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Universality in a one-dimensional three-body system
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We study a heavy-heavy-light three-body system confined to one space dimension. Both binding energies and
corresponding wave functions are obtained for (i) the zero-range and (ii) two finite-range attractive heavy-light
interaction potentials. In the case of the zero-range potential, we apply the method of Skorniakov and Ter-
Martirosian to explore the accuracy of the Born-Oppenheimer approach. For the finite-range potentials, we solve
the Schrödinger equation numerically using a pseudospectral method. We demonstrate that when the two-body
ground-state energy approaches zero, the three-body bound states display a universal behavior, independent of
the shape of the interaction potential.
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I. INTRODUCTION

The few-body problem has been of central interest in the
physics community since the very beginning of quantum
mechanics [1–4]. Continuous efforts have led to theoretical
breakthroughs like the Efimov effect [5], that is the appear-
ance of an infinite sequence of universal bound states in the
three-dimensional system of three bodies, provided the two-
body interactions have an s-wave resonance [6]. The effect is
universal [7–11] in the sense that it is independent of the shape
of the two-body interaction potential, as long as the latter is
tuned to be on s-wave resonance.

In the present article we study another class of universal
bound states in a three-body system of two identical, heavy
particles and a third, light particle, all confined to one spatial
dimension (1D) when the heavy-light ground-state energy
approaches zero. This nearly resonant state is not a virtual
state but always weakly bound in the case of an attractive
heavy-light interaction. We assume no interaction between
the two heavy particles and obtain the binding energies as
well as the corresponding wave functions for the zero- and
two different finite-range heavy-light interaction potentials. In
addition, we prove the universality of these states.

A. Dimension of space and symmetry of resonance

The appearance of the Efimov effect crucially depends on
the number of spatial dimensions and on the symmetry of
the underlying two-body resonance. Indeed, changing in three
dimensions the symmetry from an s- to a p-wave resonance
[12,13] results in the reduction of the infinite number of bound
states to a finite one.

Moreover, in the case of a two- [14–17] or one-dimensional
[18,19] space, a two-body s-wave resonance does not lead to
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the Efimov effect. Again the spectrum of the three-body bound
states is finite and determined by the mass ratios between
the particles [20–22]. However, the two-dimensional system
of three particles with a p-wave interparticle resonance can
again support an infinite number of universal bound states, the
so-called “super Efimov” effect [23–27].

Experimentally the changes in the number of space di-
mensions and the interaction can be implemented. Indeed,
the reduction of the dimensionality is achieved by using off-
resonant light to confine ultracold gases in quasi-1D or quasi-
2D geometries [28]. In addition, the interactions between
ultracold atoms can be tuned easily via Feshbach resonances
[29].

B. Methods

We solve the exact integral equations [30] of Skorniakov
and Ter-Martirosian (STM) for the zero-range heavy-light
interaction potential and obtain the three-body bound states
for arbitrary mass ratios. Based on these results, we investigate
the accuracy of the Born-Oppenheimer (BO) approximation
[1] for the three-body problem depending on the mass ratio.

By considering finite-range potentials of Gaussian and
cubic Lorentzian shape, we explore the universal regime. For
these finite-range potentials we obtain the bound states of
the three-particle system numerically using a pseudospectral
method [31–33] based on the roots of the rational Chebyshev
functions.

C. Overview

Our article is organized as follows. In Sec. II we briefly
summarize the essential ingredients of the two- and three-
body system. We then focus in Sec. III on the case of the
zero-range heavy-light interaction and utilize the BO approx-
imation and the STM method. Next we dedicate Sec. IV to a
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study of the universal behavior for two different finite-range
potentials. In Sec. V we then demonstrate the universality of
the three-body bound states for any heavy-light interaction.
We conclude in Sec. VI by summarizing our results and by
presenting an outlook.

In order to keep our article self-contained but focused on
the central ideas, we present more detailed calculations in two
appendices. Appendix A is focused on the derivation of the
diagonal correction to the BO approximation. In Appendix B,
we introduce a grid based on the roots of the rational Cheby-
shev functions and recall briefly the pseudospectral method
applied in Sec. IV.

II. THREE-BODY SYSTEM

In this section we first briefly discuss the validity of 1D
models to describe quasi-1D systems. We then introduce the
quantities determining an interacting mass-imbalanced two-
body system in 1D. Next, we extend this system to the case
of three interacting particles using dimensionless Jacobi co-
ordinates. Finally, we discuss the corresponding Schrödinger
equation and its symmetries, which serves as the basis for the
studies presented in the subsequent sections.

A. 1D and quasi-1D models

Many theoretical studies [18,19,34–36] of three-body sys-
tems confined along two directions are performed using 1D
models. This reduction offers the advantage of a simple
and intuitive description revealing the underlying three-body
properties. However, it is important to emphasize that exper-
iments on these confined systems are always performed in
quasi-1D.

In the case of a zero-range interaction the effective interac-
tion potential of two particles in a tight cylindrical symmetric,
harmonic trap (quasi-1D setup) is given by the zero-range
potential with the 1D scattering length determined by the
3D scattering length and the harmonic potential width, as
shown in Ref. [37]. Moreover, the dependence of universal
three-body bound states on the dimensionality has been in-
vestigated in Refs. [17,38–40]. In particular, when reducing
the dimensionality from 3D to quasi-2D, the conditions to
reproduce the results obtained by a 2D model are presented.

These results justify the relevance of 1D models for quasi-
1D experiments and allow us to analyze the confined three-
body system using a 1D model.

B. Two interacting particles

We consider a two-body system consisting of a heavy
particle of mass M and a light one of mass m, both constrained
to 1D and interacting via a potential of range ξ0.

After eliminating the heavy-light center-of-mass coordi-
nate, the system is governed by the stationary Schrödinger
equation [

−1

2

d2

dx2
+ v(x)

]
ψ (2) = E (2)ψ (2) (1)

for the two-body wave function ψ (2) = ψ (2)(x) of the relative
motion presented in dimensionless units. Indeed, x denotes

the relative coordinate of the light particle with respect to the
heavy one in units of the characteristic length ξ0.

The two-body binding energy E (2) and the potential

v(x) = v0 f (x) (2)

are both given in units of h̄2/μξ 2
0 with the Planck’s constant

h̄ and the reduced mass μ ≡ Mm/(m + M ) of the heavy-light
system. Here v0 denotes the magnitude and f the shape of the
interaction potential.

We assume an attractive interaction, v0 < 0, as well as
a symmetric shape f , that is f (x) = f (|x|). Moreover, we
choose v such that (i) it describes a short-range interaction,
i.e., |x|2 f (|x|) → 0 as |x| → ∞, and (ii) the potential v sup-
ports only a single bound state with energy E (2)

g and even wave
function ψ (2)

g (x) = ψ (2)
g (−x).

C. Three interacting particles

We now add a third particle of mass M, also constrained
to 1D and identical to the heavy particle in the heavy-light
system considered above. Accordingly, we assume the same
interaction potential v between the additional heavy and the
light particle, but no interaction between the two heavy ones.

Next, we introduce dimensionless Jacobi coordinates [10]
x and y as displayed in Fig. 1, where y is the relative coordinate
between the two heavy particles and x denotes the coordinate
of the light particle with respect to the center-of-mass C of the
two heavy ones, both in units of ξ0.

Eliminating again the center-of-mass motion of this heavy-
heavy-light system, we arrive at the dimensionless stationary
Schrödinger equation[

−αx

2

∂2

∂x2
− αy

2

∂2

∂y2
+ v(r+) + v(r−)

]
ψ = Eψ (3)

for the three-body wave function ψ = ψ (x, y) describing only
the relative motions with r± ≡ x ± y/2.

The coefficients

αx ≡ 1 + 2M/m

2(1 + M/m)
(4)

and

αy ≡ 2

1 + M/m
(5)

depend only on the mass ratio M/m and E denotes the dimen-
sionless three-body energy in units of h̄2/μξ 2

0 .
We notice that Eq. (3) is invariant under the transforma-

tion y → −y, that is an exchange of the two heavy parti-
cles. Hence we distinguish even solutions ψ (x,−y) = ψ (x, y)

M Mm

C x
y

FIG. 1. Jacobi coordinates x and y for the three particles confined
to 1D.
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corresponding to two heavy bosonic particles and odd so-
lutions ψ (x,−y) = −ψ (x, y) corresponding to two heavy
fermionic particles. Moreover, also the transformation x→−x
leaves Eq. (3) invariant and leads to the additional symmetry
ψ (−x, y) = ±ψ (x, y).

D. Formulation of the problem

Now our aim is to solve Eq. (3) for the three-body bound
state with the wave function ψn and the corresponding energy
En for n = 0, 1, . . . . In particular, we are interested in the case
when the two-body interaction described by the potential v is
close to a specific resonance, that is the energy E (2)

g of the two-
body ground state approaches zero. Under the assumptions on
v presented in Sec. II B, we then expect a universal behavior
of the spectrum En, namely that in the limit E (2)

g → 0 the ratio

εn ≡ En∣∣E (2)
g

∣∣ (6)

is independent of the shape f of the interaction potential.
In order to obtain a Hamiltonian with the eigenenergies εn

given by Eq. (6), we introduce the rescaled variables

X ≡ x/�g, Y ≡ y/�g, (7)

with

�g ≡ 1√
2
∣∣E (2)

g

∣∣ , (8)

and rewrite Eq. (3) as the equation

Ĥψ̃ = εψ̃ (9)

for the wave function ψ̃ = ψ̃ (X,Y ) with

Ĥ ≡ −αx
∂2

∂X 2
− αy

∂2

∂Y 2
− 2�2

g|v0|[ f (�gR+) + f (�gR−)]

(10)
and

R± ≡ X ± Y/2. (11)

We emphasize that the eigenvalues ε correspond to the ratio
of the dimensional three-body and two-body energies and are
hence accessible in an experiment.

III. CONTACT INTERACTION

We start our analysis by considering a contact interaction

fδ (x) ≡ δ(x) (12)

between the light particle and each heavy one, with δ(x)
being the Dirac delta function. For the two-body problem, this
interaction potential v0 fδ (x) has only one bound state with the
energy

E (2)
g = − 1

2v2
0 (13)

determined by the magnitude v0 of the potential.
Using this relation and the scaling property of the Dirac

delta function, δ(αx) = δ(x)/|α|, we obtain

�2
g|v0| fδ (�gR±) = δ(X ± Y/2), (14)

and the three-body Schrödinger equation, Eq. (9), becomes
independent of the interaction strength v0. Hence ε, the three-
body binding energy in units of the two-body ground-state
energy, does not depend on v0.

We now solve Eq. (9) with f = fδ using two different
methods: the BO approximation [1] and an approach based
on the exact STM integral equation [30]. We then compare
the results of the two techniques to quantify the error of the
BO approximation.

A. Born-Oppenheimer approximation

The Born-Oppenheimer (BO) approach relies on approxi-
mating [41,42] the total three-body wave function ψ̃ in Eq. (9)
by the product

ψ̃ (BO)(X,Y ) ≡ ϕ(X |Y )φ(Y ). (15)

Here, the wave function ϕ describes the dynamics of the
light particle interacting with the two heavy ones, which are
assumed to stay at a fixed distance Y .

The physical motivation of the ansatz Eq. (15) is that for
a large mass ratio, M/m � 1, the change of distance between
the heavy particles is negligible on the relevant time scales
of the light-particle dynamics. Hence Y does not change and
enters in ϕ only as a parameter, indicated by the vertical bar,
giving rise to the Schrödinger equation{

−αx
∂2

∂X 2
− 2[δ(R+) + δ(R−)]

}
ϕ = u(Y )ϕ (16)

for the wave function ϕ of the light particle, determining the
so-called BO potential u(Y ).

In Appendix A 1 we solve Eq. (16) analytically and obtain

u±(Y ) = − 1

αx

[
αx

|Y |W0

(
±|Y |

αx
e−|Y |/αx

)
+ 1

]2

(17)

expressed in terms of the Lambert function W0 [43] and the
corresponding wave functions

ϕ±(X |Y ) = N±
[
e−√|u±|/αx |R−| ± e−√|u±|/αx |R+|], (18)

where N± is a normalization factor.
The two potentials u± = u±(Y ) are displayed in Fig. 2.

Only the lower curve u+, corresponding to the even light-
particle state ϕ+, provides an attractive potential for the two
heavy particles and therefore supports bound states of the total
three-body system.

The wave function φ+ = φ+(Y ) of the heavy particles then
obeys the Schrödinger equation[

−αy
∂2

∂Y 2
+ u+(Y )

]
φ+ = ε (BO)φ+, (19)

where u+ indeed plays the role of a potential and ε (BO) is the
scaled three-body energy within the BO approach.

Using the attractive potential u+ given by Eq. (17), we
calculate the values of ε (BO)

n numerically to a precision of 10−6

applying a pseudospectral method based on the Chebyshev
grid introduced in Appendix B. It is important to mention that
the scaled three-body bound-state energies ε (BO)

n satisfy the in-
equality αxε

(BO)
n < −1, where the upper bound is determined

012709-3



LUCAS HAPP et al. PHYSICAL REVIEW A 100, 012709 (2019)

u

u

Y x

(Y
)

u
x

FIG. 2. Formation of three-body bound states explained by the
two BO potentials u± = u±(Y ), Eq. (17), as a function of the relative
distance Y between the two heavy particles. Only the lower curve,
corresponding to u+ = u+(Y ), represents an attractive potential for
the heavy particles and thus supports three-body bound states.

by the value of the BO potential at infinity,

αxu+(Y → ±∞) → −1, (20)

as shown in Fig. 2.
The number nmax of bound states supported by u+ depends

on the mass ratio M/m and is depicted in Fig. 3 as a blue line
together with the semiclassical [44] estimation

nmax
∼= 1

π
√

αy

∫
dY

√∣∣∣∣u+(Y ) + 1

αx

∣∣∣∣ − 1

2
(21)

or

nmax
∼= 0.8781 ×

√
1 + 2

M

m
− 1

2
, (22)

depicted by an orange line.
With increasing mass ratio M/m, additional bound states

appear. A detailed comparison of the critical mass ratios
required for the formation of a new bound state within the BO
approximation and a hyperspherical approach can be found in
Refs. [18,19].

n m
ax

FIG. 3. Mass ratio M/m determining the number nmax of three-
body bound states (blue line) obtained numerically from Eq. (19)
within the BO approximation together with the semiclassical lower
bound (orange line), Eq. (22). Increasing M/m leads to more three-
body bound states.

B. Integral equation of Skorniakov and Ter-Martirosian

In this section we apply the method [30] of Skorniakov and
Ter-Martirosian (STM) to the three-body problem described
by Eqs. (9) and (10) with a contact interaction. In contrast to
the BO approach, this method does not involve any approx-
imation, and in principle provides an exact solution for any
mass ratio M/m.

We introduce the Green function

G(2)
ε (X,Y ) ≡ − 1

2π
√

αxαy
K0

(√
|ε|

√
1

αx
X 2 + 1

αy
Y 2

)
(23)

for the two-dimensional free-particle Schrödinger equation
with ε < 0, where K0 denotes the modified Bessel function
of the second kind [43]. We can then cast Eqs. (9) and (10) in
integral form

ψ̃ (X,Y ) = − 2�2
g|v0|

∫∫
dX ′dY ′G(2)

ε (X − X ′,Y − Y ′)

× ψ̃ (X ′,Y ′)[ f (�gR′
+) + f (�gR′

−)], (24)

where R′
± ≡ X ′ ± Y ′/2.

With the help of Eq. (14) this expression simplifies in the
special case of the contact interaction f = fδ to

ψ̃ (X Y ) = −2
∫∫

dX ′dY ′G(2)
ε (X − X ′,Y − Y ′)

× ψ̃ (X ′,Y ′)[δ(X ′ + Y ′/2) + δ(X ′ − Y ′/2)]. (25)

The delta functions then allow us to immediately perform
the integration over Y ′ and to obtain the one-dimensional
integral equation

ψ̃ (X,Y ) = −4
∫

dX ′[G(2)
ε (X − X ′,Y − 2X ′)ψ̃ (X ′, 2X ′)

+ G(2)
ε (X − X ′,Y + 2X ′)ψ̃ (X ′,−2X ′)

]
. (26)

As pointed out in Sec. II C, the three-body wave function
ψ̃ has to be either even or odd with respect to Y, that is

ψ̃ (X,−Y ) = ±ψ̃ (X,Y ) (27)

corresponding to the case of bosonic (plus sign) or fermionic
(minus sign) heavy particles.

Evaluating both sides of Eq. (26) at Y = 2X , we arrive at
the integral equation

ψ̃ (X, 2X ) =
∫

dX ′ K(±)
ε (X, X ′)ψ̃ (X ′, 2X ′) (28)

with the kernel

K(±)
ε (X, X ′) ≡ −4

[
G(2)

ε (X − X ′, 2X − 2X ′)

± G(2)
ε (X − X ′, 2X + 2X ′)

]
, (29)

where we have used the symmetry relation given by Eq. (27)
in writing ψ̃ (X ′,−2X ′) = ±ψ̃ (X ′, 2X ′).

By rescaling the coordinates X and X ′ by
√|ε|, Eq. (28)

can be cast into an eigenvalue problem for the eigenfunction
ψ̃ (X/

√|ε|, 2X/
√|ε|) with eigenvalue

√|ε|, where the condi-
tion ε < −1 determines the three-body bound states. Hence
the desired spectrum ε�

n of three-body bound states in units
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FIG. 4. Lowest four (a)–(d) three-body wave functions ψ̃�
n = ψ̃�

n (X,Y ) corresponding to n = 0, 1, 2, 3 obtained by the integral equation
of Skorniakov and Ter-Martirosian for a mass ratio M/m = 20, together with corresponding contour plots below. In addition, we depict the
lines of interaction, that is X ± Y/2 = 0, as black lines inside the contour plots. Due to the nondifferentiability of the delta potential, the wave
functions show a kink when crossing those lines perpendicularly. All states share the same symmetry with respect to the line X = 0, whereas
the wave functions alter from even to odd with respect to the line Y = 0. The transformation Y → −Y represents the exchange of the two
heavy particles and hence determines whether they are of bosonic (even case) or of fermionic (odd case) character. The symmetry with respect
to the line X = 0 can be understood within the BO picture. Indeed, the lower-lying light-particle BO wave function ϕ+ = ϕ+(X |Y ), given by
Eq. (18) and leading to three-body bound states, is even. Higher excited states have increased size, as indicated by the different scales in the
plots.

of the two-body ground-state energy E (2)
g can be efficiently

computed.
The three-body wave function ψ̃ (X,Y ) is more difficult

to obtain and requires an additional step. Together with the
spectrum ε�

n , we first obtain ψ̃�
n (X, 2X ) from Eq. (28), that is

ψ̃�
n along the lines of interaction Y = ±2X . Then, we insert

both ε�
n and ψ̃�

n (X, 2X ) into the right-hand side of Eq. (26).
Taking into account the symmetry property ψ̃�

n (X,−2X ) =
(−1)nψ̃�

n (X, 2X ) (even n correspond to bosonic heavy par-
ticles, whereas odd n represent the fermionic case) and per-
forming the integration over X ′, we finally obtain the entire
three-body wave function ψ̃�

n = ψ̃�
n (X,Y ).

In Fig. 4 we depict the four (n = 0, 1, 2, 3) lowest
three-body bound states obtained via the STM method for
M/m = 20. We emphasize again the scaling property of the

delta function yielding the wave function

ψ�
n (x, y) = ψ̃n

(√
−2E (2)

g x,
√

−2E (2)
g y

)
(30)

in the unscaled variables x and y.

C. BO approximation vs STM approach

In the preceding subsections we have applied the BO
and STM methods to solve the 1D three-body prob-
lem with contact interaction. Now we compare both
methods and study the dependence of the resulting
spectra and wave functions on the mass ratio M/m.
Common experimental mass ratios range from M/m=
1 for identical particles via M/m∼=2.2 and M/m ∼= 12.4
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FIG. 5. Accuracy of the BO ground-state energies when com-
pared to the corresponding STM values as a function of the mass ratio
M/m. Here we depict (a) the energies ε0 of the lowest three-body
bound state, obtained via the approximate BO approach (blue dots),
Eq. (19), and the exact STM integral equation (yellow diamonds),
Eq. (28). The BO approach underestimates the bound-state energies,
hence all blue dots lie below their yellow partners. With increasing
mass ratio M/m the blue dots approach the yellow ones, that is the
BO approximation becomes more accurate for larger M/m. This
behavior is further confirmed (b) by the monotonically decreasing
relative error δε0 (black squares), defined by Eq. (31).

for 87Rb–40K and 87Rb–7Li mixtures, respectively, to more
extreme values of M/m ∼= 22.2 in the case of 133Cs–6Li mix-
tures [11]. Therefore we choose this range for our analysis.

1. Energy spectrum

In Fig. 5 we display the three-body ground-state energy
ε0 obtained by the BO (blue dots) and the STM (yellow
diamonds) method as a function of the mass ratio M/m. In
addition, the relative error

δεn ≡ (
ε (BO)

n − ε�
n

)/
ε�

n (31)

is depicted as black squares for n = 0.
For both methods the energies are computed numerically

and are accurate up to 10−6. We find that our results are in ex-
cellent agreement with the values in the literature. Indeed, for
M/m = 1 we obtain ε

(BO)
0 = −2.42267 being within accuracy

of the value −2.4227 in Ref. [19], as well as ε�
0 = −2.087719,

which matches the value −2.087719 and is very close to
−2.08754 found in Refs. [18] and [45], respectively.

Likewise, we obtain the previously reported [19] error of
about 16% for the BO ground-state energy ε

(BO)
0 for M/m=1,

a regime in which the BO approximation is not expected to
provide reasonable results. Moreover, the relative error δε0

decreases monotonically with increasing mass ratio M/m and
drops below 2% for M/m ∼= 22.2, as shown in Fig. 5.

We depict in the top row of Fig. 6 the relative errors δεn

as a function of the mass ratio M/m for the lowest four
bound states (n = 0, 1, 2, 3). Excited states (n � 1) appear
with increasing mass ratio, as shown in Fig. 3. The higher
excited a state is, the larger the corresponding error gets.

This behavior can be understood from the fact that the BO
approximation involves neglecting derivatives, affecting more
strongly higher excited states as they are more oscillatory.

2. Wave functions

After comparing the energy spectra calculated within the
BO and the STM method, we now turn to the wave functions
obtained by both methods and study the fidelity [46], which
for pure states simplifies to the spatial overlap

Fn ≡
[∫∫

dX dY ψ̃ (BO)
n (X,Y )ψ̃�

n (X,Y )

]2

(32)

of the wave functions ψ̃ (BO)
n and ψ̃�

n . The BO wave function
ψ̃ (BO)

n is a product of ϕ+, Eq. (18), and φ+n, obtained from
Eq. (19), with u+ given by Eq. (17), whereas the STM wave
function ψ̃�

n , Eq. (30), is calculated directly from Eq. (26).
Both functions are evaluated numerically on the same Cheby-
shev grid introduced in Appendix B, and the computed fideli-
ties are accurate up to 10−4.

In the bottom row of Fig. 6 we present Fn for the four
lowest (n = 0, 1, 2, 3) bound states as a function of M/m. As
expected, the fidelity increases monotonically for all bound
states with increasing mass ratio M/m, that is the BO approx-
imation becomes more accurate. However, it is remarkable
that the fidelity Fn starts already from 0.988 at M/m = 1 and
reaches values up to 0.999 for M/m = 25.

Moreover, Fn does not show a clear dependence on n:
higher excited states do not always have a lower fidelity, in
contrast to the expectation that the BO approximation should
be worse for higher excited states. It is nevertheless possible
that this behavior arises for much larger values of the ratio
M/m.

3. Diagonal energy correction

We emphasize that the comparisons of the energy spectra
and of the wave functions are based on different measures.
The fidelity indicates how well a state can mimic another one
in a measurement. As for all states presented in Fig. 6 the
fidelity is almost unity, we expect in the spectrum only a small
deviation from ε�

n , if the exact state ψ̃�
n is replaced by ψ̃ (BO)

n
leading to the expression

ε̄ (BO)
n ≡

∫∫
dX dY ψ̃ (BO)

n (X,Y )Ĥψ̃ (BO)
n (X,Y ) (33)

for the mean value of the energy. Here Ĥ is the full three-body
Hamiltonian defined in Eq. (10) with f = fδ .

As shown in Appendix A 2, ε̄ (BO)
n coincides with the BO

energies including diagonal correction terms and is depicted
in Fig. 7 for the two lowest states (n = 0, 1). Compared to the
zero-order BO approximation ε (BO)

n , the deviation with respect
to ε�

n is reduced by up to an order of magnitude. Hence this
feature suggests that the major contribution to the deviation
between ε (BO)

n and ε�
n stems from the Hamiltonian itself and

not from the wave functions.

4. Summary

In summary, the BO approximation works surprisingly
well in estimating the three-body bound-state energies and
even better for the corresponding wave functions. Moreover,
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n = 0

n = 2

n = 1

n = 3

n = 1

n = 3

n = 0

n = 2

FIG. 6. Comparison between BO approximation and exact STM approach based on the relative deviation in the three-body energy spectrum
(top) together with fidelities between bound-state wave functions (bottom). For the four lowest (n = 0, 1, 2, 3) bound states, we display the
relative deviation δεn, Eq. (31), of the binding energies (top) and the fidelity Fn, Eq. (32), of the corresponding wave functions (bottom) as
a function of the mass ratio M/m. We distinguish the cases of two bosonic (a), (c) and two fermionic (b), (d) heavy particles. The relative
deviation δεn decreases monotonically from almost 20% for M/m = 1 to less than 2% for M/m = 25. Higher excited states always show a
higher deviation in the binding energy. For all states, the fidelity is increasing monotonically with increasing M/m, starting from 0.988 for
M/m = 1 up to 0.999 for M/m = 25. However, no obvious dependence on n is visible for M/m � 25. For n = 2, 3 the fidelities near mass
ratios where the corresponding three-body bound state appears are not sufficiently converged and hence omitted in the picture.

for the contact interaction, the accuracy of the BO approxima-
tion is determined solely by the mass ratio between heavy and
light particles and provides reasonable results even in the case
of equal masses.

IV. GENERAL INTERACTION POTENTIALS

So far we have only studied the case of a contact interaction
between heavy and light particles. In this section we focus
on different short-range interaction potentials and apply a

n = 1

n = 0

FIG. 7. Improved bound-state energies ε̄ (BO)
n defined by Eq. (33)

(red symbols), ε (BO)
n (blue symbols), and ε�

n (yellow symbols) as a
function of M/m. The energies are depicted by dots for the ground
state (n = 0), and by diamonds for the first (n = 1) excited state.
The deviation between ε̄ (BO)

n and ε�
n is reduced by up to an order of

magnitude compared to the result in zero order between ε (BO)
n and

ε�
n , presented in Fig. 6. For the first excited state, the red diamonds

lie on top of the yellow ones, indicating that the values including the
diagonal correction are almost indistinguishable from the exact ones.

pseudospectral method based on the roots of rational Cheby-
shev functions.

In particular, we consider a two-body system close to a
resonance and analyze the emergence of the universality in
the mass-imbalanced three-body system. In this regime we
retrieve for both the energy spectrum and the corresponding
wave functions the results obtained for the case of a contact
interaction.

A. Two-body interaction

In this section we find numerically the relation between
the two-body binding energy E (2)

g of the ground state and the
potential depth v0 for different shapes f of the interaction
potential, Eq. (2). For this purpose, we apply a pseudospectral
method [31–33] using a grid based on the roots of the rational
Chebyshev functions [47].

According to Appendix B, we represent the dimensionless
Schrödinger equation, Eq. (1), for the two-body system as a
generalized eigenvalue problem

[ − 1
2 D2 − E (2)

g 1
] 	ψ (2)

g = −v0F 	ψ (2)
g , (34)

with the generalized eigenvalue −v0 and the generalized
eigenvector 	ψ (2)

g of size N containing the values of the
function ψ (2)

g (x) evaluated at the grid points. The matrix D2
corresponds to the discretized second-order derivative and the
diagonal matrix v0F describes the interaction potential. Both
matrices of size N×N are introduced in Appendix B 1 and 1

denotes the identity matrix.
For a given two-body binding energy E (2)

g we determine the
lowest generalized eigenvalue −v0 = |v0| of Eq. (34) which
specifies the potential depth, as well as the corresponding
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FIG. 8. Asymptotic behavior of the two-body ground-state en-
ergy E (2)

g as a function of the potential depth |v0|. The energy of
a weakly bound ground state, that is |E (2)

g | 
 1, shows a quadratic
dependence on |v0| for different interaction potentials, illustrated
for the case of a Gaussian-shaped potential fG, Eq. (35), and for a
potential fL being characterized by the cube of a Lorentzian, Eq. (36),
by empty blue and filled red circles, respectively. The dashed red and
blue lines are given by Eqs. (38) and (39) accordingly, and confirm
this dependency.

generalized eigenvector 	ψ (2)
g , yielding an approximation to the

wave function ψ (2)
g (x) of the lowest state with the energy E (2)

g .
We perform this calculation for two different interaction

potentials, namely a potential

fG(x) ≡ exp(−x2) (35)

with a Gaussian shape and a potential

fL(x) ≡ 1

(1 + x2)3
(36)

being characterized by the cube of a Lorentzian.
In order to reach sufficient convergence, we use N = 2500

and numerically obtain from Eq. (34) the potential depth |v0|
as a function of |E (2)

g |, displayed in Fig. 8 by empty blue and
filled red circles corresponding to fG and fL.

In the limit |v0| → 0, the binding energy of the ground
state is approximated by the expression [48,49]

E (2)
g

∼= −1

2
v2

0

[∫
dx f (x)

]2

. (37)

From Eq. (37) we obtain for our two test potentials the
approximation ∣∣E (2)

g

∣∣ ∼= π

2
v2

0 (38)

for f = fG, and ∣∣E (2)
g

∣∣ ∼= 9
128π2v2

0 (39)

for f = fL, depicted by a dashed blue and red line in Fig. 8,
accordingly.

In the case of a contact interaction with f = fδ , Eq. (12),
the relation given by Eq. (37) not only provides an approxima-
tion, but is exact as presented in Eq. (13). The pure quadratic
dependence of the two-body binding energy on the potential
depth v0 and the fact that the contact interaction gives rise to

only a single bound state for any value v0 < 0 confirms that
the corresponding two-body system is exactly on resonance.
In the next sections we show that this unique feature has
important consequences for the respective three-body system.

B. Universal limit

We now consider the three-body problem in 1D with the
heavy-light interaction potentials having the shape f given by
Eqs. (35) and (36) and compare the results to those obtained
for the contact interaction, Eq. (12). In particular, we study the
universal limit, that is E (2)

g → 0.
Following Appendix B, we apply a pseudospectral method

based on the roots of the rational Chebyshev functions and
represent the Schrödinger equation, Eq. (3), as the eigenvalue
problem[

− αx

2
Dxx − αy

2
Dyy + v0(F+ + F−)

]
	ψ = E 	ψ (40)

for the eigenvalue E and the eigenvector 	ψ of size M
approximating the three-body wave function ψ (x, y). Here,
the matrices Dxx and Dyy of size M×M correspond to the
discretized second-order derivative with respect to x and y,
respectively. Moreover, the diagonal matrices v0F+ and v0F−
describe accordingly the interaction potentials along the lines
x + y/2 and x − y/2, as shown in Appendix B 2.

We solve the finite-dimensional eigenvalue problem,
Eq. (40), on the Data Vortex system DV206 [50] by employing
a parallelized version of the ARPACK software [51], includ-
ing an implementation of the Implicitly Restarted Arnoldi
Method [52]. In order to obtain sufficient convergence of all
energies and the corresponding wave functions, we use a grid
of size M = Nx×Ny with Nx = 512 and Ny = 256.

1. Energy spectrum

For the mass ratio M/m = 20 we present in Figs. 9(a) and
9(b) the scaled energies εn, Eq. (6), of the first four three-body
bound states (n = 0, 1, 2, 3), as a function of the two-body
binding energy |E (2)

g |. In particular, we display by empty
blue and filled red symbols the results for a Gaussian-shaped
potential fG, Eq. (35), and for a cubic Lorentzian-shaped
potential fL, Eq. (36). The values of εn corresponding to the
contact interaction fδ , Eq. (12), are independent of |E (2)

g | and
are shown by gray lines, which reflects the feature of this
interaction potential to support an exact two-body resonance.

In Fig. 9 we separate the cases of bosonic heavy particles
(a) associated with n = 0, 2 and fermionic heavy particles (b)
represented by n = 1, 3. For the interaction potentials with
the shapes fG and fL, we have used the numerically obtained
relation between the two-body binding energy E (2)

g and the
potential depth v0 presented in Fig. 8.

In the case that the two-body heavy-light subsystem is
close to a resonance, that is in the limit E (2)

g → 0, we ob-
serve a universal behavior of the scaled energies εn for all
presented three-body bound states, that is, for n = 0, 1, 2, 3.
Moreover, we point out that different states approach the
universal regime in different ways. Indeed, Figs. 9(a)
and 9(b) show clearly that the difference of the energy εn

and the corresponding universal limit for a fixed value of the
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2
0

3
1

n = 2
n = 3

n = 1

FIG. 9. Universal behavior of the 1D three-body system illustrated by the scaled three-body binding energy εn, Eq. (6) (top), and the
fidelity Fn, Eq. (41) (middle and bottom), as a function of the two-body binding energy E (2)

g for three different interaction potentials: fG,
Eq. (35) (empty blue symbols), fL, Eq. (36) (filled red symbols), and fδ , Eq. (12) (gray lines). We display the first four energies (top) and
fidelities (middle and bottom) for (a), (c) bosonic (n = 0, 2) and (b), (d) fermionic (n = 1, 3) heavy particles for the mass ratio M/m = 20.
Close to a resonance of the heavy-light system, that is for E (2)

g → 0, each energy εn and fidelity Fn with n = 0, 1, 2, 3 approaches the value
determined by the contact interaction fδ . Thus we observe for all presented states a universal behavior, independent of the shape f of the
interaction potential.

two-body binding energy E (2)
g is usually smaller in the case of

higher excited states.

2. Wave functions

Now we are in the position to compare not only the en-
ergies of the three-body bound states for different interaction
potentials, but also the corresponding wave functions. For this
purpose, we use again the fidelity

Fn ≡
[∫∫

dx dy ψn(x, y)ψ�
n (x, y)

]2

(41)

as a measure of the spatial overlap between the wave function
ψ�

n , Eq. (30), obtained for the case of a contact interaction fδ ,
Eq. (12), and the three-body wave function ψn obtained as a
solution of Eq. (40) for the interaction potential with the shape
fG and fL, respectively.

Using the relation between the potential depth v0 and the
two-body binding energy E (2)

g presented in Fig. 8 we show
in Fig. 9 the fidelities Fn for (c) bosonic and (d) fermionic
heavy particles as a function of the two-body binding energy
E (2)

g by empty blue for fG and filled red symbols for fL. The
value Fn = 1 obtained for a contact interaction for any value
|E (2)

g | is displayed by gray lines. Independent of the shape f
of the interaction potential, the fidelity Fn for n = 0, 1, 2, 3
approaches unity as E (2)

g → 0 and thus describes a perfect
overlap of ψn and ψ�

n .

As shown by Eq. (30) the coordinates of the wave function
ψ�

n are simply rescaled as E (2)
g is varied due to the scaling

property, Eq. (14), for f = fδ . Thus close to the two-body
resonance, E (2)

g → 0, the same behavior is true for the wave
function ψn, revealing again the universal limit.

3. Summary

In summary, the universal behavior of the three-body sys-
tem is shown to appear both in the scaled energies εn, Eq. (6),
as well as in the scaling of the corresponding wave functions
ψn. Moreover, we emphasize that the universal behavior man-
ifests itself for all presented three-body bound states.

V. PROOF OF UNIVERSALITY

In the preceding section we have explored the univer-
sal behavior of the three-body bound-state energies and the
corresponding wave functions for interaction potentials of
Gaussian and cubic Lorentzian shape, with the two-body
ground-state energy E (2)

g approaching zero. In this limit, we
now demonstrate the universality of the 1D three-body system
for an arbitrary mass ratio M/m and any shape of the short-
range interaction potential.

For this purpose we consider a heavy-light interaction of
shape f and recall the three-body Schrödinger equation in
integral form, given by Eq. (24). Next, we perform the substi-
tutions Z ≡ �gR′

+ = �g(X ′ + Y ′/2) on the first summand and
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Z ≡ �gR′
− = �g(X ′ − Y ′/2) on the second one, to arrive at

ψ̃ (X,Y ) = −4�g|v0|
∫∫

dX ′dZ f (Z )

× [
G(2)

ε (X − X ′,Y − 2Z/�g + 2X ′)ψ̃ (X ′, 2Z/�g − 2X ′)

+ G(2)
ε (X − X ′,Y + 2Z/�g − 2X ′)ψ̃ (X ′,−2Z/�g + 2X ′)

]
.

(42)

Here, we have used �g defined by Eq. (8). With the approx-
imate expression, Eq. (37), for the two-body binding energy,
valid in the regime E (2)

g 
 1, we obtain

ψ̃ (X,Y ) ∼= − 4∫
dZ f (Z )

∫∫
dX ′dZ f (Z )

× [
G(2)

ε (X − X ′,Y − 2Z/�g + 2X ′)ψ̃ (X ′, 2Z/�g − 2X ′)

+ G(2)
ε (X − X ′,Y + 2Z/�g − 2X ′)ψ̃ (X ′,−2Z/�g + 2X ′)

]
.

(43)

In the limit E (2)
g → 0, that is �g → ∞, G(2)

ε and ψ̃ become
independent of Z , and as a result any dependence on the
potential shape f cancels in Eq. (43). Indeed, we retrieve
Eq. (26) valid for the contact interaction, with the solutions
εn = ε�

n and ψ̃n(X,Y ) = ψ̃�
n (X,Y ), as considered in Sec. III B.

We emphasize that this is a consequence of the fact that
Eq. (37) is exact for this particular interaction potential.

As a result, these universal constants ε�
n = ε�

n (M/m) de-
pend only on the mass ratio and can be used to formulate the
relation

En
∼= 1

2
ε�

nv
2
0

[∫
dx f (x)

]2

(44)

for the three-body binding energies as a function of the two-
body interaction, valid for |v0| → 0.

Hence we have shown explicitly that all scaled energies εn,
as well as the wave functions ψ̃n, coincide with the results
for the contact interaction, for any short-range heavy-light
interaction potential of shape f , provided we approach the
two-body resonance defined by E (2)

g → 0.

VI. CONCLUSION AND OUTLOOK

In this article, we have presented a quantum mechanical
treatment of a heavy-heavy-light system confined to 1D. For a
zero-range heavy-light interaction we have studied the three-
body energy spectrum and the corresponding wave functions
using two different methods: (i) the Born-Oppenheimer ap-
proximation and (ii) the exact integral equations of Skorni-
akov and Ter-Martirosian. In addition, for finite-range inter-
actions, we have investigated the universal limit of the three-
body energies and the corresponding wave functions when the
ground-state energy of the heavy-light subsystem approaches
zero.

In particular, for the case of a contact interaction we have
explored the accuracy of the BO approximation in a regime of
experimentally feasible mass ratios and found that the error
in the energy spectrum drops rapidly from around 20% in
the case of equal masses to about 2% for rather extreme
mass ratios M/m ∼= 22.2 like in 133Cs–6Li mixtures [11]. In

TABLE I. Universal constants ε�
n for different mass ratios com-

monly used in experiments performed with ultracold atoms.

Atomic mixture (M/m)

87Rb−40K (2.2) 87Rb−7Li (12.4) 133Cs−6Li (22.2)

ε�
0 −2.1966 −2.5963 −2.7515

ε�
1 −1.0520 −1.4818 −1.6904

ε�
2 −1.1970 −1.3604

ε�
3 −1.0377 −1.1479

ε�
4 −1.0002 −1.0525

ε�
5 −1.0040

addition, the ground-state energy presented in Ref. [19] for
M/m = 1 agrees with our result.

The approximate BO wave functions are very close to the
exact ones, since for M/m = 25 the fidelity reaches values up
to 0.999. As a result, the use of the approximate BO wave
functions to calculate the mean value of the total Hamiltonian
has significantly improved the accuracy of the three-body
binding energies.

Moreover, by applying a pseudospectral method based on
the roots of rational Chebyshev functions we have obtained
the three-body energies and wave functions for the short-range
interaction potentials of Gaussian and cubic Lorentzian shape.
When the ground-state energy of the heavy-light potential
approaches zero, the universal behavior is apparent for both
potentials, that is each three-body binding energy converges
to the limit value determined by the zero-range contact inter-
action. We have also compared the associated wave functions
to the ones provided by the contact interaction and we found
that they follow a universal scaling law when the two-body
resonance is approached.

Finally, we have demonstrated for any attractive short-
range interaction that when the two-body ground-state en-
ergy approaches zero, all three-body bound states display a
universal behavior, that is they are independent of the shape
of the interaction potential. Here, we recover the results for
the contact interaction obtained within the STM approach.
Hence the three-body bound states for an arbitrary short-range
interaction on resonance can be obtained by using a zero-
range potential and applying the BO approximation, provided
the mass ratio is sufficiently large. For experimentally relevant
mass ratios, we present in Table I the universal constants
determining the three-body binding energies in the case of
weak interactions.

We conclude by raising a few interesting generalizations
of our approach. A nearly resonant excited state in the two-
body system might lead to different features compared to the
ones induced by the two-body ground state. According to
Ref. [53] in the low-energy limit the two-body scattering in
1D is crucially determined by the symmetry of the two-body
state. Based on this argument one might conclude that the
symmetry of the underlying two-body resonance determines
the universal behavior of the three-body system. It would be
interesting to analyze whether the same universal behavior
as presented in this article persists, provided an excited even
two-body bound state is almost resonant. Moreover, we
emphasize that further features might appear within a 3D
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consideration for the quasi-1D three-body system. Needless to
say these questions go beyond the scope of the present article
but will be addressed in a future publication.
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APPENDIX A: BORN-OPPENHEIMER APPROXIMATION
FOR THE THREE-BODY PROBLEM

In this Appendix we recall the main ideas of applying
[41,42] the BO approximation to the three-body problem in
the presence of a contact interaction. In particular, we derive
the relevant formulas in zero order as well as the diagonal
correction to the energy spectrum.

In the BO approach we represent the total wave function as
the product

ψ̃ (X,Y ) ≡ ϕ(X,Y )φ(Y ), (A1)

where we assign ϕ and φ to the dynamics of the light and
heavy particles, respectively.

When we apply the complete three-body Hamiltonian

Ĥ ≡ Ĥ0 − αy
∂2

∂Y 2
, (A2)

with

Ĥ0 ≡ −αx
∂2

∂X 2
− 2[δ(X + Y/2) + δ(X − Y/2)], (A3)

onto ψ̃ , we obtain

Ĥψ̃ = Ĥ0ϕφ − αyϕ
∂2

∂Y 2
φ

−αy

[(
∂2

∂Y 2
ϕ

)
+ 2

(
∂

∂Y
ϕ

)
∂

∂Y

]
φ. (A4)

So far our calculation is exact.

1. Zero-order consideration

In the zero-order approximation we neglect all derivatives
of ϕ with respect to the relative coordinate Y of the heavy
particles. This fact is emphasized by the vertical bar in the
notation ϕ(X,Y ) → ϕ(X |Y ) and suggests choosing {φ} to
be the eigenbasis of Ĥ0, summarized by the light-particle
Schrödinger equation

Ĥ0ϕ = uϕ. (A5)

We obtain the BO potential u = u(Y ) by rewriting Eq. (A5)
with Ĥ0 given by Eq. (A3) in integral form

ϕ(X |Y ) = −2
∫

dX ′ G(1)
u (X − X ′)ϕ(X ′|Y )

× [δ(X ′ + Y/2) + δ(X ′ − Y/2)], (A6)

where

G(1)
u (X ) ≡ − 1

2
√|u|αx

e−√|u|/αx |X | (A7)

is the Green function of the one-dimensional free-particle
Schrödinger equation for u < 0.

Due to the delta functions, the integration over X ′ in
Eq. (A6) can be performed immediately. By evaluating both
sides of Eq. (A6) at the points X = ±Y/2, we arrive at the
transcendental equations

e−√|u|/αx |Y | = ±(
√

|u|αx − 1) (A8)

for the BO potentials u± = u±(Y ) with the solutions

u±(Y ) = − 1

αx

[
αx

|Y |W0

(
±|Y |

αx
e−|Y |/αx

)
+ 1

]2

(A9)

in terms of the Lambert function W0 [43], and the correspond-
ing wave functions

ϕ±(X |Y ) = N±
[
e−√|u±|/αx |R−| ± e−√|u±|/αx |R+|], (A10)

where

N± = 1√
2

∣∣∣∣
√

αx

|u±| ± e−√|u±|/αx |Y |
(√

αx

|u±| + |Y |
)∣∣∣∣

− 1
2

(A11)

is a normalization factor.
The wave function φ± = φ±(Y ) is then a solution of the

Schrödinger equation[
−αy

∂2

∂Y 2
+ u±(Y )

]
φ± = ε (BO)φ±, (A12)

where the potential u± is given by Eq. (A9) and ε (BO) denotes
the three-body binding energy in the zero-order BO approxi-
mation.

2. Diagonal correction to the energy spectrum

In the zero-order BO approximation, we neglect the last
two terms in Eq. (A4). However, in order to find corrections
to these zero-order expressions, we have to consider now all
terms in Eq. (A4). In this section, we derive the diagonal
correction to the BO binding energies and find the connection
to the mean value ε̄ (BO) defined in Eq. (33).

To distinguish between the so-called diagonal and nondiag-
onal contributions, we consider Eq. (A4) with the zero-order
solutions ϕ = ϕ j, φ = φ jn, where the subscript j labels the
light-particle channels and n numbers the state in each chan-
nel. We then multiply Eq. (A4) by ϕk from the left-hand side,
perform the integration over X , and use the orthonormality of
the light-particle states ϕ j ( j, k = ±) to write∫

dX ϕkĤϕ jφ jn = ε (BO)
n δ jkφ jn + δĤjkφ jn, (A13)
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where δ jk is the Kronecker delta and

δĤjk ≡ −αy

∫
dX ϕk

∂2

∂Y 2
ϕ j − 2αy

[∫
dX ϕk

∂

∂Y
ϕ j

]
∂

∂Y
.

(A14)

Here we have used Eqs. (A5) and (A12) in order to identify
the zero-order contribution ε (BO)

n . For k = j (k �= j) we speak
of the diagonal (nondiagonal) part.

In the diagonal case, the expression for δHj j simplifies, as
the second term in Eq. (A14) vanishes,∫

dXϕ j
∂

∂Y
ϕ j = 1

2

∂

∂Y

∫
dX |ϕ j |2 = 0, (A15)

due to normalization.
In order to calculate the mean value

ε̄ (BO)
n ≡

∫∫
dX dY ψ̃ (BO)

n Ĥψ̃ (BO)
n , (A16)

defined by Eq. (33), we multiply Eq. (A4) by ψ̃ (BO)
n ≡ ϕ+φ+n

from the left, integrate over X , and use Eq. (A13) for k = j
and Eq. (A15) to arrive at

ε̄ (BO)
n = ε (BO)

n − αy

∫
dY |φ+n|2

∫
dXϕ+

∂2

∂Y 2
ϕ+. (A17)

For the mean value, Eq. (A16), only the diagonal term
(k = j) of Eq. (A14) contributes to the correction. Hence
the expression ε̄ (BO)

n given by Eq. (A17) equals the corrected
BO binding energies, if couplings between different states are
neglected, that is, if δĤjk = 0 for k �= j.

APPENDIX B: PSEUDOSPECTRAL METHODS

Pseudospectral methods [31–33] are an efficient tool to
obtain a numerical solution of an ordinary or partial differ-
ential equation. In the following, we focus only on linear
equations, where we represent the differential operators by
matrices and the unknown eigenfunctions by vectors. The
corresponding eigenvalue problem of finite size can then be
solved numerically.

Indeed, a key advantage of pseudospectral methods is the
exponential convergence of the approximate solution to the
exact one as the matrix size increases. For problems on a finite
domain, the convergence rate is usually geometric, whereas
convergence for problems on an infinite domain [31] is usually
subgeometric. However, for a given matrix size the accuracy
of the approximate solution is crucially determined by the
deployed set of basis functions. Throughout this article we
follow the suggestion of Boyd [31,47] and choose the rational
Chebyshev functions as a basis.

In Appendix B 1 we present the matrices used for a finite-
dimensional representation of a linear ordinary differential
equation of second order. A generalization of these matrices
is obtained in Appendix B 2 for the case of a linear partial
differential equation depending on two variables. Finally, we
consider in Appendix B 3 the discretization of the eigenvalue
problems analyzed in this article.

1. Matrix representation of 1D problems

We begin by reviewing matrix representations of differ-
ential operators defined on the finite domain (−1, 1), where
Chebyshev polynomials [31] are used as basis functions.
Next, we apply an algebraic map [47] and obtain a finite-
dimensional representation of these operators on the complete
real domain.

a. Finite domain

First, we consider a grid based on the roots

ηi ≡ cos

[
(2i + 1)π

2N

]
(B1)

of the Chebyshev polynomial TN = TN (η) of the first kind
with degree N and i = 0, . . . ,N − 1.

This polynomial is defined by the recurrence relation

TN (η) ≡ 2ηTN−1(η) − TN−2(η) (B2)

for N > 1 with T0(η) ≡ 1 and T1(η) ≡ η, where the argument
η is restricted to the finite interval (−1, 1).

For this grid the first-order derivative is represented [31] by
the matrix

(δ1)i, j ≡

⎧⎪⎨
⎪⎩

1
2

ηi

1−η2
i
, i = j,

(−1)(i+ j)

ηi−η j

√
1−η2

j

1−η2
i
, i �= j,

(B3)

with i, j = 0, 1, . . . ,N − 1.
Similarly, the matrix representation of the second-order

derivative reads

(δ2)i, j ≡

⎧⎪⎨
⎪⎩

η2
i(

1−η2
i

)2 − N 2−1

3
(

1−η2
i

) , i = j,

(δ1)i, j

(
ηi

1−η2
i
− 2

ηi−η j

)
, i �= j.

(B4)

b. Infinite domain

Next, we consider the variable x ∈ (−∞,∞) and extend
the previous grid to an infinite domain. For this purpose we
introduce the new grid points

xi ≡ Lηi√
1 − η2

i

(B5)

obtained from the old ones ηi given by Eq. (B1) by applying an
algebraic map [31,47]. The mapping parameter L determines
the effective size of the grid.

The grid points xi are the roots of the rational Chebyshev
functions

T BN (x) ≡ TN

(
x√

L2 + x2

)
(B6)

given in terms of the Chebyshev polynomials TN of degree N
as defined by Eq. (B2).

As a result, the discrete representation of the differential
operator d/dx is given by the matrix

D1 ≡ A · δ1 (B7)
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of size N×N where the elements of the diagonal matrix A
read

(A)i,i ≡ 1

L

(
1 − η2

i

) 3
2 . (B8)

Similarly, the discrete representation

D2 ≡ A2 · δ2 + B · δ1 (B9)

of the second-order differential operator d2/dx2 is also deter-
mined by the diagonal matrix B with elements

(B)i,i ≡ − 3

L2
ηi

(
1 − η2

i

)2
. (B10)

Additionally, a matrix representation of any function
f = f (x) is given by the diagonal matrix F of size N×N
with the elements

(F )i,i ≡ f (xi ) (B11)

obtained by evaluating f at the grid points xi.

2. Matrix representation of 2D problems

Now, we generalize our grid to accommodate a partial dif-
ferential equation depending on the two independent variables
x and y.

We introduce the grid points (xi, y j ) with

xi ≡ Lxηx,i
(
1 − η2

x,i

)−1/2
(B12)

and

y j ≡ Lyηy, j
(
1 − η2

y, j

)−1/2
, (B13)

where ηx,i ≡ ηi for i = 0, 1, . . . ,Nx − 1 and ηy, j ≡ η j for
j = 0, 1, . . . ,Ny − 1. The grid points ηi and η j are defined
by Eq. (B1) and the integers Nx and Ny denote the number of
grid points used for the variables x and y, respectively, with
the corresponding mapping parameters Lx and Ly.

The discrete representation of the partial second-order
derivative ∂2/∂x2 reads

Dxx = D2,x ⊗ 1y. (B14)

Here, the matrix D2,x ≡ D2 of the size Nx×Nx is given by
Eq. (B9), whereas 1y denotes the identity matrix of size
Ny×Ny. Thus the matrix Dxx has the size M×M with M≡
Nx · Ny.

In a similar way, the partial second-order derivative ∂2/∂y2

is represented by the M×M matrix

Dyy = 1x ⊗ D2,y, (B15)

where 1x is the identity matrix of size Nx×Nx, and the matrix
D2,y ≡ D2 of the size Ny×Ny is given by Eq. (B9).

Moreover, similar to Eq. (B11), a function depending on
the variables x and y is represented by a diagonal matrix. In
particular, the function f (x ± y/2) is given by the diagonal

matrix F± of size M×M with the elements

(F±)iNy+ j,iNy+ j ≡ f (xi ± y j/2). (B16)

3. Eigenvalue problem

Finally, we possess all ingredients to represent the sta-
tionary Schrödinger equation for the two-body and the three-
body system as an eigenvalue problem in terms of matrices
provided by a pseudospectral method being determined by the
roots of rational Chebyshev functions.

We start by discussing the two-body system described by
the 1D Schrödinger equation[

−1

2

d2

dx2
+ v0 f (x)

]
ψ (2)(x) = E (2)ψ (2)(x) (B17)

given by Eq. (1), where we have used the definition, Eq. (2),
of the interaction potential.

Using the matrices D2 and F of size N×N defined by
Eqs. (B9) and (B11), we arrive at the eigenvalue problem[ − 1

2 D2 + v0F
] 	ψ (2) = E (2) 	ψ (2) (B18)

for the eigenvector

	ψ (2) ≡ {
ψ (2)(x0), ψ (2)(x1), . . . , ψ (2)(xN−1)

}T
, (B19)

where the grid points x0, . . . , xN−1 are given by Eqs. (B1) and
(B5).

Next, we consider the three-body system governed by the
Schrödinger equation{

−αx

2

∂2

∂x2
− αy

2

∂2

∂y2
+ v0[ f (r+) + f (r−)]

}
ψ = Eψ (B20)

given by Eq. (3) with r± ≡ x ± y/2, where αx and αy are
defined by Eqs. (4) and (5), respectively.

Using Eqs. (B14), (B15), and (B16) for the matrices Dxx,

Dyy, and F± of size M×M, we obtain the eigenvalue problem[
− αx

2
Dxx − αy

2
Dyy + v0(F+ + F−)

]
	ψ = E 	ψ (B21)

for the eigenvector

	ψ ≡ {ψ (x0, y0), ψ (x0, y1), . . . , ψ (x0, yNy−1),

ψ (x1, y0), . . . , ψ (xNx−1, yNy−1)}T (B22)

determining the values of ψ (x, y) at the grid points (xi, y j )
given by Eqs. (B12) and (B13).

We emphasize that the size of the matrices used in
Eq. (B21) reduces by a factor of four when we take advantage
of the symmetries of Eq. (B20) with respect to the transfor-
mations x → −x and y → −y. In our calculations we have
made use of these symmetries and modified a method [32,54]
originally suggested to improve pseudospectral grids for polar
and spherical geometries. In this way we could reduce the size
of our matrices while keeping the same accuracy.
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