speculation, we calculate the time-averaged
energy difference �E within one optical cycle and plot it
in Fig. 1(c) with a black dashed line as a function of A0,
which indeed coincides perfectly with one of the the slanted
fringes. In addition, one notices that all of these slanted curves
are “parallel” to each other and are separated by 2ω0. For
harmonic orders greater than about 27, there also exist weak
slanted fringes but with negative slopes [see, e.g., the left-
upper quarter of Fig. 1(c)], which can be explained with a
similar mechanism from the Floquet-Bloch states but for the
transitions between the two valence bands V1 and V2.

One may wonder whether these slanted fringes can be
simply described by the simple classical prediction of HHG
cutoff from the interband transition model. We thus plot
�E (A0) as a white dashed line in Fig. 1(c). As a fact, it
does not follow the trend of the slanted curves, while it only
qualitatively gives a rough prediction of the cutoff with the
increase of A0.

Due to the contributions of the Floquet-Bloch states, the
yield of harmonics at a particular order would not monoton-
ically increase with the pulse intensity. Significant enhance-
ment can be clearly seen near the crossing points of the two
sets of the structures in Fig. 1(c). To quantitatively examine
this enhancement, it is instructive to plot the harmonic yield
of a particular order as a function of the peak value A0 of
the vector potential. In Fig. 1(b), we show the yield of the
11th harmonics (the solid blue line) by integrating over a
width of ω0 around the energy of 11ω0 from the data shown
in Fig. 1(c). Indeed, one can observe that the HHG yield
increases nonmonotonically with the increase of the vector
potential A0 and asymmetric Fano-type resonance peaks are
present, which indicates the existence of resonance behavior
of the discrete and continuous states.

Finally, it is important to check whether the above observa-
tion from a trapezoidal pulse persists with other types of pulse
envelope. We thus change f (t ) into a cosine square shape,
but with all other parameters kept the same. The harmonic
spectrum is shown in Fig. 1(d), from which one can see that
those slanted structures do appear, although not as distinct as
those for the trapezoidal pulse. Most importantly, as shown in
Fig. 1(b) with a dashed line, the integrated yield for the 11th
order also shows steplike resonance structures.

III. THEORETICAL DESCRIPTION

In this section, we formulate the theoretical framework to
understand the observed structures in the harmonic spectrum.
The dynamics of the quasielectron can be described by the
time-dependent Schrödinger equation in the Houston basis
[10],

iȧi(t ) = Ei[k(t )]ai(t ) + F (t )
∑

j

ξi j[k(t )]a j (t ), (3)

in which ai(t ) is the occupation probability amplitude of the
Bloch state in the ith band and Ei(k) is the corresponding
band energy with a quasimomentum k(t ) = k0 + A(t ), F (t ) =
−∂t A(t ) is the electric field of the applied laser pulse, and the
dipole transition matrix between different bands is given by

ξi j (k) = i〈	i(k)|∇k|	 j (k)〉, (4)

where 	i(k) is the Bloch wave function of the single-electron
Hamiltonian H . In order to calculate the HHG spectrum, the
first step is to evaluate the expectation value of the momentum
operator,

pi j (k) = 〈	i(k)|∇kH |	 j (k)〉. (5)

In the following, we will present two approximate approaches,
which will help us to interpret the observed structures in the
harmonic spectra.

A. Floquet-Bloch approach

Considering a monochromatic laser field with a frequency
ω0, one notices that Eq. (3) is periodic in time. Therefore, we
can expand the wave function in terms of the Floquet states,
i.e.,

|a(t )〉 =
∑

α

bαe−i�αt |uα (t )〉, (6)

where �α is the Floquet frequency. Since the corresponding
Floquet state uα (t ) is also periodic in time, it can be further
expanded into Fourier series,

|uα (t )〉 =
∑
n∈Z

|uα,n〉einω0t . (7)

It should be noted that e−imω0t |uα (t )〉 is still the Floquet state
of the system with the Floquet frequency �α + mω0, m ∈ Z.

For the convenience and clarity of the theoretical analysis,
we only consider two bands, i = c, v, e.g., the C1 and V2

band as shown in the left part of Fig. 1(a). We use the same
subscription c, v to denote the Floquet state. The current can
be evaluated as

j(t ; k0) ∝
∑

i j

a∗
i (t )pi j (k(t ))a j (t )

=
∑

α=c,v

|bα|2
∑
n,m,l

〈uα,n| p̂l |uα,m〉e−i(m−n+l )ω0t

+ 2Re

⎡
⎣b∗

vbc

∑
n,m,l

〈uv,n| p̂l |uc,m〉e−i[�c−�v+(m−n+l )ω0]t

⎤
⎦,

(8)
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where p̂l is the Fourier component of p̂(k(t )), i.e., p̂(k(t )) =∑
l

p̂l e−ilω0t , l ∈ Z.

For a system with a space reflection symmetry, p̂l �= 0 only
for l being even, 〈uα,n | p̂l | uα,m〉 vanishes for all even (m − n),
and 〈uv,n | p̂l | uc,m〉 vanishes for all odd (m − n). Thus, the
Fourier transform of the current can be simplified to be

j̃(ω) ∝
∑

l

βlδ[(2l + 1)ω0 − ω]

+
∑

l

γlδ[�c − �v + 2lω0 − ω], (9)

in which the first term represents the usual odd harmonics,
while the second term can be interpreted as transitions be-
tween the different Floquet-Bloch states. It is obvious that
�α depends on the amplitude of the vector potential of the
laser pulse. Therefore, if one plots the yield of a certain
harmonic ω = (2l + 1)ω0 as a function of the field strength,
one may observe Fano-type resonance peaks satisfying �c −
�v = (2l + 1 − 2l ′)ω0, embedded in the continuum [45].

For laser pulses in the low-frequency limit, i.e., |Fξcv| 

Ec − Ev but with the vector potential still comparable with
the reciprocal lattice vector π/a, the Floquet states can be
approximated into the zeroth order,

〈	i(k)|u(0)
α (t )〉 = δi,α exp

[
i�(0)

α t − iφi(t )
]
, (10)

where φi(t ) = ∫ t
0 Ei[k(t )]dt is the dynamical phase and

�(0)
α = φi(T )/T is the corresponding Floquet frequency with

T = 2π/ω0. With these results in mind, we can now attribute
the slanted fringes present in Fig. 1(c) to the transitions
between various Floquet-Bloch states with different parities.
The energies of these Floquet states in the zeroth order are
shown in the right part of Fig. 1(a).

For a monochromatic laser field, it is possible to diagonal-
ize Eq. (3) with the concept of Floquet states [46]. However, it
is not straightforward to do so for a realistic laser pulse with an
envelope f (t ). This is because, in the low-frequency limit con-
sidered here, level crossings �(0)

c − �(0)
v = (2l + 1)ω0 will

happen for many times, which breaks the adiabatic condition
for the Floquet state population {bα} even for a slowly varying
envelope [47]. To resolve this problem, one can turn to the
strong-field approximation, which will be detailed in the next
section.

B. Strong-field approximation

The picture of strong-field approximation (SFA) [18,20]
has been useful in the qualitative understanding of the HHG
in solids. In the following, we will derive a semianalytical
formula which can quantitatively describe the harmonic yield,
in principle, for a laser pulse with an arbitrary envelope f (t ).

Without considering the depletion effect of the valence
band (i.e., |ac|2 
 |av|2), the approximate solution to Eq. (3)
can be expressed as

av (t ) = e−iφv (t )
∫ t

−∞
F (τ )ξ [k(τ )]e−iφcv (τ )dτ. (11)

Due to the fact that e−iφcv (t ) = ei[φv (t )−φc (t )] is a fast oscillating
function, the above integration is mainly contributed at the

vicinity of the saddle points,

d

dt
φcv (t )|t=ts = Ev[k(ts)] − Ec[k(ts)] = 0. (12)

Apparently, similar to the atomic case [48–51], there is no
root for Eq. (12) if one restricts ts ∈ R. Therefore, we have
to extend to the complex plane of time ts = tr + iti. Only the
roots in the lower-half plane with tr < t need to be considered,
and the result of Eq. (11) is given by summing over all those
saddle points, i.e.,

av (t ) ≈ e−iφv (t )
∑

Re ts<t

sgn[F (ts)ξcv]e−iφcv (ts ), (13)

whose details of derivation can be found in the Appendix.
Equation (13) can be interpreted as the tunneling from the
valence band to the conduction band at time Re ts with proba-
bility e2 Im φcv (ts ) and phase − Re φcv (ts). We can now evaluate
the yield of HHG according to the Fourier transform of the
interband current,

jinter(t ) = 2 Re

{
pcv[k(t )]eiφcv (t )

∑
Re ts<t

sgn[F (ts)]e−iφcv (ts )

}
.

(14)

As an example, let us consider the case of a monochro-
matic pulse and a single point k0 = 0. There are two in-
stances of tunneling per optical cycle, which corresponds to
A(tr ) = 0. Since the direction of electric field is opposite,
the phase difference between these two tunneling events is
�φ = −φcv (T/2) + π . If the constructive interference con-
dition �φ = 2lπ is satisfied, i.e., �(0)

c − �(0)
v = (2l + 1)ω0,

there will be an efficient population transfer from the valence
band to the conduction band, i.e., the resonance enhancement
occurs, as shown in Fig. 2(a1). In this case, all orders of
HHG will be enhanced. Wismer et al. [52] found this type
of interference in the region of photon energy ω0 close to
energy gap � theoretically, and investigated its effect on
field-induced current. Paasch-Colberg et al. [53] and Du et al.
[54,55] also noticed this in the region of ω0 
 � and regarded
it as a subcycle interference.

For the off-resonance case, the geometric series can be
easily summed up as below,

jinter(t ) = 2 Re pcv[k(t )]eiφcv (t ) 1 − exp(iN�φ)

1 − exp(i�φ)
eIm φcv (ts ),

(15)

where N is the number of saddle points satisfying Re ts < t .
It can be shown that the current can be divided into two
quasiperiodic parts: by a time translation of T/2, the first part
has a phase change of (�(0)

c − �(0)
v )T/2, while the second

part only changes the sign. One can get an intuitive under-
standing by examining Fig. 2(a2). From these arguments in
the framework of SFA, one can rediscover Eq. (9), which
has been derived in the Floquet-Bloch picture: the usual odd-
order harmonics ω = (2l + 1)ω0 and the intensity-dependent
slanted fringes for ω = 2lω0 + �(0)

v − �(0)
c . With the help of
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FIG. 2. The harmonic spectra calculated by SFA at different peak vector potential A0 of laser pulses with a trapezoidal or cosine square
envelope. (a1)–(a4) The amplitude of the conduction band for the laser pulse: (a1) a trapezoidal pulse with A0 = 0.52π/a, (a2) a trapezoidal
pulse with A0 = 0.50π/a, (a3) a cosine square pulse with A0 = 0.52π/a, and (a4) a cosine square pulse with A0 = 0.50π/a. In these four
subfigures, the red circle centered at the origin has the same absolute size to indicate the scale and the small arrows represent the tunneling
amplitude in each saddle point. (b1)–(b4) The corresponding HHG spectra, calculated by TDSE (red dashed line) and by SFA (blue solid line).
(c1),(c2) An overview of the HHG spectra calculated by SFA as a function of A0 for (c1) a trapezoidal pulse and (c2) a cosine square pulse.

the saddle-point method, it is much easier to compute the
harmonic spectrum for an arbitrary laser pulse.

IV. RESULTS AND DISCUSSIONS

In the last two sections, we have presented the observed
HHG features contributed by the Floquet-Bloch states and two
theoretical frameworks to understand them. In this section, we
will carry out detailed comparisons between the numerical
results calculated by TDSE and those by SFA to reveal the
underlying mechanism.

We will first continue to discuss the situation for the 1D
model, starting from a single point k0 = 0. Then we will
present the overall HHG yield, summed over the whole BZ.
In the latter case, the contribution by the Floquet-Bloch states
is still observed, but with a weaker intensity, and becomes
spaced by 1ω0 instead of 2ω0 due to the breaking of the
symmetry. Finally, it is important to check whether the ob-
served features in the HHG spectra are still present for a two-
dimensional model. As will be shown, with the same mech-
anism, they do appear in the more realistic two-dimensional
model, even when one considers the total yield from the whole
BZ. Again, if one examines the harmonic yield of a particular
order, it shows a steplike structure as a function of the laser
peak intensity.

A. Comparisons between SFA and TDSE

Let us start with a comparison study for the 1D model by
the SFA method and the TDSE. At the moment, we restrict
the calculation to the single point k0 = 0. For the trapezoidal
pulse used previously, in Fig. 2(c1), we plot the full HHG
spectra evaluated by SFA as a function of A0. As one can
see, the SFA results reproduce all the main distinct features
observed in Fig. 1(c), i.e., the odd-order harmonics and the
slanted fringes contributed by the Floquet-Bloch states.

For a quantitative comparison, in Figs. 2(b1) and 2(b2),
we plot the harmonic yield at A0 = 0.52π/a and 0.50π/a,
respectively. Odd-order harmonics are clearly shown in
Fig. 2(b1), while each peak is split into two in Fig. 2(b2).
Actually, the choice of the A0, respectively, corresponds to
a near-resonance and an off-resonance case. It can be seen
that for both cases, the results from SFA agree well with
those from TDSE in the plateau region. Nevertheless, SFA
underestimates the yield in the lower-order harmonics and
overestimates in the higher-order ones. The differences in both
regions can be understood since lower-order harmonics are
dominated by the intraband current [10,18,56,57] which is not
considered in Eq. (14). At the same time, the integration (11)
is approximated as a discrete summation, which results in the
unphysical high-frequency Fourier components.
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Similar comparisons between SFA and TDSE can be made
for a more realistic pulse envelope, i.e., a cosine square f (t ) =
cos2(ω0t/2N ), where N = 8 is the number of optical cycles.
As can been seen from Figs. 2(b3), 2(b4), and 2(c2), overall
agreement has been achieved with those of TDSE, which
confirms the reliability of the present SFA method.

In Figs. 2(a1)–2(a4), we plot each term in the series given
by Eq. (14) as a list of connected vectors, respectively, for the
corresponding pulse shape and the peak vector potential. For
the latter case of the cosine square shape, it can be noticed that
the population transfer is dominated by the 4–6 saddle points
in the middle of the pulse, which agrees with the exponential
dependence of the tunneling probability on the instant field
strength. In this region of time, the phase term φcv is roughly
the same for different pulse envelopes. This explains the
similar near-resonance and off-resonance behavior in both
cases of pulse shapes, although slightly more irregular for the
case of the cosine square shape. It indicates the origin of the
noisy feature in the plateau region of Figs. 2(b3) and 2(b4),
which has been previously observed by TDSE calculations
[18,23,58]. However, for the cosine square case, the overall
spectra as a function of A0 [cf. Fig. 2(c2)] show clear patterns,
similar to the trapezoidal case.

B. Integrated yield over the full BZ

In the previous sections, the discussions have been re-
stricted to calculations from a single k point. Indeed, many
TDSE calculations based on the models from a single k
point have succeeded in interpreting many properties of HHG
experimentally observed in solids. For example, the cutoff
was found to be linearly dependent on the laser wavelength
and the field strength, instead of a quadratic scaling for the
atomic case [10]. In addition, the second plateau was observed
and explained in the solid Ar and Kr [4,11]. However, for a
realistic solid material, the quasielectron is in the full valence
band, instead of only staying at the top of it. Moreover,
recent studies have shown some limitation of the single k
point models in examining the HHG yield dependence on the
wavelength or the electric-field strength [59].

In the present study of the contributions of the Floquet-
Bloch states, it will be instructive to check the influences if
one calculates the total current for all k points from the highest
valence band. Then, we use the summed current from all the
points to extract the signal of harmonic radiation.

For the 1D model which we have considered in Sec. II,
we calculate the harmonic spectra from all the k points in
the V2 band. By summing the current over the full BZ, the
final results are shown as a function of A0 in Figs. 3(a)
and 3(b), for the trapezoidal and the cosine square envelope,
respectively. All the laser parameters are kept the same with
those used in Figs. 1(c) and 1(d). As can be seen from
Fig. 3(a), for the trapezoidal pulse, the signals for the usual
odd-order harmonics are still strong, while the slanted fringes
originally with a 2ω0 spacing change to be spaced by 1ω0

with a significantly lower intensity. The overall enhancement
at the crossing points of two sets of structures can still be
clearly observed in Fig. 3(a). Actually, the positions of these
enhancements roughly coincide with those in the result of the
single k point shown in Fig. 1(c).

FIG. 3. The full HHG spectrum integrated over the full BZ
calculated by TDSE for (a) the trapezoidal envelope and (b) the
cosine square envelope. (c) The yield of 11th-order harmonics as
a function of peak vector potential. Other parameters are the same
as those in Fig. 1. The SFA results (not shown here) agree with the
TDSE calculation quantitatively in the plateau region. The inset in
(c) shows the momentum-space trajectory for electrons starting from
k0 > 0 (blue line) and from −k0. The red points represent the saddle
points.

When the pulse shape changed into a cosine square, the
slanted fringes are hard to identify, as shown in Fig. 3(b).
However, the intensity modulation of the harmonics yield
survives for both cases of pulse shapes. We plot the yield of
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11th-order harmonics in Fig. 3(c), where such modulations
clearly present, but with the number of peaks twice as many
as those shown in Fig. 1(b).

The doubling of the slanted fringes and resonance peaks
when one sums all the k points is due to the breaking of the
reflective symmetry for a given point k0 �= 0 in the BZ. To
explain this symmetry-breaking behavior, we choose the elec-
tron starting from a point k0 �= 0 and add up all the interband
current according to Eq. (14). For a monochromatic pulse, the
tunneling points can be expressed as {ts1 + lT, ts2 + lT } with
a period of T , l ∈ Z, as shown in the inset of Fig. 3(c). Similar
to k0 = 0 case, the result of the geometric series is the sum of
two quasiperiodic terms: by a time translation of one optical
cycle, the first term changes a phase of

∫ T
0 Ecv[k0 + A(t )]dt

and the second term remains the same. This leads to harmon-
ics of frequency ω = lω0 and the intensity-dependent peaks at
ω = lω0 + �(0)

v (k0) − �(0)
c (k0). By choosing k′

0 = −k0, it can
be found that jinter(t ; k0) = − jinter(t + T/2; −k0); thus, for the
second term, one has

j (2)
inter(t ; k0) + j (2)

inter(t ; −k0)

= − j (2)
inter(t + T/2; k0) + j (2)

inter(t + T ; −k0)

= − j (2)
inter(t + T/2; k0) − j (2)

inter(t + T/2; −k0), (16)

which changes a sign by a time translation of T/2. This
means that the even-order harmonics will vanish due to the
interference between radiations emitted by electrons starting
from the k0 and −k0 points.

However, there is no such cancellation for the first term
in the interband current, which results in the slanted fringes
spaced by one photon energy. With a similar analysis, we can
get the resonance condition of population transfer,

E0 + Up ≡ Ec − Ev = nω0, n ∈ Z. (17)

This phenomenon has become well known as the mul-
tiphoton channel-closing effect, both in the atomic systems
[44,60,61] and in the solids [12,52,53]. The so-called channel
closing shows sharp features, such as a sudden change in the
slope of the intensity dependence of the total ionization rate
or a sudden yield enhancement in a certain radiation spectral
region at particular intensities or wavelengths.

With the different dependence of the quiver motion energy
Up on the field strength between the atomic and solid systems,
one expects to see a different behavior in the spectrum. At
a given frequency, Up is proportional to the field intensity I0

in the atomic case, while to the field strength F0 for the case
of solids, as shown in Fig. 1(a). Therefore, as can be seen
from Fig. 3(c), the channel-closing peaks are evenly spaced
as a function of A0. This phenomenon may have shown its
footprints in recent experiments [4,54].

C. Results for a two-dimensional model

Many two-dimensional materials have been used to gen-
erate the high-order harmonic generation [6,7]. When a laser
pulse shines into a bulk solid material, the detected harmonic
signals mainly come from the interaction of the laser with the
back surface of the material because of the severe reabsorption
inside the material [1]. Therefore, it is important to examine

FIG. 4. (a) The Brillouin zone of the 2D model and high-
symmetric points in the reciprocal space. The four lowest energy
bands are shown along the laser polarization, (b) from (0, π/a) to
X (2π/a, π/a) and (c) from (0,0) to (2π/a, 0). The corresponding
dipoles between the valence and the two lowest conduction bands
are shown in (d) and (e), respectively.

whether the observed channel-closing effect exists in a two-
dimensional model.

For such a purpose, we assume a square unit cell with a
side length of a and with a depth −V0. Inside each cell, the
potential is given by

V (x, y) = −V0 exp

[
−α

(x − x0)2

a2
− α

(y − y0)2

a2

]
, (18)

where (x0, y0) are the coordinates of the center of this cell.
For the calculations presented below, we use the following pa-
rameters: a = 4 a.u., V0 = 1.5π2/2a2, and α = 6.5 a.u. This
model has been previously used [62] to compute HHG in
solids.

The band structures of the 2D model are much more com-
plicated than those of the 1D model. However, the essential
dynamics of the Bloch electron in the 2D model is very
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FIG. 5. The HHG spectrum for the 2D model integrated over the full BZ and a single line along the M-X direction from the (0, 0) point
are shown in (a) and (b), respectively. An eight-cycle trapezoidal laser pulse is used, with wavelength λ = 1200 nm (ω0 ≈ 0.038 a.u.), linearly
polarized along the M-X direction. The black dashed line indicates the enhanced positions of the channel closing, which are almost at the same
values of the vector potential in (a) and (b).

similar to that in the 1D model when a linearly polarized
laser is applied, except that the electron is easier to be excited
to higher conduction bands and thus to generate multiple
plateau structures [24]. In the present work, we solve the
corresponding TDSE of the two-dimensional model using the
numerical methods adopted in our previous work [24]. To
investigate the contributions of the Floquet-Bloch states and
channel-closing effects in the 2D model, we use an eight-
cycle trapezoidal laser pulse with a wavelength λ = 1200 nm
(ω0 ≈ 0.038 a.u.), polarized along M-X direction, as sketched
in Fig. 4(a).

From the discussions of the 1D model, we learn that
the harmonic spectrum from a single k point shows strong
contributions from the Floquet-Bloch states, with the pres-
ence of slanted curves spaced by 2ω0. If one considers the
contributions from all k points in the BZ, the spacing of the
slanted curves changes from 2ω0 to 1ω0 due to the symmetry
breaking, which is similar to the channel-closing effect in the
atomic ionization. Due to the above consideration, for the 2D
model case, we first need to identify the point where the
tunneling probability is the largest if we want to examine the
channel-closing effect in the 2D model.

Not as simple as the case of the 1D model, we find that
the point with the largest tunneling probability is not the
symmetry center such as M(π/a, π/a) or �(π/2a, π/2a).
Therefore, we calculate the band structures and the dipole
transition matrices starting from different points along the
laser polarization. Figures 4(b) and 4(d) show those from
(0, π/a) to (2π/a, π/a), and Figs. 4(c) and 4(e) show those
from (0,0) to (2π/a, 0). As one can see, the minimum band
gap of V -C1 in Fig. 4(b) occurs when k = 0. However, the
transition dipole of V -C1 along the polarization direction is
zero, so the tunneling can only occur between V -C2. On the
contrary, the smallest band gap of V -C1 in Fig. 4(d) occurs
when k = π/a, and the energy of the band gap is the same
with that of the k = 0 point in Fig. 4(b). But in this case, the
tunneling can occur between V -C1 with the largest probability
sitting at the point of k = π/a, as is clearly shown in Fig. 4(e).

Now we can make a comparison between the harmonic
spectra calculated, respectively, for all the points in the full
BZ and along a line starting from the (0, 0) point. The results

are presented in Figs. 5(a) and 5(b), which show only a
little difference and indicate that the HHG is dominated by
the central line along the polarization direction. This can be
understood by another saddle-point condition for Eq. (A12):
for a line along the polarization direction with spacing �ky 

π/a, the y component of integration in Eq. (A12) is∫ t

ts

∂Ecv

∂ky
[kx(t ),�ky]dt ≈ �ky

∫ t

ts

∂2Ecv

∂k2
y

[kx(t ), 0]dt . (19)

Since ∂2Ecv/∂k2
y does not change its sign in this region, this

condition can never be satisfied for �ky �= 0. Although it may
not be true when �ky is not so small, the minimum-energy gap
will increase and the tunneling probability will dramatically
decrease. Thus, we can conclude that only the central line
in the BZ contributes to the HHG over the full BZ. Similar
analysis can be made for models with a higher dimension.

Finally, we address one of the experimental issue for the
observation, i.e., the laser-focusing volume effects. When the
laser shines on the solid materials, a large number of crystal
lattices are exposed to the laser fields, but with different
effective field strengths. Therefore, the important question is
whether one can experimentally observe the resonance effects
in the harmonic yield. For the present 2D model, we consider
this issue by a focusing volume averaging [63]:

Y (I0) =
∫ I0

0

Y (A)

I
dI, (20)

where I0 is the peak intensity in the focusing volume, and 1
I

approximately simulates the distribution of the laser intensi-
ties inside the volume. Y (I ) is the intensity of the harmonic
signal corresponding to the intensity I for all the k points in
the BZ. In Fig. 6, for the case of the trapezoidal envelope
at the wavelength of 1200 nm, we show the harmonic yield for
the first plateau region (about 7th–15th order of harmonics)
after the averaging processes (blue dashed line). It is almost
the same with the structure of a certain order harmonic in
the first plateau range. As we can see, although the oscil-
lation structure is largely smoothed, the curve does show
step structures. We point out that there may exist footprints
of these step structures in recent experimental measurements
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FIG. 6. The yield of the first platform (7–15 order) from the 2D
model case with all k points from 2D momentum space. The blue
dashed line is the averaged result after considering the laser-focusing
volume effects for the trapezoidal envelope.

[1,6,28,42], but with only a few discussions on this effect [54].
The channel-closing effect of HHG in solids may be more
easily observed by using materials with a large energy gap
such as Al2O3 [28] and SiO2 [3], by adopting a driving laser
in the near-infrared region.

V. CONCLUSIONS

In conclusion, we have numerically identified a set of
intensity-dependent structures in the harmonic generation in
solids, which is caused by transitions between different field-
dressed states. An overall enhancement of the harmonic yield
can be observed, as an analog to the channel-closing effect in
atomic systems. We showed that the currently observed phe-
nomena can be understood in the framework of Floquet-Bloch
states and with the strong-field approximation. Our analysis
is confined to the region where ω0/� 
 1,

√
m∗�3/F � 1

and the amplitude of the vector potential is comparable to the
reciprocal lattice vector. Actually, most previous experiments
have been carried out in this region. The channel-closing
effect in solids will lead to a nonmonotonic increase of the
harmonic yield as a function of the laser intensity. After
a rough consideration of the laser-focusing volume effects,
these resonances can survive as a steplike structure, which
may have shown their footprints in several recent experimen-
tal measurements.
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APPENDIX: EVALUATION FOR SADDLE POINTS

In this Appendix, we show how to estimate the integral
with saddle points and how to solve the saddle-point equation

(12). We rewrite Eq. (11) into

av (t )eiφv (t )

= −i
∫ t

−∞
∂τ A(τ ) · 〈	c(k)|∇k|	v (k)〉e−iφcv (τ )dτ

= −i
∫ k(t )

〈	c(k)|∇k|	v (k)〉e−iφcv (τ )dk. (A1)

By rewriting 〈	c(k)|∇k|	v (k)〉 into 〈	∗
c (−k)|∇k|	v (k)〉,

we can extend k from the real axis into the complex plane
(with a branch cut between each half optical cycle). According
to Keldysh’s work [64], the integrand has a pole at the saddle
point,

〈	∗
c (−k)|∇k|	v (k)〉 = i

4(k − q)
+ · · · , (A2)

where Ec(q) − Ev (q) = 0. So, the integration can be done
with the residue method if one changes the upper bound t to
the end of the pulse,

av (t )eiφv (t )|t=∞ = π

2

∑
ts

sgn[F (ts)ξcv]e−iφcv (ts ), (A3)

where the sign function corresponds to the different direction
of integral contour. For a finite t , the residue method is not
applicable since we cannot just use a large semicircle to
construct a close contour. However, here we just take the poles
with the real part less than t to approximate the integration.
Nevertheless, in doing so, the step functionlike behavior will
overestimate the HHG yield in the high-frequency region, as
discussed in the main text.

Now we consider how to solve the saddle-point equation.
Since the tunneling process always takes place near the mini-
mal band gap, we use the simple expression Ec(k) − Ev (k) ≈√

�2 + v2k2 to approximate the gap energy, where � is the
minimum band gap between the bands c and v. The parameter
v is related to the effective mass of the electron-hole pair with
m∗ = �/v2. Thus the saddle point happens to be q = ±i�/v.
For a monochromatic pulse with A(t ) = A0 cos ω0t , one has

k0 + A0 cos ω0tr cosh ω0ti = 0, (A4)

∓vA0 sin ω0tr sinh ω0ti = �. (A5)

The solution to the above equations is given by

ω0tr = 2lπ ± arcsin

√√
u2+4�2v2A2

0−u

2v2A2
0

, (A6)

ω0ti = arcsinh

√√
u2+4�2v2A2

0+u

2v2A2
0

, (A7)

where u = �2 + v2(k2
0 − A2

0) and l ∈ Z. For other types of
pulse envelopes, it is difficult, if possible, to find an ana-
lytic solution to saddle points. However, the Newton-Raphson
method can be applied to find roots. The complex action can
be evaluated as follows:

�φ(ts) = �φ(tr ) + �φ(ts) − �φ(tr )

≈ �φ(tr ) + i
∫ ti

0

√
�2 + v2[k0 + A(tr + is)]2ds.

(A8)
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The integration can be numerically carried out by the second
type of Gauss-Chebyshev quadrature.

It is interesting to consider the limit case where ω0 →
0, A0 → ∞ but ω0A0 keeps finite, which corresponds to
the classical Landau-Zener tunneling. In this limit, ω0ti ≈
�/vA0 
 1 and ω0tr ≈ ±π . The imaginary part of the action
is ∫ ti

0

√
�2 + v2[k0 + A(tr + is)]2ds

=
∫ ti

0

√
�2 − v2A2

0ω
2
0s2ds = π�2

4vω0A0
. (A9)

Therefore, one can finally arrive at a transition rate
(π/2)2 exp(−π�2/2vω0A0), which differs from the Landau-
Zener formula by a prefactor (π/2)2. The difference in an
overall prefactor is understandable and it is also common in
the strong-field approximation for atomic systems [65]. With
this result, one can check the feasibility of our assumption,

|ac|2 
 |av|2. It requires �2/vω0A0 � 1 or
√

m∗�3/F0 � 1. (A10)

Finally, one may also apply the saddle-point method to
approximate the integration of k0,

jer(t ) = 2 Re
∫

BZ
dk0 pcv[k(t )]

∑
Re ts<t

sgn(F )eiφcv (ts,t )

≈ 2 Re
∑

ks,Re ts<t

√
2π i

φ′′
cv (ts, t ; ks)

pcv[ks + A(t )]

× sgn[F (ts)]eiφcv (ts,t ;ks ), (A11)

where ks satisfies

Re
d

dk0
φcv[ts(k0), t ; k0]|k0=ks = Re

∫ t

ts

∂Ecv

∂k
dt = 0, (A12)

with φ′′
cv being the second-order derivative of k0.
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