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Three-dimensional spin-dependent dynamics in linearly polarized standing-wave fields

Yongsheng Fu,1,2,* Yu Liu,1 Chunhui Wang,1 Jiaolong Zeng,1,2,† and Jianmin Yuan1,2,‡

1Department of Physics, National University of Defense Technology, Changsha 410073, China
2Department of Physics, Graduate School of China Academy of Engineering Physics, Beijing 100193, China

(Received 29 August 2018; revised manuscript received 27 April 2019; published 10 July 2019)

There is a revival of the problem of how a relativistic particle with spin moves through an electromagnetic
field. Our paper focuses on the spin-dependent dynamics of electrons in linearly polarized laser fields based on
the Dirac equation and a classical spin model. It is proved that an electron at rest undergoes a three-dimensional
motion moving out of the polarization-propagation plane when the initial spin is perpendicular to the magnetic
field. We make a comprehensive investigation of the dynamics of quantum wave packets and classical electrons
in both plane-wave and standing-wave fields. The wave packet travels in accordance with its center of mass
in a plane-wave field but spreads heavily in a standing-wave field. The ensembles of classical electrons turn
out to well simulate the quantum wave-packet dynamics in the standing-wave fields. We give the extended
calculations of the electron dynamics with spin in the standing-wave field in the chaotic regime and find the
quantum correspondence to the classical chaotic dynamics.
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I. INTRODUCTION

Spin was proposed [1] originally as a concept to explain
the Stern-Gerlach experiment [2] but accepted finally as an
intrinsic form of angular momentum carried by elementary
particles. State-of-the-art laser technology has been expected
to stimulate the experimental investigation of laser-matter
interactions in the ultrarelativistic regime [3–5] where spin
effects can set in. In the theoretical aspect, spin effects have
been shown to participate in relativistic laser-electron inter-
actions [6,7], in relativistic laser-atom interactions [8,9], in an
electron’s Kapitza-Dirac scattering from a standing laser wave
[10,11], in production of electron-positron pairs [12,13], and
so on.

Free-electron dynamics in high-intensity laser fields are
of fundamental importance and have encountered sustained
interest in many fields of physics [14,15]. With the present
laser intensity beyond 1022 W/cm2 [16], the commonly used
description of electrons as spinless particles is put into doubt
because an electron can couple to an external electromagnetic
field via its charge as well as via its spin [17]. In this regard,
a particular question is to what extent the spin degree of
freedom of an electron may influence its orbital dynamics.

Spin is an essential part of the Dirac equation [18] in rel-
ativistic quantum mechanics, implied by the four-component
spinor wave function. Theoretically, the Dirac equation de-
scribes all the dynamical information of a spin-1/2 massive
particle. It is, however, not very transparent for physical
interpretation. Besides the quantum spin theory, classical spin
theories were developed independently. In 1926, Frenkel [19]
established the first classical theory of a charged particle
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with an intrinsic magnetic moment representing its spin.
Commenced with Frenkel’s pioneering work, Weyssenhoff
and Raabe [20], Nagy [21], Bhabha and Corben [22], etc.
were also devoted to the classical equations of motion of a
spinning particle, see the review articles of Nyborg [23] and
Bagrov and Bordovitsyn [24]. Not long ago, semiclassical
equations of motion of orbital and spin were deduced by
Silenko [25] from a classical limit of the Foldy-Wouthyusen
transformation of the Dirac equation. Classical theories can
reveal the interaction of spin and orbital explicitly. They are
usually easier to interpret than the quantum theory.

In the year of 1999, Walser et al. [17] began to study
the electron dynamics with spin in a classical framework by
using a relativistic equation of motion including the spin-laser
interaction. They realized that the electron’s motion from rest
in a linearly polarized plane-wave laser field can become
three-dimensional depending on the initial spin, owing to the
spin-induced force in the magnetic-field direction. Then they
confirmed the classical results by a quantum-mechanically
analytical calculation in the weakly relativistic limit [26].
Later, Roman et al. [27] gave the first exact evidence of the
spin-induced force according to the exact three-dimensional
solutions of the Dirac equation describing an electron driven
by a linearly polarized plane-wave laser field [28].

Realistic laser pulses produced in laboratories may have
more complicated structures than plane waves. In this paper,
we promote the investigation of electron dynamics with spin
in linearly polarized standing-wave fields where there are no
exact solutions of the Dirac equation. Our calculations rely
on numerically solving the three-dimensional Dirac equation
which is applicable to arbitrary laser fields. The remaining
parts of this paper are arranged as follows. In Sec. II, we
introduce the theoretical foundations of our studies, including
the Dirac equation and a classical spin model. Results and
discussions are presented in Sec. III, where we calculated
the spin-dependent dynamics of quantum wave packets and
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classical electrons in both plane-wave and standing-wave
fields. Lastly, Sec. IV gives the conclusion. Atomic units with
the electron charge and mass satisfying −e = me = 1 are used
throughout the paper.

II. THEORETICAL FOUNDATIONS

In this section, the quantum and classical descriptions
of a spinning particle interacting with an external electro-
magnetic field are introduced. Radiation reaction [29] is not
included here.

A. Dirac equation

The relativistic quantum dynamics of a spin-1/2 particle of
the rest mass m and charge q in an external electromagnetic
field characterized by the potentials A(r, t ) and φ(r, t ) is
governed by the time-dependent Dirac equation [30,31],

i�̇(r, t ) ={cα · [−i∇ − qA(r, t )/c]

+ mc2β + qφ(r, t )}�(r, t ), (1)

where �(r, t ) is the four-component wave function at the
space-time r = (x, y, z)T and t , α, β denote the Dirac matrices
written explicitly as

α =
(

0 σ

σ 0

)
, β =

(
I 0
0 −I

)
, (2)

with σ = (σx, σy, σz )T the Pauli matrices and I the unit matrix
of 2 × 2.

The positive-energy solutions of Eq. (1) with vanishing A
and φ are

�p,s =
√

Ep + mc2

2V Ep

(
χs

cσ·p
Ep+mc2 χs

)
exp(−ipμxμ), (3)

where χs is the two-component spinor, Ep =
√

p2c2 + m2c4

denotes the relativistic energy, pμ = (Ep/c,−p)T and xμ =
(ct, r)T are the four vectors of momentum and position, V is
a normalization volume.

Either wave function of Eq. (3) has a definite momentum
but distributes throughout space. The plane-wave form fails to
describe a propagating particle which is always localized in
space. For this, we use wave packets. They are superpositions
of plane waves which yield localized wave functions. Espe-
cially, we define the Gaussian wave packet as

�G,s = N
∫

exp

(
− p2

δ2

)
�p,sd

3 p, (4)

where N is the normalization constant, δ is width of the Gaus-
sian distribution in momentum space. The wave packet (4)
is constructed by superimposing the positive-energy solu-
tions (3) at all momentums p weighted by a Gaussian dis-
tribution. It represents a Dirac particle at rest centered at
the origin r = 0 at the time t = 0. Notice that there are no
negative-energy components in the resulting wave function
�G,s, different from those in Refs. [28,32].

The wave packet (4) has a definite spin decided entirely by
χs. We choose

χs = 1√
2

(
1
1

)
, χs = 1√

2

(
1
i

)
, and χs =

(
1
0

)
, (5)

which are the eigenvectors of the Pauli matrices σx, σy, and σz

for the spins in the x, y, and z directions, respectively.
The quantum dynamics is obtained by solving the Dirac

equation numerically, from the constructed Gaussian wave
packet. We utilize the Fourier split-operator method [33,34].
The basic idea is to replace the time-evolution operator by
a product of operators that are diagonal either in real space
or in momentum space and to propagate the wave function
alternately in real space and momentum space. The wave
function is discretized on a three-dimensional self-adaptive
Cartesian grid and distributed among computer processors
using a domain-decomposition strategy. On this basis, the
transform of the wave functions between both spaces is im-
plemented by a parallel fast-Fourier-transform algorithm.

B. Classical spin model

Here we obtain the equations of motion of a classical parti-
cle with spin in an electromagnetic field from the Lagrangian
formalism [17,35]. Considering spin-field interaction, the La-
grangian of the particle with the mass m and charge q is
written as

L = mc2

γ
+ q

cγ
Aαuα + 1

2γ
μαβFαβ, (6)

where γ = (1 − v2/c2)−1/2 is the relativistic Lorentz factor,
uα = γ (c, v) is the four velocity, Aα = (φ, A) is the four-
potential of the electromagnetic field, μαβ is the antisymmet-
ric Frenkel tensor,

μαβ =

⎛
⎜⎝

0 −dx −dy −dz

dx 0 mz −my

dy −mz 0 mx

dz my −mx 0

⎞
⎟⎠, (7)

defined in terms of the particle’s magnetic moment m =
(mx, my, mz )T and electric dipole moment d = (dx, dy, dz )T in
the laboratory frame, Fαβ is the electromagnetic field tensor

Fαβ =

⎛
⎜⎝

0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

⎞
⎟⎠ (8)

made from the electric field E = (Ex, Ey, Ez )T and magnetic
field B = (Bx, By, Bz )T . In the above expressions, we take the
metric gαβ = diag(1,−1,−1,−1).

The Lagrangian (6) can be rewritten in a three-dimensional
form as

L = mc2

γ
− q

c
A · v + qφ − χ

γ
(ζ · B + τ · E ), (9)

where we introduce the dimensionless moments ζ and τ,
satisfying m = χζ and d = χτ. χ is defined so ζ equals to the
spin vector s when the particle is at rest. Hence χ = gsq/2mc,
where gs is the dimensionless quantity called the spin g-factor.
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In the present paper, we use gs = 2 exactly for the electron,
ignoring the intrinsic anomalous magnetic moment.

Substituting Eq. (9) into the Euler-Lagrange equation,

d

dt

(
∂L
∂v

)
= ∂L

∂r
, (10)

and making use of the relationship between the field and
potential,

E = −1

c

∂A
∂t

− ∇φ, B = ∇ × A, (11)

we obtain the equation of motion of the momentum,

M
d (γ v)

dt
= F0 + Fs, (12)

where

M = m − χ

c2
(ζ · B + τ · E ) (13)

represents the effective mass due to spin-field interaction,

F0 = qE + q

c
v × B (14)

is the lorentz force of charge, and

Fs = χ

γ
∇(ζ · B + τ · E ) + γχ

c2
v

d

dt
(ζ · B + τ · E )

− χ

cγ

d

dt
(ζ × E ) + γχ

c3
v · dv

dt
(ζ × E ) (15)

is the additional spin-induced force. We can see Eq. (12)
reduces to the well-known Lorentz equation for a spinless
particle when μαβ = 0.

The spin-induced force Fs has a dependence on the time
derivatives of the moments which are determined by the
equation of motion of the Frenkel tensor μαβ ,

1

χ

dμαβ

ds
= Fα

ρμ
ρβ − Fβ

ρμ
ρα, (16)

or equivalently by the equations of motion of the moments

dζ

dt
= χ

γ
(ζ × B + τ × E ), (17)

dτ

dt
= χ

γ
(−ζ × E + τ × B). (18)

Besides, Fs also has a dependence on the gradients of
the electromagnetic fields. Here the time derivatives of
the fields must be interpreted as the convective derivative
d/dt = ∂/∂t + v · ∇.

Up to now, the Eq. (12) we obtained is exact. It is, however,
in an implicit form with the acceleration-dependent term in
Fs. We use the same resolvent as Ref. [17], making the
approximation

v · dv

dt
≈ q

m

v · E
γ 3

, (19)

according to the Lorentz equation. As a result, Eq. (12) with
Eqs. (17), (18), and the equation of motion of position

dr
dt

= v (20)

makes up a system of differential equations obeying an initial
value problem which allows a direct numerical integration.

III. RESULTS AND DISCUSSIONS

In the present paper, we investigate the spin-dependent
dynamics of electrons in linearly polarized standing-wave
fields. We use the laser pulse with a smooth turn-on and
turn-off, the electric field of which reads

E(r, t ) = eyE0 cos(kx)F (ωt ) cos(ωt ), (21)

where ey is the polarization vector in the y direction, E0 is
the peak electric-field amplitude, ω is the angular frequency,
k = ω/c is the modulus of the wave vector in the x direction,
F (θ ) is a sin2-shaped envelope function,

F (θ ) =

⎧⎪⎨
⎪⎩

sin2
(

θ
8

)
, 0 � θ < 4π

1, 4π � θ < (2N + 4)π

sin2
( (2N+8)π−θ

8

)
, (2N + 4)π � θ � (2N + 8)π,

(22)
with two-cycle turn-on phase, N-cycle constant phase, and
two-cycle turn-off phase. The electric field (21) has nodes
and antinodes at the locations (2l + 1)λ/4 and lλ/2, where
l is an integer and λ = 2π/k is the laser wavelength. The
corresponding vector potential reads

A(r, t ) = −ey
cE0

ω
cos(kx)

∫ θ

0
F (θ ′) cos(θ ′)dθ ′, (23)

where θ = ωt . The magnetic-field is obtained by B = ∇ × A,

B(r, t ) = ezE0 sin(kx)
∫ θ

0
F (θ ′) cos(θ ′)dθ ′, (24)

having nodes and antinodes contrary to the electric field.
Calculations are carried out by numerically solving the

time-dependent Dirac Eq. (1) from Gaussian wave packets (4)
and integrating the coupled differential Eqs. (12), (17), (18),
and (20) of classical electrons using the Runge-Kutta algo-
rithm.

A. Plane-wave fields

Before the main work, it is of benefit to give a confirmation
of the known results for linearly polarized plane-wave laser
fields. We use the laser pulse whose electric field reads

E(r, t ) = eyE0F (η) cos(η), (25)

where F (η) is the envelope function (22) with
η = ωt − kx.

A localized quantum wave packet in a linearly polarized
plane-wave field undergoes an oscillation in the laser polar-
ization direction and a drift in the laser propagation direction,
with its spreading and shearing. This can be seen from the ex-
isting two-dimensional implementations in solving the Dirac
equations so far [33,36,37].

For our three-dimensional solutions, visualization of the
wave packet uses the two-dimensional probability densities,
which are obtained by integrating the probability densities
in the direction perpendicular to the polarization-propagation
plane ρ = ∫ |�|2dz. In the calculations, we use the Gaussian
wave packet with the momentum width δ = 2 a.u. and spin
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FIG. 1. Wave-packet evolution in the linearly polarized plane-
wave field as shown by the logarithm of the two-dimensional prob-
ability densities ρ = ∫ |�|2dz at the times (a) 0.25 a.u., (b) 0.5 a.u.,
(c) 0.75 a.u., (d) 1 a.u., (e) 1.25 a.u.. Also shown by the magenta
(grey) solid line is the two-dimensional components (x̄(t ), ȳ(t ))
of the center-of-mass trajectory r̄(t ) = ∫ |�|2rdxdydz. Calculations
are made for the Gaussian wave packet (4) of momentum width
2 a.u. (the same below) and spin in the x direction in the plane-
wave field (25) of electric-field amplitude E0 = 1600 a.u., angular
frequency ω = 20 a.u., and five cycles (N = 1).

in the x direction, as well as the laser field of electric-field
amplitude E0 = 1600 a.u., angular frequency ω = 20 a.u., and
five cycles (N = 1). Figure 1 gives the wave-packet evolution,
along with the two-dimensional components (x̄(t ), ȳ(t )) of the
center-of-mass trajectory r̄(t ) = ∫ |�|2rdxdydz. At this time,
Fig. 1 is not significantly different from the two-dimensional
results.

However, Fig. 1 hides the possible three-dimensional mo-
tion caused by spin. We understand this when we plot all
three components of r̄(t ). As shown in Fig. 2, we compare
the center-of-mass trajectories of the quantum wave packets
and the trajectories of the classical electrons, with Figs. 2(a),
2(b) and 2(c) corresponding to the initial spins in the x, y, and
z directions, respectively. The electron dynamics are shown
to have a high dependence on the initial spin. Specifically,
the electrons undergo three-dimensional motions moving out
of the polarization-propagation plane when their spins are
initially perpendicular to the magnetic field, as seen in the top
two panels, otherwise the electron always stays in the plane
when its spin is initially parallel to the magnetic field, as seen
in the bottom panel. The quantum and classical results are in
good agreement.

Figure 2 evidently reveals the differences in the z compo-
nents of the trajectories. In fact, the spin also modifies the
ordinary Lorentz dynamics in the x and y directions. Never-
theless, because the amplitudes of the spin-induced forces are
extremely small compared with the Lorentz force, there are
no sharp differences in the two-dimensional components of
the trajectories along the polarization-propagation plane.

We have obtained similar results as Roman et al. for the
plane-wave field. On this basis, we turn to the standing-wave
fields. Different field strengths and pulse lengths are taken into
account.
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FIG. 2. Center-of-mass trajectories of the quantum wave packets
as well as the trajectories of the classical electrons in the same plane-
wave field as Fig. 1. The black and green (light grey) lines stand
for the quantum and classical results. The three panels (a), (b), and
(c) correspond to the initial spins in the x, y, and z directions.

B. Standing-wave fields

For the plane-wave field, the wave packet moves as a
whole along its center of mass, as seen in Fig. 1. Things
change when we turn to the standing-wave field. In Fig. 3,
the evolution from the same Gaussian wave packet as Fig. 1
is calculated for the standing-wave field of the same E0,
ω, and number of cycles. We can see that the wave packet
does not keep integrity all the time but spreads heavily along
the polarization-propagation plane. The scenario can be un-
derstood classically by analyzing the forces exerting on the
different parts. When the wave packet is prepared around the
maximum of the electric field, it is driven by the electric-
field force and moves vertically from rest. Due to the finite
width of the wave packet, the left and right parts deviating
from the center suffer the magnetic-field forces in opposite
directions and travel laterally apart from each other. With the
spreading, the wave packet experiences the spatial variation
of the electric and magnetic fields both in amplitudes and
directions. The evolution becomes complex with the different
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FIG. 3. Wave-packet evolution in the linearly polarized standing-
wave field as shown by the logarithm of the two-dimensional prob-
ability densities ρ = ∫ |�|2dz at the times (a) 0 a.u., (b) 0.8 a.u.,
(c) 1 a.u., (d) 1.2 a.u.. Calculations are made for the Gaussian wave
packet with the spin in the x direction in the standing-wave field (21)
of peak electric-field amplitude E0 = 1600 a.u., angular frequency
ω = 20 a.u., and five cycles (N = 1).

parts moving in different directions. There may be overlaps of
them which result in many interference patters.

To add further evidence to the above classical analysis, we
use a trick simulating the join trajectories of an ensemble of
classical particles. The ensemble is made of 100 000 classical
electrons, initially in the polarization-propagation plane of
z = 0, whose coordinates and momentums obey the two-
dimensional Gaussian distributions analogous to the space
and momentum distributions of the Gaussian wave packet
in the x and y directions. All the electrons are independent,
obeying the equations of motion of a classical particle with
spin. Figure 4 shows the two-dimensional projections of the
classical ensemble on to the polarization-propagation plane at
the same four times as the quantum evolution in Fig. 3. We can
see that the probability densities of the quantum wave packet
and the electron distributions of the classical ensemble match
very well except for the quantum interference.

FIG. 4. Evolution of an ensemble of 100 000 classical electrons,
which simulates the evolution of the quantum wave packet in Fig. 3.

As before, the above two-dimensional plots hide the pos-
sible three-dimensional motions caused by spin. Different
from the plane-wave field for which the spin-dependent
features are well manifested in the centroid dynamics, the
spin-dependent dynamics for the standing-wave field should
be distinguished for the different parts of the wave packet
along the polarization-propagation plane. For this purpose,
we define the local displacement of the wave packet in the
z direction at any point (x, y) as

Dz =
∫ |�|2zdz∫ |�|2dz

. (26)

In the following, Dz are calculated for the wave packets with
different initial spins at the selected times of the evolutions. To
support the results, the comparable quantities are calculated
(see the Appendix) for the ensemble of classical electrons.

We have shown the results in Figs. 5 and 6, where the
local displacements are indicated by the two-dimensional
pseudocolor maps. Figure 5 corresponds to the initial spin in
the x direction. Figure 6 corresponds to the initial spin in the
y direction. As is shown, in both cases, there are spin-induced
nonzero displacements varying from one point to another
and changing with time, and the quantum wave packets are
well simulated by the classical ensembles. In addition, the
initial spin has a decisive influence on the distribution of

FIG. 5. Spin-induced local displacements in the z direction. (a),
(c), (e) are the results of the quantum wave packet at the times
0.8 a.u., 1 a.u., 1.2 a.u. according to Eq. (26) and display only the
points where ρ = ∫ |�|2dz > 10−5 a.u. (b), (d), (f) are the results
of the classical ensemble at the corresponding times according to
Eq. (A2). Calculations are made for the quantum wave packet and
classical ensemble with the initial spin in the x direction in the
standing-wave field of peak electric-field amplitude E0 = 1600 a.u.,
angular frequency ω = 20 a.u., and five cycles (N = 1).
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FIG. 6. The same as Fig. 5 but for the initial spin in the y direction.

the local displacements at a moment, leading to symmetric
distributions about the plane x = 0 in Fig. 5 but antisymmetric
distributions in Fig. 6. Notice that we have omitted the case
of the initial spin in the z direction, because the motion is
confined in the polarization-propagation plane.

The symmetry of the displacements can be explained
classically by analyzing the symmetry of the spin-induced
forces. When the initial spin is perpendicular to the magnetic
field, as in either case, the first two terms of Eq. (15) vanish,
the spin-induced force being an odd function of the product
ζ × E. We need to compare the products at the symmetric
positions about the plane x = 0. This is done in Fig. 7 by
following the precessions of the moments ζ around the
magnetic field. Due to the asymmetry of the magnetic field
about x = 0, the moments at the symmetric positions must
precess in the opposite directions. For the initial spin in the
x direction, the products are equal, resulting in a symmetric
distribution of the spin-induced forces. But for the initial
spin in the y direction, the products are equal and opposite
resulting in an asymmetric distribution.

The above results are obtained for the standing-wave field
of a low field strength and short pulse. In the following, the
spin-dependent dynamics are examined for the field of a high
field strength and long pulse. We increase the peak electric-
field amplitude to E0 = ωc, leaving the angular frequency
unchanged at ω = 20 a.u. This indicates that even if an elec-
tron is initially at rest, it becomes relativistic within almost
one laser period. Considering a ten-cycle pulse having a six-
cycle constant phase, in Figs. 8 and 9, the spin-induced local
displacements are compared between the quantum theory and
the classical spin model in the same way as Figs. 5 and 6.
We can see that the quantum wave packets are well simulated
by the classical ensembles, also at the high field strength and

FIG. 7. Precessions of the moments ζ for the initial spins in the x
direction (top) and y direction (bottom). The black solid lines and the
red dashed lines stand for a sketch of the instant magnetic and electric
fields. θ and η are the angles of the precessing moments relative to
the initial directions. For each initial spin, we make a comparison of
the product ζ × E at the symmetric positions about the plane x = 0.
Considering the polarization, only the projections in the x direction
take effect.

long pulse. However, there are more interference patterns in
the quantum results coming from more overlaps of different
parts of the wave packets during the long-time evolution. At
last, the symmetries of both figures meet our earlier analysis.

We have confirmed the spin-dependent dynamics of quan-
tum wave packets in linearly polarized standing-wave fields.
There are indeed net three-dimensional motions when the
initial spins are perpendicular to the magnetic field, owned by
the different parts of the wave packets along the polarization-
propagation plane. However, there are no sharp differences in
the evolutions of the wave packets with different initial spins
as seen from the two-dimensional probability densities.

The dynamics of a classic particle in a standing-wave field
become chaotic above a certain field strength, where a slight
change in the initial condition produces a totally different
trajectory [38]. In the next stage, we observe the electron
spin-dependent dynamics in the chaotic regime, focusing
only on the two-dimensional motions along the polarization-
propagation plane. We use the peak electric-field ampli-
tude E0 = ωc lying above the critical field strength and the
100-cycles pulse (N = 96) long enough to cover the chaotic
motion.

At first, the trajectories are calculated for the classical elec-
trons of different initial spins, from the same initial position
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FIG. 8. Spin-induced local displacements in the z direction. (a),
(c), (e) are the results of the quantum wave packet at the times
1 a.u., 1.5 a.u., 2 a.u. according to Eq. (26) and display only the points
where ρ = ∫ |�|2dz > 10−4 a.u.. (b), (d), (f) are the results of the
classical ensemble at the corresponding times according to Eq. (A2).
Calculations are made for the quantum wave packet and classical
ensemble with the initial spin in the x direction in the standing-wave
field of peak electric-field amplitude E0 = ωc, angular frequency
ω = 20 a.u., and ten cycles (N = 6).

FIG. 9. The same as Fig. 8 but for the initial spin in the y direction.

and momentum. We show the results in Fig. 10. It can be seen
that the electron trajectories vary differently with spin. This
is because the small differences in the spin-induced forces fi-
nally cause significant differences in the trajectories, which is
a clear signature of chaos. At this point, our calculations serve
as proof of the occurrence of chaos. In the figure, we also see
that the electron trajectories traverse many nodes of the field
and have attractors around some nodes of the electric field.

Then a question is induced: What’s the quantum corre-
spondence to the classical chaotic dynamics? To answer the
question, we need to solve the quantum dynamics for the
same standing-wave field. We have verified the effectiveness
of simulating the quantum wave-packet dynamics by the
classical ensemble at the chaotic field strength for a short
pulse. We expect that the long-time probability distribution of
the quantum wave-packet would also be similar to the particle
distribution of the corresponding classical ensemble. In view
of this, we resort to pure classical calculations which make up
the inefficiency in solving the Dirac equation for long-time
evolutions. The results are summarized in Fig. 11. Among
the three panels, the electrons in the ensembles have one-to-
one the same initial positions and momentums but different
initial spins. We can see that, though the trajectories vary
differently with spin for individual electrons according to
Fig. 10, there are no sharp differences in the whole particle
distributions of the three ensembles. Especially, there are reg-
ular accumulations of the particles at the positions where the
attractors of the classical trajectories lie. It could be expected
that the quantum wave-packet dynamics in a classical chaotic
regime would display a space-time probability distribution
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FIG. 10. Two-dimensional components of the trajectories of the
classical electrons along the polarization-propagation plane. The
black, red (medium grey), and green (light grey) lines stand for
the initial spins in the x, y, and z directions, respectively. Calcu-
lations are made for the electrons with the same initial position
r0 = (0.3, −0.3, 0) a.u. and momentum p0 = (−2.0, 1.7, 0) a.u. but
different initial spins in the standing-wave field of peak electric-field
amplitude E0 = ωc, angular frequency ω = 20 a.u., and 100 cycles
(N = 96). The inset gives an enlarged view of the selected range
where the vertical solid and dashed lines stand for the nodes and
antinodes of the electric field.
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FIG. 11. Evolutions of the three ensembles of classical electrons
with one-to-one the same initial positions and momentums but
different initial spins in the same standing-wave field as Fig. 10 at the
selected time t = 11 a.u. The three panels (a), (b), and (c) correspond
to the initial spins in the x, y, and z directions. The magenta (grey)
solid line in each panel stands for the electric field (with arbitrary
units) at this time.

with apparent features of classical attractor distributions.
From the quantum mechanical point of view, the regular dis-
tribution of the space-time probability densities corresponds
to the distribution of the structured momentums and energy
spectra, which was observed in the quantum dynamics of
the corresponding classical chaotic systems [39–41]. Lastly,
we need to say that the reasoning on the quantum results
need to be proved by solving the Dirac equation for the long
pulse. Actually, more studies are needed to find the whole
quantum nature of a classical chaotic system, including how
the quantum coherence works in the classical chaotic regime.

IV. CONCLUSION

The present paper is devoted to relativistic electron motions
in linearly polarized laser fields, with a particular attention to
the spin effects. The spin-dependent dynamics are identified
for the quantum wave packets by numerically solving the
three-dimensional Dirac equation and for the classical elec-
trons by using a classical spin model.

We give confirmation of the known results for plane-wave
fields that an electron initially at rest can experience a three-
dimensional motion moving out the polarization-propagation
plane due to spin. The center of mass of a quantum wave
packet behaves like a classical electron.

We study the wave-packet evolutions in the standing-wave
fields of different strengths and pulse lengths. The wave pack-
ets spread heavily along the polarization-propagation plane
when they are initially put at an antinode of the electric field.
There may be net motions in the magnetic-field direction for
different parts of the wave packets. The quantum dynamics
have no classical counterparts in the single-particle sense, but
are well simulated by the ensembles of classical electrons.

In the chaotic regime of a standing-wave field, the classical
single particle dynamics are very sensitive to the initial spins
and show many attractors in the trajectories. However, the
classical ensemble dynamics with different initial spins results
in approximately a definite particle distribution in space and
time which reflects the most essential features of the classical
chaotic dynamics, i.e., the distribution of attractors in space
and time.
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APPENDIX

We report here the manner of calculating the comparable
quantity of Eq. (26) from the ensemble of classical particles.
It is based on the Cartesian-grid-based method [34] in numer-
ically solving the Dirac equation.

Suppose the computational rectangular area along the
polarization-propagation (xy) plane is discretized as

xi = xmin + (i − 1)�x, i = 1, · · · , nx,

y j = ymin + ( j − 1)�y, j = 1, · · · , ny,
(A1)

where xmin, ymin are the lower bounds of the area, nx, ny are
the numbers of the grid points in the x and y directions, �x,
�y are the grid steps.

With this, the particles in the ensemble are tied to the
specific grid point (xi, y j ) if their x and y coordinates lie
in the interval [xi − �x/2, xi + �x/2] × [y j − �y/2, y j +
�y/2], and meanwhile the number of them is counted as Ni j .
Thus we have

∑
i j Ni j = N , where N is the total number of

the particles in the ensemble.
Lastly, the local displacement of the ensemble at the point

(xi, y j ) in the z direction is calculated by averaging the z
coordinates of the particles around the point (xi, y j ) as

Dz = 1

Ni j

Ni j∑
k=1

zk. (A2)
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