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Charge dynamics of a molecular ion immersed in a Rydberg-dressed atomic lattice gas
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Charge dynamics in an ultracold setup involving a laser-dressed atom and an ion is studied here. This transfer
of charge is enabled through molecular Rydberg states that are accessed via a laser. The character of the charge
exchange crucially depends on the coupling between the electronic dynamics and the motional dynamics of the
atoms and ion. The molecular Rydberg states are characterized and a criterion for distinguishing coherent and
incoherent regimes is formulated. Furthermore the concept is generalized to the many-body setup as the ion
effectively propagates through a chain of atoms. Aspects of the transport, such as its direction, can be controlled
by the excitation laser. This leads to new directions in the investigation of hybrid atom-ion systems that can be
experimentally explored using optically trapped strontium atoms.
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I. INTRODUCTION

Ultracold atoms in optical lattices opened the door for
experimental studies of a wide range of quantum many-body
problems [1–4]. Similar breakthroughs have been achieved
in trapped ion systems [5,6]. One of the main motivations
of using such systems is to simulate spin models [7,8] in
a controlled environment including Hamiltonians which are
intractable by conventional numerical methods [9]. Emerging
from these efforts, there is a growing interest in exploring hy-
brid systems formed of trapped atoms and ions [10–17]. This
combination enables access to a plethora of novel phenom-
ena such as strongly coupled polaron states [18–20], long-
range collisions [21–23], the study of exciton transport [24],
electron-phonon coupling in Fermi gases [25], many-body
quantum dynamics [26–28], the implementation of atom-ion
quantum gates [29], switches for information transfer [30],
quantum simulation of novel ultracold chemistry [31], as well
as the formation of mesoscopic molecular ions [32,33].

Charge exchange are processes central in atom-ion systems
and has relevance in the study of chemical reactions [22,
34–36] as well as charge transport in the ultracold domain
[37]. Resonant charge exchange in atom-ion setups plays a
crucial role in the cooling of ions [38–41]. At sufficiently low
temperatures, the mechanism for charge exchange involves
electron hopping from neutral atoms to a neighboring ion.
This process is highly suppressed for ground-state atoms due
to the negligible overlap between the electron wave function
with the orbital of a nearby ion. This unfavorable situation
can change for highly excited (Rydberg)atoms [42] where the
large spatial extent of the electronic wave function enhances
the probability for electron hopping onto the ion [43].

The aim of this work is to investigate the charge dynamics
in an atom-ion hybrid system that is formed by a deep optical
lattice filled with a single atom per site out of which one is
ionized. Before moving to the many-body problem, we first
study the two-body problem involving the atom and an ion.
The underlying key ingredient is the existence of electronic
molecular Rydberg states that encompass the ion and an

adjacent atom. For a Rydberg atom, the wave function of
the electron has a large spatial extension which enhances the
hopping probability as depicted in Fig. 1(a). The tunneling
rate is determined by the splitting between the corresponding
potential curves of opposite symmetry as shown in Fig. 1(b).
However, enhanced tunneling occurs at internuclear distances
where the Rydberg atom is considerably polarized by the ion
leading to strong l-mixing of the Rydberg states resulting
in the formation of complex Rydberg molecular ion states
as shown in Fig. 1(c). In the presence of a detuned laser,
the coupling of the ground-state atom to Rydberg states is
described by a dressed atom picture and the ion dynamics is
effectively given by J (R). The implicit dependence of J (R)
on interatomic distance entangles the electronic and motional
dynamics which then introduces decoherence into the dynam-
ics. Coherent charge dynamics can be achieved by trapping
the atoms and the ion in an identical potential [see Fig. 1(d)]
similar to [44]. The natural extension of the two-particle
picture to the many-body system leads to delocalized charge
dynamics which is interesting in its own right. However,
in certain regimes of the parameter space, the many-body
charge dynamics is effectively dictated with nearest-neighbor
hopping as shown schematically in Fig. 1(e).

II. RYDBERG MOLECULAR ION

The Rydberg molecular ion states are calculated for stron-
tium (Sr) by adopting a linear combination of localized or-
bitals. The orbitals (ψnl ) correspond to Rydberg states of Sr
obtained using a single active electron approximation [45].
The electronic Hamiltonian describing the atom-ion system
is discussed in Appendix B. The interactions of the Ryd-
berg molecular ion is invariant with respect to exchange in
nuclear positions and it is always possible and often con-
venient to express the molecular states in the (un)gerade
basis, |eα,(±)〉 = 1/

√
2(|ieα〉 ± |eαi〉) and their corresponding

energies Eα,(±)(R). |ieα〉 or |eαi〉 are defined depending on
whether the Rydberg atom is to the right or left of the ion.
Owing to the nonorthogonality between the Rydberg wave
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FIG. 1. (a) Illustration of the key principle: While a low-lying
state (shown in red) remains localized, a Rydberg state (shown in
orange) can tunnel through the ionic potential barrier (black lines)
at rate T . (b) A laser addresses the excited Rydberg molecular states
with effective coupling �(R) and detuning �(R). Tunneling [T (R)]
is given by the splitting between the gerade [E+(R)] and ungerade
[E−(R)] states which are, in fact, the electronic molecular ion states.
In the Rydberg-dressed picture, J (R) is the effective hopping and
U (R) is the overall light shift of the relevant Rydberg-dressed states
(denoted by |ig̃〉 and |g̃i〉). (c) Depicts the probability density for a
particular Rydberg-dressed molecular ion wave function. (d) Coher-
ent dynamics is facilitated by confining the ion and the Rydberg-
dressed atom in an identical double well optical trap. Initially
prepared in their motional ground states |0〉 (shown in green), the
coupling to higher motional states such as |1〉 (shown in aquamarine)
are suppressed by choosing optimum optical and trapping conditions.
(e) The two-particle picture is generalized to obtain the effective
many-body charge transport model with nearest-neighbor hopping
J̄k,k±1 and on-site energy Ūk .

functions (ψnl ) defined at either nuclei, there is a small but
nonzero overlap function. However, for this work, the focus
is on internuclear distances where these overlap integrals are
small thereby obtaining a simplified eigenvalue problem for
the electronic Hamiltonian

Ĥel|eα,±〉 = E±
α (R)|eα,±〉. (1)

The index α = 1, 2, . . . , represents the different excited states
of the Rydberg molecular ion. Upon diagonalization, we
have the Rydberg molecular states and energies. Compared
to calculations of low-lying states, those for highly excited
molecules prove very demanding due to the need for a large
basis set and the highly oscillatory character of the involved
atomic Rydberg states. Figure 2(a) depicts a characteristic pair
of molecular potential curves Eα,(±)(R) around the Sr+

2 (50S)
asymptote, obtained for a basis set of ∼103 atomic states.
The numerical calculations used basis states with princi-
pal quantum number ranging from n = 40–60 including l =
0 . . . (n − 1) states for each n. At such high excitations, the
ion-atom interaction leads to strong state mixing already
at micrometer distances which is reflected in the molecular
ion wave functions shown in Figs. 2(b) to 2(d). The charge
exchange between the ion and Rydberg atom is determined

FIG. 2. (a) Potential curves for high-lying Rydberg states of a
Sr+

2 molecular ion. The molecular energies are given relative to
the Sr+

2 (50S) asymptote. The relative energies, δEα,(±) = Eα,(±) −
(Eα,+ + Eα,−)/2, of a selected pair (α = 243) with (un)gerade sym-
metry is shown in the inset for which the tunnel splitting is as
large as several 100 MHz at an internuclear distance of R = 730 nm.
(b–d) Plotting the complex Rydberg molecular ion wave functions
for selected pair of potentials shown in the inset for three different
internuclear distances, 700 nm in (b), 670 nm in (c), and 640 nm
in (d).

by the energy splitting given as

T α (R) = Eα,+(R) − Eα,−(R)

2
. (2)

There is substantial tunnel splitting between the opposite sym-
metry states [see inset of Fig. 2] of up to several hundred MHz,
even at distances for which the Rydberg electron remains
well localized at either ionic core. The polarization of the
Rydberg atom due to the ion is calculated from the slope of
the molecular potential curves as a function of the internuclear
distance.

III. OPTICAL COUPLING TO RYDBERG
MOLECULAR ION STATES

Using the two-particle notation introduced in the previous
section, the ion and the ground-state atom of Sr is denoted
by |ig〉 or |gi〉 depending on the position of the respective
particles, where |g〉 = |5s2,1S0〉. The optical coupling of |ig〉,
|gi〉 to |ieα〉, |eαi〉, respectively, is a two-photon process
via the intermediate triplet state, 5s5p,3P1 with an effective
Rabi frequency �α (R). The coupling is determined by the
dipole matrix element, μα (R) = 〈5s5p|μ|eα (R)〉. To relate
this coupling strength to that of neutral gas experiments, all
Rabi frequencies are expressed in terms of a reference Rabi
frequency, �50s

5s , for an isolated atom which, for our purposes,
is chosen to be 40 MHz. Detuning of the laser with respect
to a particular molecular Rydberg state is given as �α (R) =
ωL − [Eα,−(R) + Eα,+(R)]/2 where ωL is the frequency of
the second photon. Using the dipole approximation for the
laser field and the rotating wave approximation, the resulting
Hamiltonian is

Ĥ tp
opt (R) =

∑
α

[
−�α (R)(|ieα〉〈ieα| + |eαi〉〈eαi|)

+ �α (R)

2
(|ig〉〈ieα| + |gi〉〈eαi| + H.c.)

+ T α (R)(|ieα〉〈eαi| + H.c.)

]
. (3)
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The electronic ground-state energies are set to zero. The
Hamiltonian Ĥ tp

opt is diagonalized to obtain exact solutions
for the laser-dressed molecular states |dβ〉 along with the
energies ωβ (R) (h̄ is set to 1). |dβ〉 are expressed in terms
of a superposition of the electronic ground states |ig〉, |gi〉
as well as the molecular excited states |ieα〉, |eαi〉. The index
β = 1, 2, . . . , represents the different dressed states. Of major
interest is the pair of molecular states that has the largest
contribution of electronic ground states. These states corre-
spond to states with large lifetimes and are denoted by |g̃1,2〉
with energies ω

g̃
1,2(R). Expressing the electronic dynamics as

effective hopping between the relevant dressed states, we have

Ĥ tp
effec(R) = U (R)(|ig̃〉〈ig̃| + |g̃i〉〈g̃i|)

+ J (R)(|ig̃〉〈g̃i| + H.c.) , (4)

where U (R) is the light shift associated with an ion-dressed
atom pair and J (R) is the effective hopping (see Fig. 1). The
definitions of U (R) and J (R) contain the details of the admix-
ture of Rydberg state to the ground-state atom as determined
by the laser parameters (refer to Appendix C).

IV. CHARGE DYNAMICS WITH CLASSICAL
AND QUANTUM MOTION OF RYDBERG-DRESSED

MOLECULAR ION

Here classical and quantum dynamics refer to the motional
states of untrapped and trapped ion-atom pairs, respectively.
For an unconfined pair of particles, one obtains different hop-
ping rates corresponding to different internuclear distances
which leads to dephasing in the overall charge dynamics.
The instantaneous state for classical dynamics is given by
|ψ (R, t )〉 = cig̃(R, t )|ig̃〉 + cg̃i(R, t )|g̃i〉 and the corresponding
equations of motion using Eq. (4) are

i∂t cig̃(R, t ) = U (R)cig̃(R, t ) + J (R)cg̃i(R, t ) , (5)

i∂t cg̃i(R, t ) = U (R)cg̃i(R, t ) + J (R)cig̃(R, t ). (6)

For a fixed internuclear distance R, one obtains the probability
to be in state |ig̃〉 or |g̃i〉 to be cos2[J (R) t]. On averaging over
the internuclear distance, the probability to obtain a particular
two-particle state, for example, |ig̃〉 is given by |c̄ig̃(t )|2 and
is shown to slowly decay as seen in Fig. 3(b). To control the
uncertainty in the position of either particle (ion or atom), we
propose to have an identical confinement for the ion and atom
[see Fig. 1(d)]. This is achievable for alkaline-earth atoms
as suggested in [44] since the dynamic polarizability of a
singly ionized alkaline-earth atom is comparable to that of a
singly excited Rydberg alkaline-earth atom. In a double well,
the electronic and motional degrees of freedom are entangled
in the overall state given as |ψ〉 = ∑

n,n′ (cn,n′
ig̃ (t )|ig̃〉|nn′〉 +

cn,n′
g̃i (t )|g̃i〉|nn′〉). Here |nn′〉 is the eigenstate of the Hamil-

tonian corresponding to the center-of-mass dynamics for
two particles in a double-well harmonic trap [46] (refer to
Appendix E). For a typical trapping frequency in the range
of hundred kHz, the nuclear dynamics within the trap is
much slower than the electronic dynamics and is solved under
the Born-Oppenheimer approximation. It is assumed that the
system is prepared in the lowest motional state denoted by
|00〉. The probability to excite the first motional state can be

(a) M

|c0
0

ig̃
(t

)|2
|c̄ i

g̃
(t

)|2 (b)

(c)

FIG. 3. (a) Color density plot is shown for M [see Eq. (7)] dis-
tinguishing coherent dynamics (M � 1) from incoherent dynamics
(M � 1) for a range of detunings and lattice spacings. Relevant
(un)gerade pair of potential curves are shown in the background
as (red) blue lines for reference. (b) Plot depicts classical motional
dynamics for an unconfined ion-atom pair by plotting |c̄ig̃(t )|2 which
is calculated by averaging cig̃(R, t ) over the internuclear distance.
(c) Plot shows the probability for an ion to be at a given site for
an ion-atom pair trapped in a double well with trap frequency ωtr =
(2π )80 kHz and lattice spacing as 796 nm. The chosen detuning is
−0.7 GHz which corresponds to M = 0.044.

calculated from the off-diagonal couplings 〈00|U (R)|01〉 and
〈00|J (R)|01〉. If the off-diagonal couplings are smaller than
the trapping frequency ωtr and the corresponding light shifts,
then we have coherent dynamics. To quantify the degree to
which we couple the lowest motional states to their next
higher motional state, the following parameter is introduced:

M =
∣∣U 01

00 + J01
00

∣∣∣∣U 01
01 − U 00

00 + ωtr

∣∣ , (7)

where Anm
n′m′ = 〈nm|A(R)|n′m′〉 and A ∈ {U, J}. If the coupling

of |00〉 to |01〉 is small enough then the coupling to higher mo-
tional states such as |02〉 (or |20〉) are suppressed as well since
they are higher-order processes. Thus, the lower the value of
M, the more coherent is the charge dynamics. As expected,
for sufficiently large trapping frequencies, it is possible to
suppress the population of higher motional states. However,
there are experimental limitations to how large the optical
trap frequency can be and the typical values of (U 01

01 − U 00
00 )

are comparable to ωtr . Thus to have lower values of M, we
need |U 01

00 |, |J01
00 | � |U 01

01 − U 00
00 |, which is easily satisfied for

large-enough lattice spacings due to lower values of tunneling.
In Fig. 3(a), M is represented in a two-dimensional color plot
for different values of detuning and lattice spacing for a fixed
trapping frequency of ωtr = (2π )80 kHz. It is always possible
to find suitable lattice spacing and detuning to obtain coherent
dynamics for our chosen trap frequency as done in Fig. 3(c).
Whenever we work in the regime where the higher motional
states are not populated, we can replace U (R) and J (R) by
Ū = U 00

00 and J̄ = J00
00 , respectively.

V. GENERALIZATION TO MANY-BODY
CHARGE TRANSPORT

Here the two-particle picture will be generalized to many
particles involving a deep optical lattice filled with a sin-
gle atom per site out of which one is ionized. In the
many-particle system, we assume that the excitation laser
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parameters and lattice parameter are selectively chosen such
that the atoms that are nearest neighbors to the ion have
the highest probability of Rydberg excitation. We also as-
sume that the nearest-neighboring atom on either side of the
ion remain in the blockade regime despite the polarization
shifts [47]. The shift in the energy levels is strongest for
atoms that are nearest neighbors to the ion than compared
to those further away from it. To this effect, we have the
following reduced basis for the many-particle picture: all
atoms in the ground state with an ion at site k (|Ik〉 =
|g1 . . . gk−1 ik gk+1 . . . gN 〉), a Rydberg atom to the right of the
ion (|Rα

k 〉 = |g1 . . . gk−1 ik eα
k+1 . . . gN 〉) and a Rydberg atom

to the left of the ion (|Lα
k 〉 = |g1 . . . eα

k−1 ik gk+1 . . . gN 〉). Any
accidental Rydberg excitation for atoms further away from
the ion do not contribute to the overall ion dynamics as the
tunneling rate is negligible and it couples back to |Ik〉. The
Hamiltonian for the optical coupling of the many-body system
is given as

Ĥmp
opt =

∑
α

N∑
k=1

[
−�α

k

∣∣Rα
k

〉〈Rα
k

∣∣ + �α
k

2

(∣∣Rα
k

〉〈Ik| + H.c
)

−�α
k

∣∣Lα
k

〉〈
Lα

k

∣∣ + �α
k

2

(∣∣Lα
k

〉〈Ik| + H.c
)]

+
∑

α

N−1∑
k=1

T α
k

2

[∣∣Rα
k

〉〈
Lα

k+1

∣∣ + H.c
]
. (8)

On comparing with Eq. (3), we find that the dependence
of the optical parameters and the tunneling on distance R
has been replaced by subscript k, which denotes the site
number of the ion placed within the atomic lattice. Similar
to the two-particle picture, we can diagonalize Ĥmp

opt to obtain
dressed states and focus on the many-body Rydberg-dressed
ground states denoted as |Ĩ k〉 = |g̃1 . . . g̃k−1 ik g̃k+1 . . . g̃N 〉.
Unlike in the two-particle picture, in the many-particle setup,
the electron can, in principle, tunnel multiple times across
the lattice before it couples back to the ground-state atom.
Although we assume nearest-neighbor tunneling and work in
the reduced basis, we find that the effective ion dynamics
is delocalized in the Rydberg-dressed picture. This implies
that the effective equations of motion couple |Ĩk〉 to |Ĩk±2〉
as well and so on. Thus the effective ion dynamics in the
many-body dressed atoms cannot be described simply by its
nearest-neighbor exchange term unless we include additional
constraints. However, using time-independent perturbation
theory where Tk � �k for all k, it is possible to derive
the effective nearest-neighbor hopping term. The effective
Hamiltonian obtained in this limit describes charge dynamics
for an ion in the Rydberg-dressed atomic lattice,

Ĥmp
effec =

∑
k

Uk (|Ĩk〉〈Ĩk|) + Jk,k+1(|Ĩk+1〉〈|Ĩk| + H.c.)

+ Jk,k−1(|Ĩk−1〉〈|Ĩk| + H.c.) , (9)

where Uk = 〈Ĩk|Ĥmp
effec|Ĩk〉 and Jk,k+1 = 〈Ĩk|Ĥmp

effec|Ĩk+1〉.To iden-
tify regimes in the parameter space where the perturbation
theory is valid, we resort back to the two-particle picture. We
derive dynamical parameters (U pert, Jpert) by solving Ĥ tp

opt per-
turbatively in the limit � 	 T . Averaging over the motional

(a)
(b)

(c)

C

J̄
Ū

U
p
e
rt

,
J

p
e
rt

,

FIG. 4. (a) Density plot shows the relative difference in the
dynamical parameters defined in C [see Eq. (10)] calculated using
exact as well as perturbative methods (refer to text) for different
laser parameters. The light regions in the density plot correspond to
regimes where the perturbation theory is valid. Relevant (un)gerade
pair of potential curves are shown as (red) blue lines for reference.
(b)–(c) Averaged values of U and J from different methods are
shown for a particular detuning � = −0.7 GHz.

states, U pert, Jpert are compared to Ū , J̄ which were obtained
by solving Eq. (4) without any approximation [referred to as
the exact method in Figs. 4(b) and 4(c)]. This is numerically
quantified by the following parameter:

C =
∣∣∣∣Ū − U pert

Ū

∣∣∣∣ +
∣∣∣∣ J̄ − Jpert

J̄

∣∣∣∣. (10)

Figure 4(a) shows the different values of C for different laser
parameters and lattice spacing. As expected, for larger lattice
spacings, the overall T is smaller which easily satisfies our
condition for perturbation theory and corresponds to lower
values of C. This is further confirmed in Figs. 4(b) to 4(c)
where we compare the dynamical parameters from two differ-
ent methods. We include the motional states in next section,
where we work in the coherent regime of the many-body
setup.

VI. COHERENT MANY-BODY CHARGE TRANSPORT
WITH NEAREST-NEIGHBOR HOPPING

The theory for charge transport over many-sites can be
understood using the simple model of pair-wise charge ex-
change at two sites involving the ion and its neighboring atom.
Having identified the optimum optical parameters (0.7–1 GHz
with respect to 50s Rydberg state) and lattice spacing (750–
850 nm) in prior sections to have nearest-neighbor coher-
ent hopping, we use them in our numerical simulation for
charge dynamics involving a single ion and N − 1 atoms in
a one-dimensional optical lattice. The typical lifetime of the
Rydberg states is estimated to be in the order of hundred μs
[48] which is enhanced to 250–350 ms by averaging over
the Rydberg-dressed states whose major contribution is from
the electronic ground state. Thus the main time constraint on
the overall dynamics is the decay of the intermediate state,
5s5p,3P1, which is 21 μs. By increasing the detuning with
respect to the intermediate state, this is increased to 8.4 ms.
This requires the effective Rabi frequency for the two-photon
excitation scheme to be in the order of tens of MHz, which
remains experimentally achievable [49–51]. We ignore the
accidental resonances to Rydberg states or doubly excited
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FIG. 5. Density plot showing ion probability during its dynamics
in Rydberg-dressed lattice with a spacing of 796 nm and laser
detuning −0.7 GHz. Top panels show the corresponding Rabi profile
of the excitation laser. (a) Constant Rabi frequency, �c = 40 MHz,
where J0 = J̄k,k+1 = 27 kHz and U0 = Ūk = 15.9 kHz for all val-
ues of k. (b) Varying Rabi profile along the x direction, �k (x) =
�c

√
(N − kx)(k − 1)x such that J̄k,k+1 = (2J0/N

√
(N − k)k) and

Ūk,k+1 = (2U0/N
√

(N − k)k).

states since the probability for it to occur is small (∼10−2) par-
ticularly when averaged over the motional states. Solving for
� = ∑N

k=1 C̃I
k |Ĩk〉 using the many-body Hamiltonian Eq. (9)

gives

i∂tC̃
I
k = ŪkC̃

I
k + J̄k,k−1C̃

I
k−1 + J̄k,k+1C̃

I
k+1 , (11)

where Ūk = 〈00|Uk|00〉 and J̄k,k+1 = 〈00|Jk,k+1|00〉. In gen-
eral, J̄k,k+1 does not have to be equal to J̄k+1,k . Figure 5
depicts the results of the numerical simulation for 13 sites with
different laser profiles. Focusing on the excitation laser with
constant Rabi profile [see Fig. 5(a)], we have an ion initially
located at site 7 which then propagates in both directions sym-
metrically as it has equal probability to hop in either direction
at every instant. A scenario involving spatially varying Rabi
profile is depicted in Fig. 5(b). In this case J̄k,k+1 
= J̄k+1,k

and the Rabi profile has been chosen in such a manner that
it mimics motion of a particle in harmonic well [52] with its
minima at the center (site 7 in this case). Hence an ion situated
at site 1 is akin to starting at one end of the well which then
propagates through site 7 with maximum kinetic energy till it
reaches the other end. The role of the light shift Ūk is simply an
additional energy shift experienced by the atoms or ion in the
lattice. This can be compensated by choosing an appropriate
profile for the trapping laser.

VII. CONCLUSION

In this work, we propose and model the effective charge
dynamics of an ion within trapped Sr atoms in an optical lat-
tice. We conclude that optically trapped alkaline-earth atoms-
ion systems can naturally serve as a platform for the study
of charge transfer in a controlled many-body environment.
Enhanced coherent charge dynamics requires the dressing of
ground-state atoms to their Rydberg states [53,54] and the
provision of identical confinement for both the ion and the
Rydberg-dressed atom [44], both of which are potentially at-
tainable with ongoing experiments with alkaline-earth atoms
[55–60]. Recent experiments on optical trapping of ions [61],

ion-Rydberg atoms [47,62], and ion-dressed Rydberg atoms
[63] are all promising endeavors in realizing different aspects
of this work.

ACKNOWLEDGMENTS

R.M. would like to acknowledge I. Lesanovsky and T.
Pohl for their invaluable input and discussion. R.M. would
also like to acknowledge S. Wüster for his discussion and
the Max-Planck society for funding under the MPG-IISER
partner group program.

APPENDIX A: FULL HAMILTONIAN

In the simple picture of two particles where a Sr atom is
next to an ion, the full Hamiltonian consists of three parts

Ĥ = (
Ĥel + Ĥ tp

opt + ĤCoM
)
, (A1)

where Ĥel is the electronic part, Ĥ tp
opt represents the excitation

of the atom to its Rydberg state and ĤCoM corresponds to the
motion of the trapped particles in the lattice. We discuss each
Hamiltonian in some detail in the following sections.

APPENDIX B: ELECTRONIC HAMILTONIAN

Similar to alkali atoms, we assume an effective model
potential for the singly ionized alkaline-earth atom, reducing
the many-electron problem to an effective two-electron atom
problem. The model potential in atomic units is given as

V Sr+
eff (r) = − 1

r
[2 + (Z − 2)e−a1(l )r + a2(l )re−a3(l )r]

− αc

2r4
[1 − e−(r/rl )6

], (B1)

where parameters [a1(l ), a2(l ), a3(l ), αc, rl ] of the model po-
tential are determined from fits to experimental data for low
and intermediate levels of Sr+ energies [64]. l is the orbital
angular momentum. Using the singly ionized Rydberg wave
functions as a basis, the atomic Sr Rydberg wave functions
ψn,l (r) were calculated using mean-field theory similar to
Hartree-Fock theory. The mixing between Rydberg series are
ignored and is justified in certain cases from experimental
observations which show no high-lying perturbers in the
Rydberg series.

For singly excited Rydberg states of strontium with very
large principal quantum numbers (n > 20), there is a large
asymmetry in the orbit size of the Rydberg electron and the
ground-state electron. Due to this asymmetry, we can treat
the exchange interaction between the two valence electrons
perturbatively. Since the effect of the inner valence electron
(in its ground state) is negligible on the Rydberg electron,
we write the electronic Hamiltonian in terms of the Rydberg
electron, given as

Ĥel = −�2

2
+ V Sr+

eff (r1) + V Sr+
eff (r2) + 1

R
, (B2)

where ri=1,2 is the relative position of the Rydberg electron
with respect to either nucleus (see Fig. 6) and R is the inter-
nuclear distance between the nuclei. We note that the basis
states are not orthonormal given the small nonzero overlap
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r1r2

Rydberg
atom

+ +

Ion

R

Z1 Z2

+

FIG. 6. The figure depicts a Sr Rydberg molecular ion trapped
in a double well. Here ri=1,2 is the relative position of the Rydberg
electron with respect to either nucleus and R is the internuclear
distance between the nuclei. Zi is the relative displacement of the
corresponding nucleus with respect to the center of lattice site i.

function, i.e., 〈ψn,l (r(1,2) )|ψn,l (r(2,1) )〉 
= 0. However for the
internuclear distances considered in this work, the overlap
function can be considered negligible. We solve the (approx-
imate) eigenvalue problem by diagonalizing the following
matrix Hamiltonian for Ĥel:(

[P(r1)] [T (r1, r2)]

[T (r2, r1)] [P(r2)]

)
, (B3)

where [P(ri )] and [T (ri, r j )] are block matrices given as

[P(ri )] =

⎛
⎜⎜⎜⎝

Pnl
nl (ri) Pn′l ′

nl (ri) · · ·
Pnl

n′l ′ (ri)
. . . · · ·

... · · · . . .

⎞
⎟⎟⎟⎠, (B4)

[T (ri, r j )] =

⎛
⎜⎜⎜⎝

T nl
nl (ri, r j ) T n′l ′

nl (ri, r j ) · · ·
T nl

n′l ′ (ri, r j )
. . .

...
...

...
...

⎞
⎟⎟⎟⎠, (B5)

which are defined using the two center integrals
Pnl

n′l ′ (ri=1,2) = 〈ψn,l (ri=1,2)|Ĥel|ψn′,l ′ (ri=1,2)〉 and
T nl

n′l ′ (r1, r2) = 〈ψn,l (r(1,2) )|Ĥel|ψn′,l ′ (r(2,1) )〉. Equation (4)
given above can be a very large matrix to diagonalize for
a large basis set and needs to be computed for internuclear
distances that are finely resolved to obtain smooth potential
curves. This is numerically cumbersome. However, using the
“symmetry” between r1 and r2 in the electronic Hamiltonian,
we express the Hamiltonian in the gerade-ungerade basis
representation. The advantage of this representation is that
the set of eigenvalue equations decouple between the states
belonging to the two symmetry groups. Upon diagonalization,
one obtains the following eigenvalue equation for the Rydberg
states:

Ĥel|eα,±〉 = E±
α (R)|eα,±〉, (B6)

where α is the index for the Rydberg excited molecular ion
state which in terms of the basis functions is expressed as

|eα,±〉 = 1√
2

(|ieα〉 ± |eαi〉)

=
∑
n,l

cα,±
n,l (|ψn,l (r1)〉 ± |ψn,l (r2)〉), (B7)

along with the normalization condition
∑

n,l |cα,±
n,l |2 = 1.

APPENDIX C: HAMILTONIAN FOR OPTICAL COUPLING
TO RYDBERG MOLECULAR ION STATES

The laser-dressed molecular ion states are obtained by
diagonalizing the following matrix Hamiltonian of Ĥ tp

opt⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 �α (R)
2 . . . 0 0 . . .

�α (R)
2 −�α (R)

... 0 T α (R)
...

... . . .
. . .

... . . .
. . .

0 0 . . . 0 �α (R)
2 . . .

0 T α (R)
... �α (R)

2 −�α (R)
...

... . . .
. . .

... . . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C1)

The size of the matrix Hamiltonian is (2 + α) × (2 + α)
where α is the number of Rydberg molecular ion states. The
eigenvalues obatined ωβ (R) were ordered in ascending mag-
nitude of energies along with their corresponding eigenstates

|dβ (R)〉 = cg1
β (t )|g1〉 + cg2

β (t )|g2〉
+

∑
α=1

(
ce1,α
β (t )

∣∣eα
1

〉 + ce2,α
β (t )

∣∣eα
2

〉)
, (C2)

where β represents different dressed molecular ion states. The
states with lowest energy in magnitude are selected states
and denoted as |g̃1,2〉 with energies ω

g̃
1,2(R). These states

would correspond to states with longest lifetimes depending
on the fraction of the Rydberg population in them which in
turn depends on the Rabi frequency and the detuning of the
excitation laser.

APPENDIX D: ELECTRONIC DYNAMICS IN THE
RYDBERG DRESSED MOLECULAR ION

We solve the time-dependent Schrödinger equation for |�〉

i
d|�〉

dt
= (

Ĥel + Ĥ tp
opt

)|�〉, (D1)

where |�〉 = cg̃
1(R, t )|g̃1〉 + cg̃

2(R, t )|g̃2〉 is expressed in terms
of the Rydberg-dressed ground states |g̃1,2(R)〉 obtained in the
previous section. The dynamical equations for the electron
between the Rydberg dressed ground states are

i∂t c
g̃
1(R, t ) = ω

g̃
1(R)cg̃

1(R, t ) , (D2)

i∂t c
g̃
2(R, t ) = ω

g̃
2(R)cg̃

2(R, t ). (D3)
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The dressed states expressed in the left or right basis are
defined as

|ig̃〉 = 1√
2

(g̃1 + g̃2) , (D4)

|g̃i〉 = 1√
2

(g̃1 − g̃2). (D5)

Using |�〉 = cig̃(R, t )|ig̃〉 + cg̃i(R, t )|g̃i〉 we have the follow-
ing dynamical equations in the left or right basis,

i∂t cig̃(R, t ) = U (R)cig̃(R, t ) + J (R)cg̃i(R, t ) , (D6)

i∂t cg̃i(R, t ) = U (R)cg̃i(R, t ) + J (R)cig̃(R, t ) , (D7)

where the dynamical parameters, on-site energy U (R), and the
hopping rate J (R) are defined as

U (R) = ω
g̃
1(R) + ω

g̃
2(R)

2
, (D8)

J (R) = ω
g̃
1(R) − ω

g̃
2(R)

2
. (D9)

U (R) and J (R) are the dynamical parameters that correspond
to the light shift and the effective hopping rate, respectively,
between the Rydberg-dressed ground states for an ion and an
atom.

APPENDIX E: HAMILTONIAN FOR
CENTER-OF-MASS DYNAMICS

Each ion core is trapped in its own lattice site in a one-
dimensional lattice along the z axis (see Fig. 6). The Hamil-
tonian for the nuclear motion for our two-site model is given
as

ĤCoM|n1n2〉 =
∑
i=1,2

[
− h̄2�2

Zi

2M
+ M

2
ω2Z2

i

]
|n1n2〉

= h̄(n1 + n2)ω|n1n2〉, (E1)

where M = 87.2 is the mass of Sr in atomic units. and |ni=1,2〉
is the motional state at the corresponding site and |n1n2〉 is the

two-particle motional eigenstate. Z(1,2) is the relative motion
of the corresponding trapped nuclei at each site. The full wave
function |�〉 is a product state of the electronic eigenstates and
the motional states,

|�〉 =
∑
n1,n2

(
cig̃

n1n2
(t ) |ig̃〉 + cg̃i

n1n2
(t ) |g̃i〉)|n1n2〉 , (E2)

and solving the Schrödinger equation with the full Hamiltoian
[see Eq. (A1)] and multiplying with 〈n1n2| throughout we get

i∂t c
ig̃
n1n2

= (〈n1n2|U (R)|n1n2〉 + ωn1n2

)
cig̃

n1n2

+ (〈n1n2|J (R)|n1n2〉)cg̃i
n1n2

+
∑

n1,n2 
=n′
1n′

2

[〈n′
1n′

2|U (R)|n1n2〉]cig̃
n′

2n′
2

+
∑

n1,n2 
=n′
1n′

2

[〈n′
1n′

2|J (R)|n1n2〉]cg̃i
n′

2n′
2
, (E3)

i∂t c
g̃i
n1n2

=(〈n1n2|U (R)|n1n2〉 + ωn1n2

)
cg̃i

n1n2

+ (〈n1n2|J (R)|n1n2〉)cig̃
n1n2

+
∑

n1,n2 
=n′
1n′

2

[〈n′
1n′

2|U (R)|n1n2〉]cg̃i
n′

2n′
2

+
∑

n1,n2 
=n′
1n′

2

[〈n′
1n′

2|J (R)|n1n2〉]cig̃
n′

2n′
2
. (E4)

On averaging over the spatial variation of the dynamical
parameters, we get couplings between the motional ground
states but also to other higher motional states. The criterion for
coherent charge dynamics is discussed in the article and deals
with finding optimal parameters that minimizes this coupling
to higher motional states. Here we also numerically verified
that the variation of the Rydberg-dressed ground-state wave
function over the internuclear distance is negligible.
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