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A free electron can form a bound state with an atomic center A upon photoemission (radiative recombination).
In the presence of a neighboring atom B, such a bound state can, under certain conditions, be also formed via
resonant transfer of energy to B, with its subsequent relaxation through radiative decay (two-center dielectronic
recombination). This two-center process is very efficient in the “static” case where A and B form a weakly
bound system, dominating over single-center radiative recombination up to internuclear distances as large as
several nanometers. Here we study its dynamic variant in which recombination occurs when a beam of species
A collides with a gas of atoms B and show that, even though the average distance between A and B in collisions
is orders of magnitude larger than the typical size of a bound system, the two-center recombination can still
outperform the single-center radiative recombination.
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I. INTRODUCTION

Processes of recombination of free electrons with atomic
or molecular ions are of general interest and relevance to
various scientific disciplines [1,2]. In the case of single atomic
centers there are three basic recombination processes. First,
the electron can be captured into a bound state by emitting
a photon (radiative recombination); this process is the time-
inverse of photoionization. Second, for certain energies of the
incident electron, the recombination can proceed resonantly
via formation of an autoionizing state (time-reversed Auger
decay) which then stabilizes to a bound state through spon-
taneous radiative decay. This process is especially important
for low-charged ions. Third, an electron can be captured by an
ion transferring excess energy to another free electron (three-
body recombination); this process becomes very efficient
in high-density plasma, especially when the energy transfer
is small.

When an atom is not isolated in space but is close to an-
other atom, recombination of a free electron with one of them
can, under certain conditions, proceed—due to two-center
electron-electron interaction—via resonant energy transfer to
the other atom which afterwards stabilizes via spontaneous
radiative decay [3,4]. This process, termed two-center di-
electronic recombination (2CDR), is rather similar to the
“standard” dielectronic recombination on a single center but,
in contrast to the former, relies on the interaction between
electrons of different centers. The 2CDR can also be viewed as
a kind of three-body recombination in which an assisting free
electron is replaced by an electron bound in a heavy atomic
particle whose internal structure plays in this process a crucial
role.

It is worth mentioning that the coupling of electronic
structures at two spatially well-separated atomic centers by
long-range electromagnetic interactions can lead to a variety
of interesting phenomena. For example, interatomic electron-
electron correlations are responsible for the population inver-
sion in a He-Ne laser and the energy transfer in quantum

optical ensembles [5] or cold Rydberg gases [6]. They also
play an important role in biological systems such as Förster
resonances between chromophores [7]. Another interesting
realization of two-center electron-electron coupling is repre-
sented by a process in which the electronic excitation energy
of one of the atoms cannot be quickly released through a
forbidden (single-center) Auger decay and is instead trans-
ferred to the partner atom, resulting in its ionization (inter-
atomic Coulombic decay). Stimulated by detailed theoretical
predictions [8], this process has been observed in recent years
in various systems such as van der Waals clusters [9], rare
gas dimers [10], and water molecules [11]. Correlated elec-
tronic decay processes have also been observed in expanding
nanoplasmas which were formed by irradiating clusters with
intense laser pulses (see, e.g., Ref. [12]). In the process of
the so-called interatomic Coulombic electron capture (ICEC),
an electron is captured by one atomic center transferring
the excess energy to a neigboring atom that results in its
ionization [13].

Interatomic electron-electron correlations also drive the
process of resonant two-center photoionization (2CPI) [14] in
which ionization of a van der Waals dimer occurs via resonant
photoabsorption by one of its atoms with subsequent transfer
of excitation energy via two-center electron correlations to
another atom, leading to its ionization. This two-center ion-
ization channel can be remarkably effective, strongly domi-
nating over the usual single-center photoionization. This was
experimentally observed in Refs. [15,16].

It is known [3,4,14] that interatomic electron-electron cor-
relations can greatly enhance recombination and ionization
processes in a “static” situation in which two atomic centers
constitute a (weakly) bound system. The strength of the two-
center correlations rapidly decreases with increasing the size
of the system. Nevertheless, it has recently been shown [17]
that 2CPI can strongly dominate single-center photoionization
also in collisions, even though the average interatomic dis-
tance in collisions exceeds by orders of magnitude the typical
size of the corresponding bound system.
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FIG. 1. Two-center dielectronic recombination in atomic colli-
sions. (a) Scheme of the process. (b) Schematic representation of
space coordinates characterizing the collision.

In this paper, a dynamic variant of two-center dielectronic
recombination, which occurs in atomic collisions (see Fig. 1),
is studied. We show that although, compared to collisional
2CPI, collisional 2CDR turns out to be much less efficient,
it still can outperform single-center radiative recombination
(RR).

The paper is organized as follows. Section II is devoted
to considering two-center dielectronic recombination in slow
collisions of two atomic centers and to a derivation of formu-
las for the rates of this process. Besides, in this section we also
very briefly discuss (single-center) radiative recombination
and the collisional version of the ICEC. Section III contains
numerical results and discussion, and the main conclusions
are summarized in Sec. IV.

Atomic units (a.u.) are used throughout unless otherwise
stated.

II. THEORETICAL CONSIDERATION

A. Two-center dielectronic recombination

Let us consider recombination of an electron with atomic
center A occurring in the presence of a neighbor center, B. In
the static case of 2CDR [3] A and B are supposed to be at rest

with a fixed distance R0 between them. If the energy release in
the process of e− + A recombination is close to an excitation
energy of a dipole-allowed transition in atom B, then the
recombination can proceed by transferring—via the (long-
range) two-center electron-electron interaction—the energy
excess to atom B which, as a result, undergoes a transition
into an excited state. Afterwards, atom B can either radiatively
decay to its initial (ground) state, which means that 2CDR has
occurred, or the system can undergo two-center autoionization
with re-emission of the captured electron (the channel of
resonance electron scattering, see Ref. [4]). Due to its resonant
nature, 2CDR may enhance the rate for recombination by
orders of magnitude compared to the case when center B is
absent [3].

The state of the total system consisting of the ground state
of (e− + A) and an excited state of B is unstable. Its width
is determined by the sum of the radiative width �B

r of the
excited state of B and the width �2c−A due to two-center au-
toionization caused by the electron-electron interaction. When
the distance between A and B is not very large (�10 a.u.)
the width �2c−A begins to exceed the radiative width �B

r [14]
and has to be taken into account when considering the static
2CDR.

Suppose now that free electrons and a beam of atomic
centers A (represented by, e.g., ions or atoms) move in a
(relatively dense) gas of atoms B. As was just mentioned, two-
center recombination relies on the energy transfer resonant to
a transition in B. However, the relative motion of A and B
leads to uncertainty in electron transition energies (as they
are viewed by the collision partner), effectively broadening
them. Therefore, the efficiency of this recombination channel
is expected to be restricted to low-velocity collisions and only
such collisions, where the velocity v of A with respect to
B is much less than 1 a.u. (1 a.u. = 2.18 × 108 cm/s), are
considered here.

Even though the collision velocity is low, we shall assume
that one can still use the semiclassical approximation in
which the relative motion of the nuclei of A and B is treated
classically. According to the applicability conditions of the
semiclassical approximation (which are discussed, e.g., in
Ref. [18]), this can be safely done down to impact energies as
low as �1 eV/u (v � 0.01 a.u.). Moreover, only (very) distant
collisions are considered in which the colliding subsystems
(e− + A) and B do not overlap, the interaction between them
is rather weak, and the relative motion of their nuclei can be
approximated by straight lines.

Compared to the static case, in collisional 2CDR the role of
two-center autoionization is greatly diminished by the relative
motion of A and B. In particular, as our estimates show, even
at v � 0.01 a.u. the time T which A and B spend at those
distances, where the autoionization width �2c−A becomes
close or even exceeds the radiative width �B

r , is so short
that �2c−A T � 1 and, thus, the two-center autoionization
simply does not have enough time to unveil itself in the
collision.

Let us choose a reference frame in which B is at rest and
take the position of its nucleus as the origin. In this frame
A moves along a classical straight-line trajectory, R(t ) = b +
vt , where b = (bx, by, 0) is the impact parameter and v =
(0, 0, v) is the collision velocity (see Fig. 1 for illustration).
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The recombination process is described by the Schrödinger
equation

i
∂�(t )

∂t
= Ĥ�(t ). (1)

Here the total Hamiltonian Ĥ reads

Ĥ (t ) = ĤA + ĤB + Ĥγ + V̂AB + V̂γ , (2)

where ĤA is the Hamiltonian of the subsystem consisting of A
and an electron (initially incident and finally bound with A),
ĤB is the Hamiltonian of the free (noninteracting) atom B, and

V̂AB = r · ξ

R3(t )
− 3[r · R(t )][ξ · R(t )]

R5(t )
(3)

is the dipole-dipole interaction between (A + e−) and B. In
Eq. (3) the coordinate r refers to the electron recombining with
A and is given with respect to the nucleus of A, whereas the
coordinate ξ refers to the electron bound in B and is given
with respect to the nucleus of B [see Fig. 1(b) for illustration].
We note that the “electrostatic” approximation (3) for the
interatomic interaction can be used if the distance R is not
too large: R � c/ωtr , where c is the speed of light and ωtr is
the frequency of the virtual photon transmitting the interaction
(see, e.g., Refs. [3,14,19]).

Further, in Eq. (2) Ĥγ is the Hamiltonian of the (quantized)
radiation field and

V̂γ = 1

c
Â(ξ, t ) · p̂ξ + 1

2c2
Â

2
(ξ, t ) (4)

is the interaction of B with this field. Here, p̂ξ is the momen-
tum operator for the electron bound in atom B and

Â(ξ, t ) =
√

2πc2

Vphωk
ekλ[âkλei(k·ξ−ωkt ) + H.c.] (5)

is the vector potential of the radiation field, where k is the
wave vector, ekλ (λ = 1 and 2) are the unit polarization vectors
(ek1 · ek2 = 0, ekλ · k = 0), ωk = ck is the frequency, and Vph

is the normalization volume for the field. In what follows
the interaction V̂γ is treated in the dipole approximation, i.e.,
k · ξ ≈ 0.

The initial (�p0), intermediate (�01), and final (�00) states
of the total system—(A + e−) + B + radiation field—are
given by

�p0(ξ, ρ, t ) = φp[ρ − R(t )]e−iεptα(ρ, t )χ0(ξ)e−iε0t

× |0kλ〉 ,

�01(ξ, ρ, t ) = φ0[ρ − R(t )]e−iε0tα(ρ, t )χ1(ξ)e−iε1t

× |0kλ〉 ,

�00(ξ, ρ, t ) = φ0[ρ − R(t )]e−iε0tα(ρ, t )χ0(ξ)e−iε0t

× |1kλ〉 . (6)

Here φp is the state of the electron incident on A with an
asymptotic momentum p (as is seen in the rest frame of A),
φ0 (χ0) is the ground state of the subsystem (e− + A) (atom
B) with an energy ε0 (ε0), χ1 is the excited state of B with an

energy ε1, ρ = r + R(t ), and α(ρ, t ) = eiv·[ρ−R(t )]e−i v2

2 is the
translational factor. Finally, |0kλ〉 (|1kλ〉) represents the state

of the radiation field before (after) the spontaneous radiative
decay in B.

Using the second order of time-dependent perturbation
theory and taking into account the selection rules for dipole-
allowed transitions in atom B (�l = 1 and �m = 0 and ±1)
for the orbital (l) and magnetic (m) quantum numbers we
obtain that the transition amplitude for collisional two-center
dielectronic recombination is given by

SDR
2C =

1∑
�m=−1

SDR,�m
2C . (7)

Here,

SDR,�m
2C = 1

i2

∫ ∞

−∞
dt M�m

2 (t )
∫ t

−∞
dt ′ M�m

1 (t ′) , (8)

where M�m
1 (t ′) = 〈�01| V̂AB |�p0〉 and M�m

2 (t ) =
〈�00| V̂γ |�01〉. Integrating in Eq. (8) by parts results in

SDR,�m
2C =

√
2π

Vphωk

WB,�m
01

�B
r

2 + iδ

∫ ∞

−∞
dt M�m

1 (t )e−iδt , (9)

where WB,�m
01 = 〈χ0(ξ)| ekλ p̂ξ |χ1(ξ)〉, �B

r is the width of the
excited state χ1 due to its spontaneous radiative decay, and
δ = ε1 − ε0 − ωk .

Performing the time integration in Eq. (9), we arrive at

SDR,�m
2C =

√
23π

Vphωk

|�|
bv3

WB,�m
01

�B
r

2 + iδ

{
vK1(η)W�m

01p0(ξ⊥ · r⊥)

− |�|
b

K2(η)W�m
01p0((ξ⊥ · b)(r⊥ · b))

+ b|�|K0(η)W�m
01p0(ξzrz ) + i�K1(η)

×W�m
01p0[(ξ⊥ · b)rz + (r⊥ · b)ξz]

}
, (10)

where η = |�| b
v
, � = εp − ε0 − ωk , W�m

01p0(x) =
〈φ0(r)χ1(ξ)| x |φp(r)χ0(ξ)〉 and Kn (n = 0, 1, and 2) are
the modified Bessel functions of the second kind [20]. r⊥
(ξ⊥) is the transverse part of the coordinate r (ξ), which is
perpendicular to the collision velocity v.

The spectra of emitted photons can be calculated from the
following quantity

d3σ DR
2C

dk3 = Vph

(2π )3

∑
λ

∫ ∞

bmin

dbb
∫ 2π

0
dϕb

∣∣SDR
2C

∣∣2
, (11)

where the integrations run over the absolute value b and
the azimuthal angle ϕb of the impact parameter b and we
assume that bmin 
 1 a.u. The total number of the two-center
recombination events is proportional to

σ DR
2C =

∫
d3k

d3σ DR
2C

dk3 . (12)

One should note that since two-center recombination is a
three-body collision process (incident electron + A + B) the
quantities (11) and (12) strictly speaking are not cross sections
(how they are normally defined).

Although analytical expressions for Eqs. (11) and (12) can
be obtained for bound states φ0 and χ0 with arbitrary principal
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and orbital quantum numbers (see Ref. [21]), they in general
turn out to be quite cumbersome. Therefore, in this paper we
present results only when φ0 and χ0 are s states.

The frequency (energy) spectrum of emitted photons is
proportional to the “cross section”:

dσ DR
2C

dωk
= 1

6π

ωBωkr2
Ar2

B

v2b2
min p2

�B
r

(�B
r )2

4 + δ2
η2

m

{
sin2 ϑpK2

1 (ηm)

+ (1 + cos2 ϑp)ηmK0(ηm)K1(ηm)
}
. (13)

Here, p and ϑp are the absolute value and the po-
lar angle, respectively, of the momentum p of the inci-
dent electron, and ηm = |εp − ε0 − ωk|bmin/v. Further, rA =∫ ∞

0 drr3g0(r)gp1(r) is the radial matrix element for the transi-
tion of the incident electron into the ground state φ0, where gp1

and g0 are the radial parts of the continuum and bound states,
respectively. Similarly, rB = ∫ ∞

0 dξ ξ 3h∗
1(ξ )h0(ξ ) denotes the

radial matrix element for transitions between the ground state
and the excited state of atom B with h0 and h1 being their
radial parts.

The total cross section is obtained by integrating Eq. (13)
over the photon frequency ωk . In order to perform this integra-
tion we remark that the right-hand side of Eq. (13) contains
the factor �B

r /(δ2 + (�B
r )2/4) which varies with ωk much

more rapidly than the rest: it has a maximum at ωk = ωB =
ε1 − ε0, very quickly decreases when the detuning |ωk − ωB|
increases, and is already strongly suppressed when the detun-
ing exceeds just several �B

r ’s, whereas the other ωk-dependent
factors in Eq. (13) vary on much broader scales. By exploiting
this feature we obtain

σ DR
2C = 4π2

3

r2
B

v2b2
min

r2
A

p2
η̃2

{
sin2 ϑpK2

1 (η̃)

+ (1 + cos2 ϑp)η̃K0(η̃)K1(η̃)
}
, (14)

where η̃ = |εp − ε0 − ωB|bmin/v and r2
B can be expressed via

the radiative width �B
r of atom B according to

r2
B = 9c3

4ω3
B

�B
r . (15)

Taking into account that species A move in a gas of atoms
B, the total decay rate per unit of time for 2CDR per one
(e− + A) pair reads

RDR
2C = σ DR

2C nBv

= 3π2 nB

vb2
min

c3�B
r

ω3
B

r2
A

p2
η̃2

{
sin2 ϑpK2

1 (η̃)

+ (1 + cos2 ϑp)η̃K0(η̃)K1(η̃)
}
, (16)

where nB is the density of atoms B. The functions Kn(x) (n =
0, 1, . . .) diverge at x → 0 and decrease exponentially at x >

1 [20]. Therefore, in distant low-velocity collisions (bmin 
 1,
v � 1) the most favorable conditions for 2CDR, according to
Eq. (16), are realized when the energy of the incident electrons
is within the small interval centered at εp,r = ε0 + ωB with the
width ∼δεp ∼ v/bmin. Since the quantity v/bmin is typically
orders of magnitude larger than the natural width �B

r , we
see that the collision strongly smears out the static resonance
conditions ε0 + ωB − �B

r � εp � ε0 + ωB + �B
r , leading to a

much broader range of “quasiresonance” energies of the
incident electron.

If the incident electrons do not have a fixed momentum
p, the rate (16) should be averaged over their momentum
distribution function f (p). This, in general, can be done only
numerically.

However, a simple formula for the averaged rate, which
enables one to establish a direct correspondence with the
case of 2CDR at a fixed distance between A and B, can be
derived if we suppose the following: (i) the function f (p) can
be factorized as f (p) = fε(εp) f�(�p); and (ii) the function
fε(εp) is distributed over an energy range which covers the
interval of the quasiresonance energies, ε0 + ωB − v/bmin �
εp � ε0 + ωB + v/bmin, and is much broader than this inter-
val, with fε(εp) noticeably varying on a scale much larger
than δεp ∼ v/bmin (i.e., within the energy interval essential
for 2CDR, fε(εp) is roughly a constant). Then, taking into
account that the “width” of the continuum (i.e., the energy
range on which the quantity r2

A/p2 noticeably varies: typically
∼10 eV for atoms and ∼1 eV for negative ions) is much
larger than δεp ∼ v/bmin, we obtain that the averaged rate is
approximately given by

〈
RDR

2C

〉 = 9π4

16

nB

b3
min

�B
r c3

ω3
B

(
r2

A

p2

)
p=pr

fε(εp,r )

×
∫

d�p f�(�p)

(
1 + 1

2
sin2 ϑp

)
, (17)

where pr = √
2εp,r = √

2(ε0 + ωB). Assuming for simplicity
that all electrons are incident under the angle ϑp = π/2 and
are homogeneously distributed over the energy interval �E ,
we get

〈
RDR

2C

〉 = 33π4

25

nB

b3
min

c3

ω3
B

�B
r

�E

(
r2

A

p2

)
p=pr

. (18)

B. Single-center radiative recombination

Single-center radiative recombination is a very well-known
process, which has been studied for decades with energies of
the incident electrons ranging from below 1 eV to relativistic
values (see, e.g., Refs. [1,2,22] and references therein).

The (total) rate per unit time for radiative recombination of
the (e− + A) pair reads

RRR
1C = 4π

3

ω3
A

c3

r2
A

p2
, (19)

where p, as before, is the momentum of the incident electron,
ωA = εp − ε0 is the transition energy, and rA is the radial
matrix element (which was already defined in the previous
subsection).

If the energy of the incident electrons is not fixed one
should average the rate (19) over their energy distribution.
Assuming that the width of this distribution is much smaller
than the energy range on which the quantity r2

A/p2 noticeably
varies, we obtain that the averaged rate for RR, 〈RRR

1C 〉, simply
coincides with RRR

1C given by formula (19):

〈
RRR

1C

〉 = 4π

3

ω3
A

c3

r2
A

p2
. (20)
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C. 2CDR-to-RR ratios

The relative effectiveness of collisional 2CDR and single-
center RR can be characterized by the ratios

μ2C,1C = RDR
2C

RRR
1C

= 9π

4

nB

vb2
min

c6�B
r

ω3
A ω3

B

η̃2
{
sin2 ϑpK2

1 (η̃)

+ (1 + cos2 ϑp)η̃K0(η̃)K1(η̃)
}

(21)

and

μ2C,1C =
〈
RDR

2C

〉
〈
RRR

1C

〉
= 33π3

26

nB

b3
min

c6�B
r

ω3
Aω3

B

fε(εp,r )

×
∫

d�p f�(�p)

(
1 + 1

2
sin2 ϑp

)

= 34π3

27

nB

b3
min

c6

ω3
Aω3

B

�B
r

�E
, (22)

where in obtaining the last line of Eq. (22) it was assumed
that the electrons are incident under the angle ϑp = π/2 and
we set fε(εp,r ) = 1/�E .

D. Collisional 2CDR versus “static” 2CDR

In the case of 2CDR occurring at a fixed distance R0

between the centers A and B, the ratio of this process to the
single-center radiative recombination is given by [3]

μstatic
2C,1C � c6

R6
0ω

3
Aω3

B

�B
r

�E
. (23)

Comparing Eq. (23) with (the last line of) Eq. (22) we see
that in collisions the role of the fixed interatomic distance
R0 is overtaken by Reff = (bmin R)1/2, where R ≈ n−1/3

B is
the average distance between the atoms. Thus, the quantity
Reff plays the role of an effective interatomic distance in the
collisions.

Since for not very dense gases one has bmin � R, we
obtain that Reff � R. Due to a steep dependence of the two-
center channel on the interatomic distance, the colliding atoms
interact mainly in the vicinity of their closest rapprochement
(R ∼ b), which is much less than the averaged distance R
between them. This explains why the effective distance Reff

is strongly reduced as compared to the average distance R.
Because of the same reason the “electrostatic” form (3) of the
two-center electron-electron interaction may be used provided
bmin � c/ω.

E. Interatomic Coulombic electron capture

If we consider a three-body collision—incident electron +
A + B—in the same way as for 2CDR, but now the energy of
the incident electron is sufficient to ionize atom B, this process
is called interatomic Coulombic electron capture (ICEC). It
was already studied for the static case, in which A and B
constitute a bound system [13,23]. A detailed consideration

of this process in slow atomic collisions is given in Ref. [24]
and here we only quote our results for the total rate per unit
time REC

2C for ICEC and the ratio μEC
1C,2C between the total rates

for ICEC and single-center RR, which are given by

REC
2C = 1

211π

nB

b3
min

[5 + cos2(ϑp)]
r2

A

p2

(
r2

B

pB

)
pB=ps

(24)

and

μEC
1C,2C = REC

2C

RRR
1C

= 9π

211

(
c

ωA

)4 nB

b3
min

[5 + cos2(ϑp)]σ B
PI(ωA). (25)

Here, rB is the radial matrix element for the bound-continuum
transition in atom B, pB is the momentum of an electron emit-
ted from B, ps = √

2(ε0 + ωA), and σ B
PI is the photoionization

cross section of atom B.

III. RESULTS AND DISCUSSION

In order to illustrate our theoretical findings here we dis-
cuss the relationship between 2CDR and single-center RR for
a few collision systems.

As it follows from the consideration given in the previous
section, the results for 2CDR depend on the parameter bmin,
which is assumed to be sufficiently large but whose (exact)
magnitude cannot be strictly defined within our approach.
Estimates show that collisions with small impact parameters
from b = 0 up to several atomic units yield a very substantial
contribution to 2CDR [25]. Therefore, in order to account
for as much of the total rate as possible, we have set bmin =
5 a.u., which is close to the minimum possible value of the
impact parameter which still enables one, as estimates show,
to fulfill the main assumptions of our approach: the nuclei of
the colliding particles move along straight-line trajectories,
the electrons of the colliding (e− + A) and B subsystems
essentially do not overlap, and the interaction between these
subsystems (the two-center electron-electron interaction) can
be treated within the first order of perturbation theory.

Let us first consider the collision system (e− + K+) (|ε0| ≈
4.34 eV)–Be(2s2) (atom B) in which electron capture by cen-
ter A is accompanied by excitation of the 2s1/2 → 2p3/2 dipole
transition in Be (ωB = 5.28 eV, �B

r = 1.66 × 10−8 eV). Us-
ing Eq. (21) and choosing v = 0.01 a.u. (corresponding to
2.5 eV/u), εp = 0.938 eV, and ϑp = π/2, we obtain that
μ2C,1C � 1 if nB � 1.17 × 1014 cm−3. An atomic density of
nB = 1015 cm−3 (which is more than 4 orders of magnitude
smaller than the density of air nair ≈ 3 × 1019 cm−3 under
normal conditions) would yield a ratio of μ2C,1C ≈ 8.60.

As a second example let us take the collision system
(e− + Cs+) (|ε0| ≈ 3.89 eV)–Mg(3s2) (atom B) assuming that
the dipole transition 3s → 3p in Mg (ωB = 4.35 eV, �B

r =
3.35 × 10−7 eV) is involved. Applying Eq. (21) with v =
0.01 a.u., εp = 0.458 eV, and ϑp = π/2, we obtain μ2C,1C �
1 if nB � 4.90 × 1013 cm−3. Choosing an atomic density of
nB = 1015 cm−3 would lead to μ2C,1C ≈ 20.4 (see Fig. 2).

Finally, we consider the collision system (e− + Li+)
(|ε0| ≈ 5.39 eV)–H(1s) (atom B) in which electron capture
by Li is assisted by the dipole transition 1s → 2p in H
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FIG. 2. The ratio (21) as a function of �εp = εp − ε0 − ωB at
ϑp = π/2 for collision velocities v = 0.01 a.u. (solid line), v =
0.02 a.u. (dashed line), and v = 0.05 a.u. (dotted line) for the col-
lision system (Cs+ + e−)–Mg(3s2). bmin = 5 a.u.; nB = 1015 cm−3.

(ωB = 10.2 eV, �B
r = 7.44 × 10−6 eV). Employing Eq. (21)

with v = 0.01 a.u., εp = 4.81 eV, and ϑp = π/2, we obtain
that μ2C,1C � 1 if nB � 1.06 × 1015 cm−3. An atomic density
of nB = 3 × 1015 cm−3 yields μ2C,1C ≈ 2.85.

Thus, the 2CDR channel can dominate single-center RR
of a free electron with atomic center A for relatively low
densities of atoms B (as compared to nair). One reason for the
good performance of the 2CDR channel is that Reff � R. For
example, using bmin = 5 a.u. and nB = 1015 cm−3, we obtain
Reff ≈ 5 nm � R ≈ 100 nm.

For more insight, in Fig. 2 we show the ratio μ2C,1C given
by Eq. (21) as a function of the detuning �εp = εp − ε0 − ωB

from the resonance energy of the incident electron at a fixed
ϑp = π/2. Since the shape of μ2C,1C turns out to be very
similar for all the collision systems considered above, in Fig. 2
it is presented just for one of them, (e− + Cs+)–Mg(3s2),
for impact velocities ranging from 0.01 a.u. (2.5 eV/u) to
0.05 a.u. (62.5 eV/u). It follows from the figure that the
function μ2C,1C reaches a maximum at the position of the
resonance, εp,r = ε0 + ωB, and is roughly symmetric with
respect to this point. The maximum is rather broad: its width
is caused by the relative motion of centers A and B, and even
for the lowest velocity considered in Fig. 2 it exceeds the
corresponding radiative width �B

r (�B
r ∼ 10−7 eV) by many

orders of magnitude.
Throughout the above examples different atomic species

(e− + A) and B were considered. One should note that the
main requirement for two-center dielectronic recombination
to occur—the energy, which is released in the formation of
a bound state of the (e− + A) subsystem, should be close to
an excitation energy of B—can also be fulfilled if (e− + A)
and B are of the same species but electron capture takes place
in an excited state of the (e− + A) subsystem (for example,
the process e− + p+ + H(1s) → H(2s) + H(2p) → H(2s) +
H(1s) + h̄ωk , see Ref. [26]).

At this point one more remark can be appropriate. In
our treatment of collisional 2CDR we use bound states of
free (noninteracting) centers A and B. In distant collisions,
which are considered here, the interaction between them is
quite weak. Nevertheless, as estimates show, even in such
collisions this interaction may influence these states shifting
their energies by noticeable amounts. Since the latter ones can
be much larger than the radiative and Auger widths of B, the
neglect of them would clearly be unjustified for considering
2CDR in the static situation in which a very fine tuning
(within �B

r or �B
r + �2c−A) of the transition energies on both

centers is necessary in order to reach the highest possible
effectiveness of the two-center process [3]. However, in the
case of collisional 2CDR, the relative motion so strongly
broadens the resonance (see Fig. 2) that the neglect of the
energy shifts is not expected to have a substantial impact on
the result.

As was mentioned in the Introduction, an incident electron
can also form a bound state with an ion by interacting with
another free electron, which carries away the energy excess.
To get a rough idea about the relative effectiveness of this
process we take, as an example, electrons recombining with
protons into the ground state of hydrogen (since in this case
the data can be easily found for three-body and single-center
radiative recombination). Assuming that 2CDR occurs in
collsions with helium (atom B), we obtain that the energy of
the incident electrons is �7.6 eV and that three-body recom-
bination would outperform radiative recombination starting
with densities of the free electrons of �5 × 1017 cm−3 while
2CDR begins to dominate radiative recombination at nB ≈
3 × 1016 cm−3.

It is of interest to compare collisional 2CDR with colli-
sional 2CPI which was studied very recently in Ref. [17]. In
the static situation, where the two centers constitute a bound
system, both 2CDR and 2CPI show about the same effective-
ness compared to the single-center radiative recombination
and photoionization, respectively. It turns out, however, that
in collisions 2CDR becomes substantially less effective com-
pared to 2CPI (which at first glance might seem unexpected
since these processes can be thought of as the inverse of
each other).

The collision influences the processes of two-center re-
combination and photoionization in two main ways. First, in
collisions the effective distance between A and B is greatly
increased compared to the interatomic distance in the static
case. This equally impacts both collisional 2CDR and col-
lisional 2CPI making them less effective than their static
counterparts. Second, the relative motion of the centers A and
B effectively broadens their internal transition energies (as
they are “viewed” by the collision partner), which in general
diminishes the role of resonances (both 2CDR and 2CPI are
resonant processes).

However, since in the collisional 2CPI the source of pho-
tons is at rest with respect to resonating atoms B [17], the
relative motion of centers A and B does not affect the resonant
character of the first step of this process—the interaction
between B and the external laser field: like in the static
case, atom B acts as a very efficient “antenna”, absorbing
energy from the laser field and transferring it to the subsystem
(e− + A). Although from the “point of view” of the latter
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the transfer involves a rather broad range of energies, this
does not affect its effectiveness since transitions in (e− + A)
are between bound and continuum states and, thus, are not
resonant.

In contrast, in collisional 2CDR, its first step—the energy
transfer between the internal states of the subsystems (e− + A)
and B—is strongly affected by the relative motion. From the
point of view of atom B this motion broadens the energy
of electron transitions in (e− + A) and even at low collision
velocities this broadening is much larger than the natural
width of the excited state of B. As a result, there is a very
low probability that, for a given change εp − ε0 in the internal
energies of (e− + A), the corresponding energy transfer ωtr

to B will fit into the resonance conditions ωB − �B
r � ωtr �

ωB + �B
r for the spontaneous radiative decay of B. That is

why the two-center process studied in the present paper is less
effective compared to collisional two-center photoionization.

Let us now very briefly consider the correspondence be-
tween single-center RR and ICEC in collisions. In order to
compare these processes we need incident electron energies
which are higher than those in 2CDR since now atom B is
ionized. Taking the collision system (e− + Cs+)–Mg(3s2) and
choosing bmin = 5 a.u., v = 0.01 a.u., and εp = 3.81 eV, we
obtain that the transition frequency for the electron capture,
Cs+ + e− → Cs, is ωA = 7.70 eV, which is slightly above the
ionization threshold for Mg(3s2) (|ε0| = 7.65 eV). Then, we
can use the experimental photoionization cross section [27] to

get σ
Mg(3s2 )
PI (7.70 eV) ≈ 1.2 × 10−18 cm2. For ϑp = π/2 we

obtain μ2C,1C � 1 if nB � 5.2 × 1018 cm−3. Thus, compared
to 2CDR, an increase in the atomic density nB by more than
4 orders is necessary to make the ICEC channel compara-
ble in strength to the corresponding single-center radiative
recombination.

Such a large difference between the effectiveness of 2CDR
and ICEC is caused mainly by two reasons. One of them
(minor) is larger transition frequencies involved in the ICEC,
but the main reason is that a dipole-allowed transition from the
ground state to an excited bound state, which is characteristic

for 2CDR, may be comparable (or even exceed) in its strength
transitions from the ground state to the whole (single-electron)
continuum (we remark that ICEC involves just a tiny fraction
of this continuum).

IV. CONCLUSIONS

We have considered two-center dielectronic recombination
occurring in slow atomic collisions. Our consideration was
based on the semiclassical approximation and the first order
of perturbation theory in the interatomic interaction. Only
contributions to this process from relatively large impact
parameters were taken into account, which means that the
present results should in fact be viewed as yielding a lower
boundary for the effectiveness of this process in the collisions.

We have shown that two-center dielectronic recombina-
tion, in which the capture of an incident free electron by
center A is driven by dynamic two-center electron-electron
correlations involving quasiresonant dipole-allowed bound-
bound transitions in center B, can outperform the direct single-
center process of radiative recombination also in collisions,
provided the density of atoms B is not too low. Thus, 2CDR
can “survive” even in collisions where the mean distance
between A and B exceeds by orders of magnitude the typical
size of a bound A-B system.

Compared to the process of collisional two-center pho-
toionization [17] the process considered in the present paper
is more depreciated by the relative motion of the colliding
centers. This motion affects quite differently the resonance
conditions on which both these processes heavily rely: while
these conditions are essentially not influenced by this motion
in the case of collisional 2CPI, it does wash out the resonant
character of collisional 2CDR.
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