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Quasi-one-dimensional ultracold rigid-rotor collisions: Reactive and nonreactive cases
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We study polar alkali-metal dimer scattering in a quasi-one-dimensional geometry for both reactive and
nonreactive species. Elastic and reactive rates are computed as a function of the amplitude of a static electric
field within a purely long-range model with suitable boundary conditions at shorter range. We describe the
diatomic molecules as rigid rotors and results are compared to the fixed-dipole approximation. We show in
particular that for molecules with a sufficiently strong induced dipole moment oriented perpendicular to the
trap axis, the long-range repulsive interaction leads to the suppression of short-range processes. Such shielding
effect occurs for both reactive and nonreactive molecules, preventing two-body reactions as well as losses
due to complex-mediated processes [M. Mayle et al., Phys. Rev. A 85, 062712 (2012)] from occurring. The
present results demonstrate the possibility to suppress loss rates in current ultracold molecule experiments using
one-dimensional confinement.
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I. INTRODUCTION

Ultracold molecules have added a new twist to the field of
cold atoms [1,2]. The first groundbreaking experiments were
carried out several years ago at JILA, where a dense gas of
ultracold fermionic KRb dimers was produced by two-photon
association [3]. This molecular species is reactive, a feature
that has been explored in the context of quantum-state con-
trolled chemical reactions [4]. However, from the standpoint
of many-body studies, the reactivity of KRb is, in general, a
drawback leading to fast particle loss from the trap.

More recently, different groups have reported the pro-
duction of nonreactive ultracold alkali-metal dimers [5–10].
Such molecules, if prepared in the absolute single-particle
energy state, are strictly stable under two-body collisions.
However, there is experimental evidence that even under these
favorable conditions, inelastic losses still occur at a fast pace
[6–8,10]. This is true in particular for bosonic molecules,
whereas fermionic samples appear to be more stable [9]. A
mechanism that might explain the observed losses is related
to the existence of Fano-Feshbach resonances available with
high density at thermal energies even in an ultracold gas. The
presence of such resonances increases the collision lifetime
of a pair of molecules, creating a tetrameric complex. Such
metastable complex can be lost from the trap since it is not
necessarily trapped in the optical lattice and can undergo
recombination to deeper levels by colliding with a third
molecule, a process often referred to as “sticky collision”
[11,12]. Excitation of the complex by the trapping laser has
also been recently proposed as an alternative mechanism that
might explain the observed loss rates [13].

In order to increase the sample lifetime, it is therefore
important to devise strategies to prevent molecules from
approaching at short distances, where detrimental inelastic

processes take place. Unfortunately, in three dimensions, there
always exists an attractive head-to-tail reaction path leading to
the short range. This circumstance has been shown to result in
a strong dependence ∼d6 of the reactive rate on the induced
dipole moment d [14]. More subtle quantum effects have
been proposed to control the reaction dynamics of alkali-metal
dimers prepared in rotationally excited states [15]. Microwave
shielding leading to a dramatic lifetime increase has also been
recently theoretically studied [16,17].

The situation is different if molecules are confined in tight
traps, for instance by optical means. In fact, confinement can
then be easily designed in such a way that molecule pairs
will tend to collide in a repulsive side-to-side configuration,
the head-to-tail pathway being energetically unfavored by the
confining potential. This approach has been demonstrated
both experimentally and theoretically to lead to a drastic
increase of the lifetime of reactive polar molecules trapped
in one and two spatial dimensions [18–21].

Our previous study of reactive collisions in one-
dimensional optical tubes has addressed highly reactive
species [21]. Therein, polar molecules have been simply de-
scribed as fixed dipoles of magnitude equal to the induced
dipole moment. Resonances have been found to be strongly
quenched by inelastic processes and have no influence on
the scattering cross sections. The aim of the present work
is twofold. First, we relax the fixed-dipole approximation by
explicitly introducing the rotational degrees of freedom of the
colliding diatoms. Second, in addition to studying reactive
collisions, we introduce a model for nonreactive molecules,
in which scattering cross sections can indeed be dominated
by dense resonance spectra. We compare both reactive and
nonreactive rigid-rotor models with the fixed-dipole approxi-
mation. As a main result, we show that resonances in elastic
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cross sections and thus possibly complex-mediated collisions
can be suppressed using the dipole-dipole repulsion induced
by an applied electric field.

The paper is organized as follows. Section II intro-
duces the formalism and our numerical approach. Section III
presents the long-range multipolar expansion of the molecule-
molecule interaction. Results for different dialkali-metal
species and collision energies are presented as a function
of an applied electric field in Sec. IV. A short conclusion
summarizes this work.

II. FORMALISM

We consider two molecules A and B confined in a quasi-
one-dimensional geometry by a potential approximated as a
harmonic trap. The quadratic nature of the confining potential
allows one to separate center-of-mass and relative motion.
The rigid-rotor Hamiltonian describing the collision in rela-
tive coordinates includes the kinetic energy, the confinement
potential, and an interaction term Vint defined below in Eq. (2),
which includes intermolecular forces and the Stark interaction
energy with the external electric field. In this work, we will
describe the dimer molecules as rigid rotors, an approximation
valid as long as the intermolecular distance remains large
compared to the extent of the internal coordinates.

The kinetic energy of the dimer + dimer complex will be
decomposed into a sum of three independent terms depending,
respectively, on the relative distance R between the two
centers of mass, the internal coordinate of the dimer A, and
the internal coordinate of dimer B [22]. Furthermore, we will
assume that the dimers remain in their vibrational ground
level, reducing the dimer contribution to the kinetic energy
to a purely rotational term.

Putting all terms together, the total Hamiltonian reads

H = TR + Trot + Vtrap + Vint

= − h̄2

2μ

d2

dR2
+ �2

2μR2
+ 1

2
μω2

⊥ρ2 + BvJ2
A + BvJ2

B

+Vint (R). (1)

Here, � is the orbital angular momentum of the relative
motion, JA and JB are the angular momenta of A and B
with rotational constant Bv, ω⊥ = 2πν⊥ is the trap frequency,
and ρ is the distance to the trap axis z. We use, for each
molecule, the spectroscopically determined rotational con-
stant Bv of the ground level X 1�+; v = 0. The values and
reference of the spectroscopic study can be found in [23]. The
transverse oscillator length characterizing the trap size will be
defined as aho = √

h̄/(μω⊥). As demonstrated in three spatial
dimensions, hyperfine interactions would greatly increase the
complexity of the problem [11,12]. However, we do not expect
such added complexity to bring novel qualitative features to
the main effects that we wish to demonstrate and hyperfine
interactions will be neglected in this work.

We will now extend to rigid rotors the computational ap-
proach developed for fixed dipoles in our previous work [21].
Our method to construct the scattering wave function consists
in a simultaneous expansion of the angular part of the solution
in a suitable internal basis whereas the radial coordinate is
discretized on a grid of points. The radial discretization is

detailed in Sec. II A. The angular basis comprises the orbital
angular coordinate R̂ as well as any internal degree of freedom
of the diatomic, as described in Sec. II B.

A. Radial discretization

The radial discretization is performed according to the
spectral element approach [24,25]. Briefly, we choose a mini-
mum rc and a maximum rmax radial distance and define a solu-
tion interval I = [rc, rmax], which is in turn partitioned into a
set of N nonoverlapping sectors. A number of grid points and a
basis set of Gauss-Lobatto cardinal functions associated with
those points are assigned to each sector. The wave function
is represented on the discrete basis and continuity of the
wave function and of its radial derivative is enforced at the
connection points between sectors. This strategy results in a
highly sparse matrix in the grid indices. It should be remarked
that our method allows different angular bases to be used in
each sector. With the basis over all coordinates defined, we
can rewrite the Schrödinger equation as a linear system that
can be solved for a matrix solution � in the interval I provided
boundary conditions are assigned at the endpoints rc and rmax.

At the right endpoint, we impose � ′(rmax) = I; the matrix
solution at rmax then becomes equal to the R matrix defined
as R ≡ �(� ′)−1. From R, one can then extract the scattering
matrix and hence all physical observables such as the elastic
and reactive collision rates [18,21].

We will impose two different boundary conditions at rc.
The first assumes that at short distance, the molecules react
with unit probability. We thus require that the spherical sur-
face R = rc is totally absorbing, i.e., across the surface we
only have incoming flux and no reflected outgoing flux. In
practice, we first define local adiabatic channels |α〉 and cor-
responding energies Eα by diagonalizing the angular Hamil-
tonian Trot + Vint at distance R = rc. Next, we assume that the
wave function can be described by a pure incoming spherical
wave in each channel α for R � rc. The logarithmic derivative
Z (rc) ≡ � ′(rc)�−1(rc) is therefore diagonal with elements
(−ikα − 1

2 k′
αk−1/2

α ), where kα =
√

2μ(Ecoll − Eα )/h̄2 is the
channel wave vector and the derivative is taken with respect
to R. This method has been shown to give accurate prediction
for dialkali-metal reactive species [26].

Our second approach amounts to the Dirichlet boundary
condition � = 0, i.e., the wave function is required to have a
nodal surface for R = rc. In this description, we can observe
resonances between the incoming open channel with collision
energy Ecoll and bound levels of closed channels with energy
close to Ecoll. Since the radius rc is chosen arbitrarily and
there is a priori no reason for the wave function to have a
nodal surface for R = rc, we cannot predict the location of the
resonances in terms of the amplitude of the electric field. As
a matter of fact, the short-range collision parameters (more
precisely, the quantum defects; see [11,12]) can be considered
as stochastic variables arising from the extremely complex
four-body dynamics taking place inside rc. In this view, our
specific Dirichlet condition can be considered as one possible
realization of such complex process.

The specific value rc = 40 a0 has been chosen so to satisfy
the following criteria. First, the rigid-rotor model is expected
to be accurate in the external region R > rc. Second, motion
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is semiclassical near rc for the adsorbing model of Ref. [26]
to apply. Finally, since we are interested in resonance spectra,
the density of states near the threshold must be the same for
the Dirichlet “truncated potential” as for the full one. We have
checked that for our choice of rc, this holds true up to energies
of the order of 1 K in the case of a single deep potential well
with van der Waals tail.

The present approach can therefore be expected to give
useful insight into the collisions dynamics and it allows us to
compare, on an equal footing, different approaches, namely,
the fixed-dipole and the rigid-rotor descriptions. Finally, note
that for the sake of comparison, we will use the nonreactive
Dirichlet condition even for intrinsically reactive species such
as LiCs or LiRb.

B. Angular basis

The angular part of the wave function in the rigid-
rotor model is expanded in the so-called decoupled basis
|JAMA, JBMB, lMl〉 representation defined by the operators
J2

A, J2
B, �2 with eigenvalues h̄2JA(JA + 1), h̄2JB(JB + 1), and

h̄2l (l + 1), as well as by their projections on the laboratory
axis with eigenvalues MA, MB, and Ml . The laboratory axis
is taken as the axis of the confining optical tube. In parallel
configuration, where the electric-field axis is aligned along the
laboratory axis, the projection of the total angular momentum,
M ≡ MA + MB + Ml , is conserved, allowing us to work with
a smaller basis set. For nonparallel configurations, one has to
take into account couplings between different M due to the
electric field.

The interaction potential matrix included in Eq. (1),

Vint (R) = C3

R3
+ C6

R6
+ VStark,A + VStark,B, (2)

comprises the dipole-dipole interaction C3/R3, the van der
Waals interaction C6/R6, and the Stark term arising from the
interaction between the molecular dipoles dA,B and the electric
field. The matrix elements of C3 and C6 depend on the angular
momenta JA, JB, and l as well as their projection on the
laboratory axis. They are obtained using the Wigner-Eckart
theorem, and their expression in the space-fixed frame can
be found in [27–30]. For completeness, here we report the
expression of the dipole-dipole interaction,

〈J ′
AMAJ ′

BM ′
Bl ′M ′

l |
C3

R3
|JAMAJBMBlMl〉 = −

√
30

d2

R3

∑
m1m2

(−1)M ′
A+M ′

B+M ′
l

√
[JA][J ′

A][JB][J ′
B][l][l ′]

(
1 1 2

m1 m2 −m1 − m2

)

×
(

J ′
A 1 JA

0 0 0

)(
J ′

A 1 JA

−M ′
A m1 MA

)

×
(

J ′
B 1 JB

0 0 0

)(
J ′

B 1 JB

−M ′
B m2 MB

)(
l ′ 2 l
0 0 0

)(
l ′ 2 l

−M ′
l −m1 − m2 Ml

)
, (3)

where the common abbreviation [X ] = 2X + 1 has been used. The Stark term represents an internal interaction that acts on the
degrees of freedom of the individual molecule. The term for molecule A (B) is therefore diagonal in the quantum numbers of
molecule B (A) as well as in the orbital quantum numbers lMl . The matrix elements are given explicitly for the molecule of label
A by

〈J ′
AM ′

A|VStark,A|JAMA〉 = −E〈J ′
AM ′

A|dz,A|JAMA〉 = Ed
√

[l][l ′]
(

J ′
A 1 JA

0 0 0

)(
J ′

A 1 JA

−M ′
A 0 MA

)
(4)

in terms of the electric-field intensity E , a formally identical equation holding for B. The electronic van der Waals interaction
is, in general, anisotropic [31]. However, we have explicitly taken into account the anisotropic contribution for the study of
KRb + KRb and found it to give negligible corrections to the computed scattering observables. Therefore, only the isotropic
contribution will be included in our model.

A few additional points must be taken into consideration. First, since we focus on collisions of identical diatomics, we need
to use symmetrized wave functions,

∣∣�JAMAJBMBlMl

〉 =
∣∣JAMAJBMBlMl

〉 + (−1)l |JBMBJAMAlMl〉√
2
(
1 + δJAJBδMAMB

) . (5)

For the perpendicular electric-field configuration, the Hamiltonian is also symmetric with respect to reflection across the plane
orthogonal to the trap axis and containing the origin. We can construct a symmetrized wave function,

∣∣�ε
JAMAJBMBlMl

〉 =
∣∣�JAMAJBMBlMl

〉 + (−1)ε+MA+MB+Ml
∣∣�JA−MAJB−MBl−Ml

〉
√

2
(
1 + δMA0δMB0δMl 0

) . (6)

Last, while the decoupled basis is useful in the weak electric-
field regime, for higher amplitudes, different J levels are heav-
ily mixed by the field, and the system is better described in a

dressed basis set [32,33]. To obtain this basis, we numerically
diagonalize, for each field amplitude, the diatomic potential
BvJ2

X + VStark,X (X = A, B). We thus get the eigenfunctions
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|J̃M̃J〉 = ∑
J αJ |JMJ〉, which are in turn combined into the

tetrameric wave function |J̃AM̃AJ̃BM̃BlMl〉. In order to com-
pute the total potential matrix, we first evaluate the matrix
elements in the decoupled basis and then we numerically
evaluate

〈J̃ ′
AJ̃ ′

Bl ′|H |J̃AJ̃Bl〉 =
∑

JAJBJ ′
AJ ′

B

αJAαJBαJ ′
A
αJ ′

B
〈J ′

AJ ′
Bl ′|H |JAJBl〉,

(7)

where the magnetic quantum numbers have been suppressed
for notational convenience.

The rigid-rotor description is only used between R = 40 a0,
chosen as the rc boundary value in this work, and R = 200 a0.
For intermediate distances above R = 200 a0, the dipole-
dipole interaction between different rotational level is weak
compared to the energy gap of those level. One can thus focus
on the rotational ground level with J̃A = 0 and J̃B = 0, using
perturbation theory to take into account excited levels; see
Sec. III. Spherical harmonics |lMl〉 are still used to represent
orbital motion.

Finally, in the long-range domain, typically R > 104 a0,
the cylindrical confining potential of the two-dimensional trap
overcomes the molecule-molecule interaction, limiting R̂ to
a small angular region around the pole. A development in
spherical harmonics becomes increasingly inefficient and we
use cylindrical grid basis functions projected on the spherical
surface that stay localized near the pole as R varies. As an
order of magnitude, a few-hundred spherical harmonics are
needed to enforce continuity at the connection point between
the intermediate and the long-range regions.

We will compare the rates obtained with the current ap-
proach to results from our previous model where fixed dipoles
were used instead of rigid rotors [21]. In the latter, the inter-
action between the molecule in its rotational ground level and
the Stark field is described as a point particle with a given in-
duced permanent dipole moment. All rotational effects factor
into a unique C6 long-range coefficient. The total angular wave
function is expanded on a basis of orbital spherical harmonics
and the Hamiltonian only contains the orbital kinetic energy,
the confinement potential, and the interaction potential Vint.
Such point-particle model is equivalent to our intermediate-
range rigid-rotor model, where we include only the rotational
ground state, though the correction to the C6 coefficient needs
to be taken the same in both models; see Sec. III.

III. INDUCED DIPOLE MOMENT INTERACTION

Some care must be taken in the definition of the C6 matrix
coefficient in order to have a correct description of the van der
Waals interaction. Two different approaches are used in this
work.

In the first one, used for the intermediate-range domain or
for the point-particle model, excited rotational states are not
explicitly included in the basis. Resulting from a second-order
perturbation treatment, the C6 coefficient is thus written as
a sum over all excited rotational, vibrational, and electronic
levels of both molecules. Following Refs. [23,34], the C6

can be decomposed into the sum of two contributions, i.e.,
a term Ce

6 including the electronic transitions contribution and

one Cr
6 including the rotational transition contribution. Pure

vibrational transitions as well as cross terms have been shown
to be negligible [23]. Values of the Ce

6 are taken from [23].
The Cr

6 term is described in more detail in Sec. III A.
In the second approach, used for the short-range domain,

the rotational states are explicitly included in the basis. The
second-order term is thus coming only from the electronic
transitions Ce

6. An additional corrective term is, however,
needed to prevent the appearance of unphysical levels; see
Sec. III B.

As mentioned above, in both cases, the Ce
6 is taken as a

purely isotropic term.

A. Rotational transition contribution

Due to the competition between the electric field and
the rotational Hamiltonian, the rotational spectrum is heavily
perturbed. A field-free Cr

6 value would thus not be appropriate
[35].

In more detail, the expression of the rotational
contribution is

Cr
6 =

∑
(J̃A,J̃B )
=(̃0,̃0)

|〈J̃A, J̃B|dA · dB |̃0, 0̃〉|2
�EA + �EB

, (8)

with �EA (�EB) being the energy difference between the
ground and the excited JA (JB) level. Dependence on the
space-fixed projections MA and MB of the excited rotational
levels is omitted in the formula for ease of reading. For
the field-free case, J̃ ≡ J , and the only nonzero transition is
from J = 0 to J = 1. We then obtain the expression for two
identical molecules,

Cr
6 (E = 0) = d4

perm

4Bv

, (9)

with dperm the permanent dipole moment of the diatomic,
expressed in its own molecular frame.

To obtain more accurate results for the collision rate, we
compute an improved Cr

6 value using Eq. (8) at each electric-
field amplitude. We note that for a nonzero field, the heteronu-
clear molecules present an induced permanent dipole moment
in the laboratory frame. In this case, the contribution of
matrix elements such as 〈̃0, 1̃|dA · dB |̃0, 0̃〉 is non-negligible.
Those transition terms with one molecule in the ground level
and the other in an excited one are related to the induction
interaction Cind

6 , while the remaining transitions involving two
rotationally excited molecules added to the electronic Ce

6 form
the dispersion coefficient Cdisp

6 .
Rotational contributions have been shown to be small for

heteronuclear molecules LiNa and KRb due to their weak
permanent dipole moment [23]. However, for a molecule such
as LiCs, they are by far the dominant term. In Fig. 1, we show
the difference in C6 coefficients for LiCs-LiCs interactions de-
pending on the model used. Calculations were performed with
a single Ce

6 term, a fixed field-free C6 term, a field-dependent
Cdisp

6 term, and, finally, a field-dependent Cdisp
6 + Cind

6 term.
At weak fields, the difference between the values obtained at
the different levels of approximation is small and the collision
rate is essentially the same for each model. At higher fields,
the dominant term is the C3 dipole-dipole interaction and
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FIG. 1. Upper panel : van der Waals C6 coefficient for LiCs-LiCs
interaction. The electric field is parallel to the trap axis. Four different
models were used: an electronic Ce

6 (full line at 7407 a.u.) added to
a rotational field-free Cr

6 term (dashed line) or a field-dependent Cr
6

(dot-dashed line) added to the induction coefficient Cind
6 (solid line).

Lower panel : elastic collision rate at Ecoll = 50 nK imposing the
Dirichlet boundary condition at short range computed for van der
Waals coefficient Cr

6 (solid line) or Cr
6 + Cind

6 (dashed line).

modifications of the C6 coefficient have no major impact on
our results. However, the C6 interaction is still relevant at short
intermolecular distances.

The bottom panel in Fig. 1 shows the elastic collision
rate computed using model potentials built with and without
the induction interaction. Calculations are performed at low
collision energy with the Dirichlet boundary condition at short
range, such that scattering is purely elastic. The calculated
collision rate presents several resonant features associated to
the presence of quasibound states. The origin of these features
will be discussed in more detail in Sec. IV. It is, however,
important to remark here, as apparent from the figure, that
their density at large electric fields is severely underestimated
if one omits the induction interaction.

B. Unphysical states

When neglecting the rotation in the point-particle model,
we still need to compute a corrective C6 term, which means
that the modification of the rotational structure must be taken
into account in the model in second-order perturbation theory.
In a similar fashion, the use of the rigid-rotor basis mentioned
in Sec. II B leads to unphysical states if no correction is
made [36,37]. Indeed, due to computational limitations, one
has to truncate the basis, neglecting all the levels with J̃ >

J̃max. In particular, all of the coupling matrix elements of the
type 〈J̃ ′

AJ̃ ′
Bl ′|V |J̃AJ̃Bl〉 with either J ′

A or J ′
B above the angular

momenta J̃max are cut off. Rotational levels with J = J̃max are
the most affected by this truncation [36,37]. To reduce the
effect of this approximation on the ground state, and thus on
the collision rate, one can simply increase the size of the basis.

Another approach is to use second-order perturbation the-
ory. In this approximation, the omitted couplings are assumed

to be a perturbation to the levels included in our basis, giving
rise to a corrective term Vcorr to be added to the Hamiltonian.
This term is diagonal with matrix elements

〈J̃AJ̃Bl|Vcorr|J̃AJ̃Bl〉 =
∑

J̃ ′
AJ̃ ′

B>J̃

|〈J̃ ′
AJ̃ ′

Bl|V |J̃AJ̃Bl〉|2
�EA + �EB

, (10)

where the sum is over every level above the cutoff angular
momentum and V is the dominant coupling term, i.e., the
dipole-dipole interaction C3/R3 in our case. The square of the
matrix element on the right-hand side leads to a R−6 correction
to the C6 coefficient. In this work, we take J̃max equal to either
1 or 2, and the sum is carried out up to J̃ = 7. The energy gap
�E is taken as the diatomic energy gap, thus neglecting the
molecule-molecule interaction.

IV. RESULTS

We perform calculations for different bosonic species un-
der various trapping conditions, collision energy, and electric
field. Table I resumes the relevant characteristic physical
parameters relevant for our calculations. The van der Waals
length ā = (2μC6/h̄2)1/4/2 given in the table represents the
average scattering length for collisions in a pure C6/R6 poten-
tial and can be interpreted as the range of such potential [38].
Here we focus on an intermediate confinement regime, which
we define following Ref. [39] as aho ≈ 10 ā. The collision
energy of the identical heteronuclear molecules will be fixed
in most calculations to 50 nK. With reference to the table,
one can remark that for a heavy molecule such as LiCs, such
collision energy can be considered as “hot” in terms of the
trap level spacing. In fact, the gap with the first-excited energy
level of the transverse harmonic oscillator is only slightly
larger than twice the collision energy.

We first consider the configuration where the electric field
is parallel to the confinement axis. In this case, molecules tend
to be in attractive head-to-tail configuration and to react at the
cutoff radius rc.

This intuitive picture is confirmed by the analysis of the
adiabatic potentials, obtained by diagonalizing the total in-
teraction potential at each value of the interparticle distance
R. Note that at parallel configuration, the projection of the
orbital angular momentum on the trap axis is conserved and
it has been fixed to Ml = 0. One can observe in Fig. 2 that
the lowest adiabatic curve, the one that to first approximation
controls the dynamics, presents no potential barrier preventing
the molecules from reaching the short-range reactive region.
On the converse, the more excited adiabatic potentials present,
at short range ∼50a0, a barrier arising from the centrifugal
potential. The rotational degrees of freedom correspond to the
excited thresholds ∼GHz in the leftmost panel of Fig. 2. Each
rotational manifold presents, in turn, a finer energy structure
due to the transverse harmonic trap levels with equal spacing
hν⊥; see rightmost panel of Fig. 2.

Coming to the dynamics, we find that for the universal
reactive model, the effect of the rotationally closed channel
is minor. In fact, as shown in the upper panel of Fig. 3,
the elastic collision rates computed within the rigid-rotor and
the fixed-dipole models are essentially identified. The differ-
ence is more pronounced when taking the Dirichlet boundary
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TABLE I. Relevant numerical parameters used in our calculation, as defined in the text. The reference collision energy Ecoll is 50 nK. Two
confinement strengths, intermediate and strong, are indicated for the LiRb dimer. Numbers in square brackets indicate the power of 10.

ā (units of a0) aho (units of a0) ν⊥ (kHz) Ecoll/h̄ωperp dperm (a.u.) Bv (GHz) [23]

39K 87 Rb 117 955 10 1.6[-2] 0.242 1.13
7Li 39 K 224 2236 5 3.3[-2] 1.410 7.69
7Li 87 Rb 325 2473 2 8.3[-2] 1.645 6.46
Strong 341 100 1.6[-3]
7Li 133 Cs 497 6408 0.2 8.3[-1] 2.201 5.62
23Na 87 Rb 355 2286 2 8.3[-2] 1.304 2.09

condition, as illustrated in the lower panel. When the scatter-
ing phase crosses a multiple of π , a broad zero crossing is
observed in both the rigid-rotor and the fixed-dipole calcula-
tions. This happens near 2500 V/cm in both models, with a
relative shift of a few-hundred V/cm. A second zero occurs
near 5000 V/cm. By analogy with the Ramsauer-Townsend
effect, which occurs as a function of collision energy, in the
following we will briefly refer to such zeros as Ramsauer
minima.

Most importantly, for rigid-rotor collisions, we observe
resonance effects, manifesting themselves as a series of nar-
row features superimposed to the slowly varying background.
As in the case of atoms, such resonances can, in principle, be
used to control the dimer-dimer scattering properties through
an applied field. In this work, we do not attempt a precise
resonance assignment, which would require, for instance,
quasi-bound-state or reduced adiabatic calculations. However,
the fact that such resonances are absent in the fixed-dipole
calculation strongly suggests that the ones in the figure are
of rotational origin, i.e., they can be assigned to some po-
tential curve correlating with rotationally excited molecules.
A related study of true (as opposed to quasi-)bound states of
molecules in a quasi-1D geometry can be found in [40].
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FIG. 2. Adiabatic potential curves for a KRb + KRb system in
the presence of a static electric field of 5 kV/cm parallel to the
trap axis. Left panel: the short-range intermolecular-distance domain;
right panel: the intermediate-range distance domain. Transition from
a dipolar-dominated system to a 1D confined system is indicated
by the “ridge” visible at intermediate distances in the right panel.
Electric field of 5 kV/cm is parallel to the trap axis.

We now focus on a system where the electric field is
perpendicular to the trap axis. It can be expected that in this
configuration and with a strong enough induced permanent
dipole moment, the diatomic molecules will repel each other
at long range [39] and can be protected against short-range
reactive collisions. Figure 4 shows the elastic and reactive
collision rates for LiK molecules calculated with the fully
absorbing boundary condition. Results obtained in the fixed-
dipole approximation are virtually indistinguishable from the
rigid-rotor model and are not shown. In particular, the reac-
tive rate is suppressed by about three orders of magnitude
in the considered range of E , confirming that the shielding
phenomenon is robust versus rotation. Also note from the
figure that the elastic rate presents a much more pronounced
minimum in the elastic cross section as compared to KRb.
This happens since, due to the small magnitude of the reactive
rate for large electric field, LiK collisions are essentially elas-
tic and the minimum is not quenched by inelastic processes as
happens for KRb.

Not all molecules have indeed sufficiently strong dipole
moment and thus dipole-dipole repulsion to suppress reactive
processes. In general, molecules with a large intrinsic dipole
moment and a small rotational constant are more polarizable,
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FIG. 3. Elastic collisions rate between two KRb molecules, de-
scribed as rigid rotor (solid line) or fixed dipole (dashed line), in a
quasi-1D geometry as a function of the amplitude of the electric field,
oriented parallel to the trap axis. (a) Rates computed with a unitary
loss at short range. (b) Rates computed using the Dirichlet boundary
condition.
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FIG. 4. Reactive (solid line) and elastic (dashed line) collisions
rate between two LiRb molecules in a quasi-1D geometry as a
function of the amplitude of the electric field, oriented perpendicular
to the trap axis. Results are for a rigid-rotor model, indistinguishable
on the figure scale from the ones for fixed dipoles (not shown).

the induced electric dipole in the laboratory frame is larger,
and thus the shielding is more effective in these systems for
a given electric field. To confirm this trend, we have carried
out sample calculations with the trapping parameters from
Table I corresponding to intermediate confinement and found
that the only molecules not having a strong enough permanent
dipole moment to obtain significant shielding effects are LiNa
and KRb.

We now consider nonreactive species, taking the NaRb
dimer as an example. The long-range adiabatic curves of
the NaRb-NaRb tetrameric taken for different amplitudes
of the static electric field are shown in Fig. 5. Each adia-
batic potential correlates asymptotically with an energy level
hν⊥(n + 1) of the isotropic transverse harmonic oscillator
with principal quantum number n and degeneracy (n + 1).
At shorter distance, the dipolar interaction becomes signif-
icant and breaks the isotropy of the oscillator. The dipo-
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FIG. 5. Adiabatic potential curves for a NaRb + NaRb system.
Left panel: with a weak static electric field of 0.5 kV/cm; middle
panel: with a field of 1 kV/cm; and right panel: with a strong field of
5 kV/cm.
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FIG. 6. Elastic collision rate for NaRb + NaRb collisions as a
function of the amplitude of the electric field, perpendicular to the
trap axis. Collision energy is (a) 50 and (b) 600 nK. The Dirichlet
boundary condition is imposed at short range.

lar interaction contributes, for instance, an energy of d2/R3

for molecules oscillating in the plane perpendicular to the
dipoles and d2/R3[1 − 3 cos2(θ )] for molecules in the plane
containing the dipoles and the trap axis, with θ the an-
gle between R and d. This anisotropy leads to the lift-
ing of the asymptotic degeneracy clearly visible in the
three panels of the figure as the intermolecular distance
decreases.

Moreover, as expected at perpendicular configuration, a
barrier to reaction is formed in the lowest adiabatic poten-
tial as the amplitude of the field increases. To experience a
significant short-range dynamics, the molecules would need
to tunnel through this barrier, which, for instance, at 5 kV/cm
has height of 510 nK; see rightmost panel of Fig. 5. Under this
field-induced shield, it is interesting to compare the dynamics
of a collision with a collision energy well below the maximum
of the barrier (50 nK), and slightly over the top of the adiabatic
potential barrier (600 nK).

Figure 6 shows the results of calculations performed with
the Dirichlet boundary condition. With reference to Fig. 6(a),
one may once again remark a Ramsauer minimum near
1200 kV/cm at the lowest considered collision energy. The
minimum shifts at larger electric fields, outside the range of
Fig. 6(b), at larger collision energy. In fact, quite generally, a
potential has less influence on faster particles and, in order
to have the accumulated phase shift go through π , larger
values of E are needed. The main scattering feature is the
dense spectrum of overlapping resonances observed at both
considered collision energies. Such resonances arise from
the coupling between the incoming channel and the closed
channels, either correlating with the trap or with rotationally
excited level.

The resonances observed in both panels of Fig. 6 have
positions essentially independent of collision energy, as ex-
pected since a collision energy of the order of nK is essentially
negligible on the scale of the Stark shift, −dE . Note, how-
ever, that both the line shape and the resonance widths vary
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FIG. 7. Same as Fig. 6, but for LiRb + LiRb collisions. Solid
red lines correspond to the rigid-rotor model; black dashed lines
correspond to the fixed-dipole one. Collision energy is (a) 50 and
(b) 500 nK. Plot is for transverse confinement ν⊥ = 2 kHz and
Dirichlet boundary condition.

significantly between the two panels of Fig. 6. Most im-
portantly, at low collision energy [Fig. 6(b)], resonance ef-
fects tend to be washed out in particular at strong fields,
say above E ∼ 2000 kV/cm, since the adiabatic barrier be-
comes increasingly high and broad. In other terms, the pres-
ence of the barrier tends to keep the molecules far apart
and prevents resonance effects, which are due to a short-
range coupling between the open and the closed collision
channels, from occurring. At larger collision energy bar-
rier tunneling is more effective and resonances only be-
gin to disappear near the upper limit of the figure, E ∼
5000 kV/cm.

As conjectured in [11,12], resonant population of dense
quasibound states increases the collision lifetime along with
the probability of loss of the untrapped complex and of inelas-
tic recombination via collision with a third body. These phe-
nomena are suspected to be a significant limiting mechanism
to the lifetime of ultracold quantum gases [6–8]. According
to the present results, resonances can be suppressed in 1D ge-
ometries. Confinement combined with a strong static electric
field and low temperatures should thus allow one to shield
nonreactive molecules from complex-mediated collisions in
addition to shielding reactive molecules.

In order to confirm such conclusion on a different molecu-
lar species, we consider a nonreactive LiRb model; see Fig. 7.
As for NaRb, at the smaller collision energy of Fig. 7(a),
the resonance width strongly decreases with E , resonances
first tend to become nonoverlapping, and their influence on
the background cross section finally vanishes. The presence
of a Ramsauer minimum, its shift, and the behavior of the
resonance width with increasing collision energy [Fig. 7(b)]
follow the same trend observed in NaRb.

Figure 7 also shows an interesting comparison with the
fixed-dipole approximation. Note that as expected, the den-
sity of resonant features is larger for the rigid-rotor model
due to the additional rotational degrees of freedom of the
dimers. However, the density of resonances observed in the
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FIG. 8. Elastic collision rate for LiRb + LiRb collisions as a
function of the electric-field amplitude for the rigid-rotor model. Plot
is for tight transverse confinement with ν⊥ = 100 kHz and Dirichlet
boundary condition.

fixed-dipole model, thus purely due to trap confinement and
tuned via the Stark energy shift, is significant in this system.
Shielding becomes otherwise effective at comparable values
of the electric field at each considered collision energy. It is
worthwhile to compare Fig. 7(a) with Fig. 4, both referring to
the same molecular system and physical parameters, but with
different (nonreactive vs reactive) boundary conditions. Such
comparison makes clear the fact that the scattering rate for the
reactive LiRb model in Fig. 4 presents virtually no structure,
not due to the absence of electrically tuned quasibound states,
but rather because resonance effects are strongly quenched by
fast reactive decay.

Let us finally consider the effect of confinement. On phys-
ical grounds, for dipoles perpendicular to the axis, stronger
transverse confinement should further help preventing parti-
cles from approaching. In fact, dipoles in side-by-side con-
figuration repel and can only get close by moving away from
the trap axis towards an attractive head-to-tail configuration.
In terms of adiabatic potentials, this means that the barrier in
the lowest adiabatic curve will be stronger at a given electric
field for a more confining than for a looser harmonic trap.

This picture is confirmed by Fig. 8, which shows the elastic
collision rate for a nonreactive LiRb + LiRb collision model
in a strong confinement regime. The resonance spectrum
appears relatively sparse even at relatively low electric fields,
meaning again that coupling between the open channel and
quasibound states is weak since particles are prevented from
reaching the short-range coupling region. This result extends
to nonreactive systems the conclusion of Ref. [39], which
demonstrated within the fixed-dipole approximation a more
marked suppression of reactive processes occurring in tight
traps. As expected, inclusion of rotation does not seem to
change this general conclusion that basically depends on the
presence of a potential barrier formed at long range, in a
region where the fixed-dipole approximation is an excellent
one.

Overall, it seems possible to find conditions for stabiliz-
ing the gas against inelastic processes of both reactive and
complex-mediated nature to the extent that a suitable balance
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between low temperatures, confinement, and electric-field
intensity is found.

V. CONCLUSIONS

We have presented a rigid-rotor model to study identical
polar molecule collisions in a quasi-1D optical trap. Collisions
of reactive molecules in the rotational ground state are well
described in the fixed-dipole approximation. The present cal-
culation confirms that for sufficiently strong induced dipole
moments, electrostatic repulsion between dipoles perpendic-
ular to the trap axis leads to suppression of the reactive rates.
For nonreactive molecules, the rotational degrees of freedom
result in an increased density of Fano-Feshbach resonances.
We demonstrate that the resonance widths decrease and reso-
nance spectra dramatically decongest for increasing induced
electric dipole moment of the molecules. This effect could

be exploited to decrease the collision lifetime and possibly
to suppress harmful processes due to the formation of an
intermediate long-lived complex.

In perspective, it can also be interesting to model ex-
periments where collision dynamics has been studied in the
presence of an additional optical lattice along the axis of the
tube [20]. This computational task could be accomplished, for
instance, by combining the present 3D solution strategy and
the asymptotic reference Bloch functions constructed in [41].
The effect of hyperfine interactions could also be included in
the model to various levels of approximation.
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