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Optimal supercritical potentials for the electron-positron pair-creation rate
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We examine the steady-state electron-positron pair-creation rate for supercritical electric potentials with
arbitrary spatial dependence. The numerical optimization algorithms predict that the set of external fields that
can maximize the production rate for positrons with a given energy take nontrivial spatial shapes. We explain
the underlying physical mechanisms based on a simple analytical model that exploits resonances among the
negative energy eigenstates of the Dirac Hamiltonian. The results are rather encouraging from an experimental
perspective as they suggest that one does not require unachievable infinitely large fields to maximize the possible
pair-creation yield. In fact, in many cases smaller electric fields lead surprisingly to larger yields for given
energy ranges.
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I. INTRODUCTION

The possibility to use superstrong external electric or elec-
tromagnetic fields to break down the vacuum state and to
generate electron-positron pairs is one of the most interesting
predictions of quantum electrodynamics [1–5]. It is a fasci-
nating topic of fundamental interest and experimental work to
develop high-powered laser systems to confirm this predicted
process is presently underway in several laboratories world-
wide [6]. It therefore seems obvious that explorations of the
optimal space-time profile of the external field to maximize
the final particle yield deserve some special attention. The
ultimate goal would be to develop a computational algorithm
(likely based on infinite-dimensional optimization) to identify
the best parameter regime to maximize the particle yield in
a given energy range. Some first progress to this goal was
recently reported by Kohlfürst et al. [7,8] and Hebenstreit and
Fillion-Gourdeau [9], who suggested for the first time that
the computational framework of the optimal control theory
can be utilized to construct the optimal temporal dependence
of those subgroups of parametrized external fields that are
constant in space. These studies were based on the opti-
mization of a few parameters but were recently generalized
[10] to allow for arbitrary temporal fields, corresponding to
an infinite-dimensional parameter space. In this work, we
examine the opposite limit, in which the external field is
constant in time, but we construct the optimal spatial profile to
maximize the steady-state pair-creation rate for particles in a
given energy range. These two optimization goals rely on two
entirely different pair-creation mechanisms. In the spatially
homogeneous case, the electric field’s amplitude does not
have to be supercritical as the creation mechanism here is
based on multi-photon transitions from the initially occupied
Dirac sea to positive energy solutions of the Dirac equation
[11–14]. In the temporally homogeneous case, the spatial field
has to be supercritical, leading to an energy degeneracy as
necessary, for example, in the Schwinger decay mechanism

of the vacuum [15], which can be interpreted as a tunneling
process [16].

Based on recent progress in algorithmic developments
[17–24] it has now become possible to extend our knowledge
obtained from the finite-dimensional optimization to the more
general case of infinite-dimensional optimization. So far, the
permitted variation of the external field was described by only
two or three parameters, that severely restricted the possible
space [25] or time dependence of the external fields.

In this work we apply infinite-dimensional optimization for
the spatial dependence of the external field. The preliminary
results are surprising and also encouraging. Contrary to what
one could have expected from the work with temporal fields,
the maximal pair-creation yield is not necessarily associated
with singular and technically unachievable limiting cases
(such as infinitely narrow fields of infinite amplitudes or
infinite energy). In other words, one does not even require any
artificial constraints to the search algorithms to avoid these
technically undesirable solutions.

The article is organized as follows. In Sec. II we summarize
briefly the theoretical framework of the Dirac equation and
provide references to prior work about the computational
optimization. In Sec. III we provide the spatial shapes of
the external fields that optimize the pair-creation yield for
a fixed positron energy. In Sec. IV we examine a physical
picture based on negaton-quasiresonances that can explain
the amplification mechanism. We also introduce a simple
two-step model potential that can capture the basic idea of the
found amplification mechanism and provides a fully analytical
access to the optimization problem. In Sec. V we generalize
the prior finding to examine external fields that can optimize
the total yield of particles in the entire energy range for the
two-step potential. In Sec. VI we return to the numerical
infinite-dimensional optimization and construct the spatial
form of the optimum potential that maximizes the total yield.
In Sec. VII we complete the discussion with challenges that
can be addressed in future works.
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II. OPTIMIZATION ALGORITHM AND THE
COMPUTATIONAL IMPLEMENTATION

In this work we calculate the long-time creation rate �(E )
for electron-positron pairs with a desired energy E from the
energy eigenstates of the Dirac Hamiltonian. In one spa-
tial dimension (and in atomic units) [26] it takes the form
H = cσ1 p + c2σ3 + V (x), where we assume the coupling to
a positron with charge q = +1 a.u.; p is the momentum
operator and σ1 and σ3 denote the 2 × 2 Pauli matrices. In
the external field approximation, the interaction of the vacuum
state with the supercritical external potential is given by V (x).
For simplicity, we assume that the potential is supercritical
and therefore fulfills V (x → −∞) = V0 with V0 > 2c2 and
V (x → ∞) = 0.

Following the traditional picture introduced by Dirac, the
vacuum is described in this formalism by fully occupied nega-
ton [27] states, which are the eigenstates of H0 = cσ1 p + c2σ3

with a negative energy less than −c2. In this model system,
the supercritical height V0 can lift the energy of these negaton
states for x → −∞ to positive values (>c2). If these incoming
states are transmitted to the right-hand side (x → ∞) (where
the potential is zero), then these states change their spinor
structure (characteristic of negative energy states of H0) to
the one that is characteristic of positive energy eigenstates.
Equivalently, the electric field vector associated with V (x)
points on average to the right side. As a result, the created
positrons (electrons) are ejected to x → ∞ (–�) by this
force field. The sum of the total probabilities of the (right
traveling) transmitted states is 1 minus the vacuum persistence
probability. The latter is minimized in this work. Even though
it is in principle different and has different units, this quantity
can be related to the steady-state particle production rate,
which can be computed in quantum electrodynamics in a
number of ways [28].

More quantitively, Hund conjectured in 1941 [29] that
the field theoretical pair-creation rate per energy �(E ) in
the steady state can be computed directly from the quantum
mechanical transmission coefficient T (E ) associated with the
same potential V (x), i.e., �(E ) = T (E )/(2π ). A rigid mathe-
matical proof for Hund’s conjecture and more details about the
supercritical pair creation can be found in Ref. [30]. In con-
trast to the unlimited transmission coefficient for the Klein-
Gordon equation (see Refs. [31–33]), the coefficient T (E )
for the Hermitian Dirac Hamiltonian is bound between 0 and
1. This means automatically that the resulting pair-creation
rate for any positron energy E and any potential V (x) cannot
exceed the theoretical upper limit of �lim(E ) = 1/(2π ). For a
better interpretation of the data, we purposely separate in our
notation the cofactor (2π ) in �(E ). The total rate, defined as
the energy integral γ ≡ ∫

dE�(E ), where c2 < E < V0−c2,
is therefore also naturally bound; i.e., γlim ≡ (V0−2c2)/(2π ).
It has the units of inverse time, while �(E ) = dγ /dE has
naturally the units of inverse time and inverse energy.

Unfortunately, there are only a very small number of
external potentials known (Sauter potential [34] or step-
wise potentials [35]; see below), for which the poten-
tial V (x) can be mapped analytically to the corresponding
pair-creation rate (or equivalently the transmission coeffi-
cient). To determine this rate for potentials with arbitrary

spatial shape, numerical methods need to be employed in
general.

In this work, we have used techniques such as the iterative
QTBM [36] and time-dependent wave-packet scattering meth-
ods [37] to guarantee consistent and accurate final data. The
acronym QTBM represents the quantum transmission bound-
ary method, which was originally introduced based on the
finite difference approximation of the stationary Schrödinger
equation on an equidistant grid to simulate electron trans-
port in resonant tunneling diodes. We have generalized it to
compute the transmission coefficient for the stationary Dirac
equation.

The functional mapping of the potential V (x) to the corre-
sponding rate is given by the functional � = �{V (x)}. This is
the key relationship for the optimization program. In order to
construct an optimal potential Vopt (x) that leads to a maximum
pair-creation rate �opt (E ) for a specified positron energy, we
have used the steepest ascent [38] and conjugate gradient
methods based on Fletcher and Reeves [39] and Polak and
Ribiere [40].

In short, in these iterative schemes one starts with an
initial guess for V (0)(x), such as the smoothed step function
given by the Sauter potential V (0)(x) = V0[1− tanh(x/w)]/2.
This corresponds to an initial transmission rate �(0)(E ) for
a given E . The algorithm determines then numerically the
functional gradient S(0)(x) ≡ δ�(E )/δV (x) for this particular
potential V (0)(x), which then acts as a new search direction
to find an improved V (1)(x), leading to a larger rate de-
noted by �(1)(E ). This is accomplished via a line-search � =
�{V (0)(x) + αS(0)(x)} where the search parameter α is con-
structed to maximize �. The resulting new potential V (1)(x) =
V (0)(x) + αS(0)(x) serves as the improved potential. This
scheme is then repeated until the iteration has converged and
V (x) associated with the largest possible rate � is obtained.

As the QTBM method is less CPU time consuming than
the time-dependent wave-packet scattering method, we have
used it in the optimization algorithm to compute �. However,
in order to examine the accuracy and reliability of this method,
we have also employed the slower time-dependent scatter-
ing method, which does require the calculation of the wave
function.

In our particular case, we found that the algorithm’s con-
vergence rate can be increased significantly if the functional
derivative is multiplied at each iteration step by a Gaussian
window function W (x) centered at x = 0. This spatial re-
striction on the gradient also automatically guaranteed that
the potential V (x) for large positive and negative values of x
was not modified, as required by the given boundaries V (x →
−∞) = V0 and V (x → ∞) = 0.

Let us now illustrate the rapid convergence of this iterative
scheme. We start with an initial guess of the potential given by
V (x) = V0[1− tanh(x/w)]/2 with amplitude V0 = 2.5c2 and
spatial turn-on width w = 0.3/c. In this case, there are also
analytically available expressions for the rate [37] that predict
� = 0.272/(2π ) for energy E = 1.25c2, which is exactly in
the middle of the permitted energy range (c2 < E < c2−V0)
of the created positrons, sometimes also called the Klein
window.

The spatial axis was discretized between x = −0.05 a.u.

and x = 0.05 a.u. into N = 2000 grid points. The algorithm
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FIG. 1. The first five potentials V (n)(x) to optimize iteratively
the pair-creation rate �(E ) for potentials with asymptotic potential
height V (x → −∞) = V0 = 2.5c2 and E = 1.25c2. The initial po-
tential was chosen as V (0)(x) = V0[1− tanh(x/w)] with w = 0.3/c,
leading to a starting value of �(0) = 0.27/(2π ). The spatial axis
was discretized along 2000 grid points with an equidistant spacing
�x = 5 × 10−5. As a window function for the functional gradient we
used W (x) = exp[−(x/0.01)2]. In the inset we display the monotonic
growth of the associated pair-creation rate �(n)(E ) as a function of
the number of iterations n. After only four iterations it becomes very
close to its upper theoretically permitted value shown by the dashed
line �lim(E ) = 1/(2π ).

determined the functional derivative δ�(E )/δV (x) at each
of these points. This derivative was then multiplied with
the Gaussian window function, given here by W (x) =
exp[−(x/0.01)2]. In Fig. 1 we show the initial Sauter potential
and the corresponding sequence of the first four iterated po-
tentials V (n)(x). For n � 4 the spatial profile is converged. In
the inset of the figure we show the sequence of improvements
to the rate �(n). Consistent with the data for V (n)(x), we
see that in only about four iterations the rate grows from
� = 0.272/(2π ) to nearly 0.9996/(2π ), which is remarkably
close to �lim.

We should finish this section with a brief computational
note. From a technical point of view, the infinite-dimensional
optimization was realized via the simultaneous optimization
of N = 2000 independently adjustable parameters. In our
case, these parameters were given the magnitudes of the
potential at each of the 2000 spatial grid points. We found that
this number was sufficiently large to provide numerically con-
verged data while at the same time permitting us to perform
the calculations on a Dell PowerEdge R815 system (which
has four processors with 16 cores each) within a reasonable
CPU time and computer memory. The CPU time associ-
ated with the Fletcher-Reeves based conjugate gradient algo-
rithm scales quadratically with the number of required grid
points N .

III. COMPUTATIONAL RESULTS FOR
THE OPTIMUM FIELDS

We should note that the chosen width of the Gaussian win-
dow function determines that spatial range (centered around
x = 0), in which the potential can be modified by the opti-
mization algorithm. We observed that for a smaller window
width the algorithm converged to other potential shapes, that

were qualitatively similar to the optimal shown in Fig. 1, but
they developed peaks that were narrower and had a much
larger amplitude. It is therefore clear that for a given positron
energy E there can be several optimum potentials that can lead
to a large positron production rate. As all of these potentials
predict a value very close to the upper limit,�lim = 1/(2π ),
the question whether there exists a single global maximum
in this infinite-dimensional landscape of functions V (x) is
solely of mathematical interest and has not much practical
relevance.

The result displayed in Fig. 1 for the optimum V (x) leading
nearly to the upper limit of �lim(E ) = 0.999/(2π ) is inter-
esting. One could have expected that the maximum rate �opt

might be associated with a potential V (x) for which the related
electric field [proportional to −V ′(x)] is largest. This would
be given by the abrupt step function V (x) = V0θ (−x), where
θ (x) ≡ (1 + x/|x|)/2. This expectation is also suggested by
the traditional tunneling picture for the Schwinger process,
according to which the negatons have to tunnel through the
potential step from the left to the right. If this transition region
is spatially too extended (i.e., significantly longer than the
positron’s Compton wavelength ∼1/c), then the transmission
(pair-creation rate) is usually negligible. This argument cer-
tainly would favor the abrupt potential step to be the best
candidate for the largest pair creation.

For this abrupt step [Vstep(x) = V0θ (−x)] one can derive
analytically the largest rate (which in this case is always asso-
ciated with the middle energy E = V0/2) to be �(E ) = (1 −
4c4/V0

2)/(2π ). For our parameter V0 = 2.5c2, this would
amount to �(E ) = 0.36/(2π ), which consistently exceeds the
value �(E ) = 0.272/(2π ) obtained for the smoother Sauter
potential (with w = 0.3/c). However, the optimization code
did not at all evolve the initial smooth Sauter potential into the
expected much sharper function Vstep(x). In fact, the optimum
potential is very smooth and has developed a semioscillatory
structure, which then leads to a nearly perfect rate close to
�lim, which is about three times larger than the upper limit
0.36/(2π ) provided by the step potential for V0 = 2.5c2.

In order to examine also other positron energies, we have
shown in Fig. 2(a) three potentials, optimized for the chosen
energy E = 1.05c2, 1.25c2, and 1.45c2 and in Fig. 2(b) the
corresponding energy dependence of the rate. Quite remark-
ably, the potential optimized for 1.25c2 leads not only to a rate
close to the theoretical upper limit �lim for E = 1.25c2, but
also a large rate for a wide range of other energies. In fact, for
all energies 1.04c2 < E < 1.46c2 (which is almost the entire
Klein range) we find that the rate �(E ) stays above 0.95/(2π ).
It might therefore be a perfect candidate to optimize also
the total rate γ . (We will further discuss this in Sec. VI
below).

The comparison of the data for E = 1.05c2 and E =
1.45c2 reveals an interesting but expected symmetry of Vopt(E )
as well as of the corresponding rate �(E ). This is related
to charge conjugation symmetry between the electronic and
positronic formulation of the Hamiltonian. Any potential V (x)
for a given positron energy E leads to exactly the same pair-
creation rate � as its “partner” potential Vp(x) = −V (−x) +
V0 and energy Ep = V0−E . As a result, the rates also have the
symmetry �p(E ) = �(V0−E ) as confirmed by the dotted and
dashed graphs in Fig. 2(b). From now on we can therefore
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FIG. 2. (a) The spatial profile of three potentials that optimize
the pair-creation rate for positrons for chosen final energies E1 =
1.05c2, E2 = 1.25c2, and E3 = 1.45c2. They are denoted by V1,opt (x),
V2,opt (x), and V3,opt (x). (b) The general dependence of the pair-
creation rate � as a function of the energy, calculated for the three
optimal potentials Vn,opt (x) with n = 1, 2, 3 as shown in (a) [for
V0 = 2.5c2].

restrict our analysis without any loss of generality to positron
energies in the smaller range V0/2 < E < V0−c2.

IV. EXPLANATION AND THE MODELING OF THE
YIELD AMPLIFICATION MECHANISM

While the complicated optimization algorithm can provide
us with numerical information about the possible spatial
shapes for the optimal potentials Vopt(x), it would be worth-
while to accompany these purely computational findings also
with a better understanding of the underlying physical am-
plification mechanisms. The numerical analysis provided us
with four main findings. First, all data that we have examined
for rather wide parameter ranges consistently revealed the
development of at least one “bump” on the left side (x < 0) of
all optimum potentials. Second, the amplitude of these bumps
increased with a decrease of their spatial width. Third, the
optimum rate is very close to �lim and can be achieved for
a given energy with potentials that are of f inite magnitude.
Fourth, there is a wide variety of potentials that can lead to
the near perfect rate. In this section, we will show that all
four of these findings can be explained qualitatively by using
a simplified model potential.

In order to crudely model this functional form, we have
approximated V (x) by a simple two-step potential, for which
we can even obtain a fully analytical mapping from V (x)
to the pair-creation rate �(E ). This crude two-step potential
is characterized by only two parameters, V and d . It is
given by V (x) ≡ V0 for x < −d , V (x) ≡ V for −d < x < 0,
and V (x) ≡ 0 for 0 < x. To better resemble the parameters
studied in Secs. II and III, we fixed V0 at 2.5c2 and examine
V0 < V . For this potential (and 2c2 < V ), one can construct
analytically the corresponding stationary energy eigenstate for
a positive energy E by matching the analytical solution at
the boundaries at x = −d and x = 0 based on the continuity
equation. The resulting analytical expression for the pair-
creation rate �(E ,V, d ) is given by

2π�(E ,V, d ) = 4c4 pq0q1
2/(N1 + N2), (4.1a)

where

N1 ≡ c2q1
2[(E − c2)

1/2
(E0 − c2)

1/2 + (E + c2)
1/2

(E0 + c2)
1/2 + c2]2cos2(q1d ),

N2 ≡ {E1[(E + c2)
1/2

(E0 − c2)
1/2 + (E − c2)

1/2
(E0 + c2)

1/2 + c2]

+c2[(E + c2)
1/2

(E0 − c2)
1/2 − (E − c2)

1/2
(E0 + c2)

1/2
]}2sin2(q1d ), (4.1b)

and where the three momenta are p(E ) ≡
(E2 − c4)1/2/c, q1(E ) ≡ [(V − E )2 − c4]1/2/c, and
q0(E ) ≡ [(V0 − E )2 − c4]1/2/c, and the relevant shifted
energies are E0 ≡ V0 − E and E1 ≡ V − E .

In Fig. 3 we display this solution �(E ) for V0 = 2.5c2,
d = 1/c, and E = 1.25c2 as a function of the “bump” strength
V . This potential V (x,V, d ) leads to an—at first—rather un-
expected behavior of the rate. For example, the rate for V =
3.23c2 amounts to �(E ) = 0.73/(2π ). This value obviously
exceeds the transmission for both the two single-step poten-
tials with height V0 = 2.5c2 [leading to �(E ) = 0.36/(2π )]
and even V0 = 3.23c2 [leading to �(E ) = 0.62/(2π )]. This
means that the extra (finite!) bump with amplitude V = 3.23c2

for −d < x < 0 and V0 for x < −d can amplify the pair-
creation rate significantly. This is also fully consistent with
the more general data shown in Fig. 2(b).

It is also quite remarkable that the transmission does
not increase steadily with V ; in fact, for E = 1.25c2 and
d = 1/c there are other optima for the finite values close
to V1 = 6.1c2, 9.2c2, 12.3c2, . . .. This suggests that a res-
onance mechanism might be responsible for the amplifica-
tion. The spatial region between two boundaries at x = −d
and x = 0 could act as some kind of “cavity,” in which
states with specific wavelengths that fulfill (n − 1/2)λn =
2d (for n = 1, 2, 3, . . .) naturally could in principle
resonate.
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FIG. 3. The pair-creation rate �(E ) associated with the model
two-step potential V (x,V, d ) as a function of the “bump” strength
V for E = 1.25c2 and for d = 1/c. The six arrows indicate the
predicted values of Vmax and Vmin according to the resonance con-
dition. The two dashed lines are the envelope solutions according to
Eqs. (4.3a) and (4.3b).

We note that this resonance condition for the negaton states
should not be confused with the nonrelativistic transmission
resonance of quantum mechanical scattering with an attrac-
tive well of length d . There a phase shift of π occurs at
one of the two boundaries. In this one-dimensional analog
of the well-known Ramsauer-Townsend effect the directly
reflected and the (after one round trip of length 2d) reflected
waves interfere destructively, leading to the perfect transmis-
sion. Correspondingly, in that case the resonance condition
is nλn = 2d (for n = 1, 2, 3, . . .), which are precisely the
wavelengths for which the negaton transmission is minimal.
This is quite interesting, as the negaton states between −d <

x < 0 move faster (as |q1(E )| > |q0(E )|) than the incoming
negatons for x < −d , which (for usual positive energy states)
is characteristic of an attractive well (for −d < x < 0).

For a positron energy E , the associated wavelength is λ =
2π/q1(E ) = 2πc[(V − E )2 − c4]−1/2. For a fixed E and d we
can solve this expression for V and we find that the resonant
potentials take the values

Vmax = E + [(n − 1/2)(πc/d )2 + c4]1/2, (4.2a)

Vmin = E + [(mπc/d )2 + c4]1/2. (4.2b)

For the second equation we have assumed for the wave-
lengths mλm = 2d (for m = 1, 2, . . .) such that the pair-
creation yield takes a minimum value. We have marked the
predicted locations according to Eqs. (4.2a) and (4.2b) for
m and n = 1, 2, 3 by the six arrows in Fig. 3. Except for
the n = 1 peak, the agreement is excellent for all n and m
values, which shows that this “resonance” mechanism for the
wavelength of the negaton states captures indeed the basic
characteristics of the amplification and attenuation processes.

On the other hand, we can also use Eqs. (4.1a) and (4.1b)
to examine the V dependence of the envelope of the maximum
(and also minimum) pair-creation rates at those “resonances,”
assuming that d was chosen to fulfill the two types of res-
onance conditions, such that either the cosine or the sine
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FIG. 4. The envelope solution �max(E ,V ) according to
Eqs. (4.3a) and (4.3b) for three positron energies E = 1.3c2, 1.4c2,
and 1.48c2. The arrows point to the locations Vopt where the V leads
to the perfect (largest theoretically obtainable) pair-creation yield,
� = �lim.

function in Eq. (4.1b) vanishes. We therefore obtain

(2π )�max(E ,V ) = 4c4 pq0q1
2/N2, (4.3a)

where N2≡{(E1+c2)[(E + c2)1/2(E0 − c2)1/2 + (E − c2)1/2

(E0 + c2)1/2] + E1c2}2. Similarly, for completeness, we men-
tion the corresponding envelope curve for the minima,

(2π )�min(E ,V ) = 4c2 pq0/N1, (4.3b)

where N1 ≡ [(E − c2)1/2(E0 − c2)1/2+(E+c2)1/2(E0+c2)1/2

+ c2]2. As here the q1 dependence in the expression for
�min(E ) cancels out and it therefore no longer depends on V ;
the formula is identical to the � for a single step with height
V0. The dashed lines in Fig. 3 display the upper and lower
envelopes.

In Fig. 4 we examine the upper envelope function
�max(E ,V ) for the optimum rates for three positron energies
E = 1.3c2, 1.4c2, and 1.48c2 according to Eqs. (4.3a) and
(4.3b). It turns out that if the positron energy is in the range
V0/2 < E < V0 − c2 it is always possible to find a particular
(finite!) height V (and its width d), such that the pair-creation
rate is equal to its theoretically largest possible value �lim. For
better graphical visibility we have marked these locations Vlim

(12.4c2, 4.7c2, and 3.1c2) with the three arrows.
This value for Vlim can be found from the solution

Eqs. (4.3a) and (4.3b) if we equate �max to 1/(2π ) and solve it
numerically for Vlim. In Fig. 5 we show the behavior of Vlim as
a function of the positron energy. For E = 1.5c2 it approaches
Vlim = V0, whereas for E → 1.25c2 we have Vlim → ∞. We
also show the corresponding smallest possible value dlim at
resonance. As d enters the expression for � as an argument
of a trigonometric function, � is always a periodic function of
d . But here we focus on the most interesting case with n = 1,
meaning we examine the smallest value for d .

While the case Vlim → ∞ and d → 0 for E = 1.25c2 is
expected, the other limit is quite remarkable. For Vlim → 2.5c2

and d → ∞ we can actually maintain the perfect rate �lim.
This does not seem to make sense at first as in this limit
Vlim is identical to the fixed value of V0(=2.5c2) for x < −d ,
such that in this case the resulting V (x) becomes simply a
single-step potential, i.e., V (x) = V0(1 − x/|x|)/2. For this
easy potential, an analytical solution for �(E ) is available,
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FIG. 5. The perfect amplitude Vlim of the potential bump for
−d < x < 0 as a function of the positron energy E , which leads to a
perfect (largest theoretically obtainable) pair-creation yield given by
�lim.

which clearly predicts only � = 0 for largest possible energy
E = 1.5c2. This means that the two limits of the independent
parameters V → 2.5c2 and d → ∞ do not commute and the
order in which they are performed is crucial. It determines
which of the two extremum values [0 or 1/(2π )] the pair-
creation rate actually takes. This ambiguity is formally re-
flected in the solution of Eqs. (4.1a) and (4.1b), where the
undetermined product q1d occurs in the argument of the two
trigonometric functions. The limit V → 2.5c2 corresponds to
q1 → 0 while d → ∞. Only if this product is assumed to
approach zero, do we obtain � = 0.

We have omitted an analysis for the positron energies in
the lower-energy range c2 < E < V0/2. Due to the charge
conjugation symmetry discussed in Sec. III, the same general
conclusions hold also for the lower-energy half of the Klein
tunneling regime.

V. OPTIMIZATION OF THE TOTAL YIELD
FOR THE MODEL POTENTIAL

Despite its simple form and being characterized by only
two parameters (V and d), the two-step potential discussed
in Sec. IV seems to capture the basic features of those more

general potentials obtained via an infinite-dimensional opti-
mization algorithm. In fact, for any given positron energy, it is
always possible to find finite values for V and d to bring the
pair-creation value close to the theoretical upper limit �lim(E ).
It therefore seems justified to continue to examine this poten-
tial also with regard to the optimization of the total rate for
all positron energies, defined as γ = ∫

dE�(E ). This rate is
naturally also bound from above by γlim ≡ (V0−2c2)/(2π ) as
shown in Sec. II. It is interesting to examine how close γopt,
associated with the optimum parameters V and d , can come
to γlim. While for a given energy E the limit �lim(E ) could be
achieved with a finite bump height V , it is not clear at all if
γopt can be accomplished similarly with finite parameters.

To have two reference values for γ , we note that a single-
step potential with V0 = 2.5c2 leads to γ = 2743/(2π ) which
is 71% off from the maximal theoretically possible value
γlim = 9389/(2π ). A single-step potential would theoretically
require a gigantic height V0 > 74c2 such that the associated γ

is more than 99% of the corresponding limiting value γlim for
this V0.

In Fig. 6 we have graphed the total pair-creation rate
γ (V, d ) as a function of the two-step potential with param-
eters V and d . In the numerical range examined, the largest
value is about γopt = 8197/(2π ), which for V0 = 2.5c2 is
only 13% less than the maximal theoretically possible value
[γlim = 9389/(2π )]. This is quite encouraging as it suggests
that simple potential shapes can be chosen to bring the total
pair production rate close to its upper limit. One could have
expected the oscillatory dependence of �(E ) on V and d
to be washed out when we integrate � over all energies
(frequencies); however, the interesting oscillatory structure in
γ (V, d ) shows that this is not true. As the heights along the
ring-shaped ridges seem to remain close to γopt, there is an
infinite manifold of two-step potentials that can optimize the
total rate γ .

The location of the sequence of the ridges γridge(d,V ) in
the (d,V ) plane can be easily derived, if we assume that the
most relevant energy E is the center one of the Klein interval,
i.e., Ec ≡ V0/2, and use this central value for the resonance-

�

(a) (b)

FIG. 6. (a) The total pair-creation rate γ = ∫
dE�(E ) obtained for the two-step potential characterized by a “bump” amplitude V and

a bump size d . (b) The corresponding contour plot together with the black dashed lines, given by d = (n−1/2)πc[(V −E )2 − c4]−1/2 for
n = 1, 2 . . . 9.
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FIG. 7. The magnitude of the pair-creation rate γ = ∫
dE�(E )

along the first six ridges as a function of the potentials “bump” height
V for the first six ridges.

like condition q1(Ec)d = (n − 1/2)π . It follows immediately
that the ridges (indexed by the integer n) are located on
hyperbolas, i.e.,

d = (n − 1/2)πc[(V − E )2 − c4]−1/2. (5.1)

The predicted hyperbolas were superimposed with the
dashed lines on the contour plots shown in Fig. 6(b). The
agreement with the actual ridges is superb confirming the
relevance of the central energy Ec for γridge.

In order to find the absolute maximum value along these
ridges, we have replaced this particular energy dependence of
E in d in γ = ∫

dE�(E ) and graphed the ridge height as a
function of V in Fig. 7 for the first six ridges. While all of
these three graphs seem to converge to the same final value
for V → ∞, this limiting value, however, is approached rather
rapidly. This means that while in principle an infinite value of
V is required to reach the precise optimum pair-creation rate
γ , a very close value can already be accomplished with finite
values V .

VI. MOST EFFICIENT POTENTIAL Vopt (x) BASED
ON INFINITE-DIMENSIONAL OPTIMIZATION

In this section we show that the major findings based
on the simple two-step potential are of relevance even for
the most general space of arbitrary potentials V (x), that are
only constrained by the required boundary condition, V (x →
−∞) = V0 and V (x → ∞) = 0.

From a computational perspective, the same computational
methodology that was used to construct the optimal potential
for a given positron energy E can be exploited to calculate
V (x) that maximizes the total yield. In the required functional
mapping of the potential V (x) to the corresponding rate γ =∫

dE�(E ) we have discretized the energy space between the
two limits E = c2 and E = V0−c2 into 200 discrete energies
and replaced the integration by a discrete sum (trapezoidal
rule) over all energies. As the integrand �(E ) turned out to
be not very oscillatory, simulations with 100 and 200 energies
led to the same result. As the functional gradient needed to be
computed numerically for each of the 2000 spatial grid points,
due to this energy summation, the required CPU to maximize
γ was 200 times longer than required for �(E ).

-1

0

1

2

-0.03 -0.02 -0.01 0 0.01 0.03

V
    

 (x)/c2
opt

x [a.u.]

V       for E = V  /2opt 0

V       for c2≤E≤V –c2
opt 0

FIG. 8. The optimal potential Vopt that maximizes the total
electron-positron pair-creation rate γ = ∫

dE�(E ) for all energies
in the range c2 < E < V0 − c2, with V0 = 2.5c2. For comparison, we
repeat by the dashed line the corresponding potential that optimizes
the rate �(E ) for the specific energy E = 1.25c2.

In Fig. 8 we present the optimal potential Vopt (x) for
V0 = 2.5c2. It shows a striking similarity to the corresponding
potential that maximized the rate for the single energy E =
1.25c2, which is exactly halfway in the Klein range. This
finding is not so completely unexpected as we have noted in
Fig. 2(a) already a certain commonality among the amplitudes
and spatial shapes of the potentials Vopt (x) that optimized the
rates � for three rather different energies within the Klein
range.

This finding is also fully consistent with the recently re-
ported superposition principle for the simultaneous optimiza-
tion (SPSO) for collective responses [41]. In this case, the dy-
namics of sets of independent systems were examined, which
were simultaneously coupled to the same time-dependent
external force. Using optimal control theory, it was shown
that the most efficient temporal pulse shape for this force that
can maximize simultaneously the collective response of these
systems can be related to the individual forces that would
optimize each system separately.

In this sense, the present system confirms qualitatively that
the SPSO, which was originally derived only for temporal
systems, can likely be generalized to spatial optimizations as
well. But, of course, more detailed studies are required.

We should finish with a note about the magnitude of the
total pair-creation rate γ associated with the optimal potential.
We calculated the numerical value γopt = 9083/(2π ), which
is only 3.26% less than the upper limit of the maximal
theoretically possible value [γlim = 9389/(2π )]. We should
point out that the derivation of γlim assumed that T (E ) =
1/(2π ) for the entire Klein range of all energies. However,
the numerically found (best possible realizable choice of the)
potential shows that for any finite V0 (such as V0 = 2.5c2 as
in our case), the assumption of an energy-independent �(E )
is not realizable by any potential. In fact, one can show that
at the smallest and largest positron energies we usually have
vanishing rates; i.e., �(E = c2) = �(E = V0−c2) = 0. This
means that the present numerical data obtained for Vopt (x)
suggest that the true (and actually achievable) largest rate is
not γlim but actually γopt, which still exceeds the rate from a
simple step potential [γ = 2743/(2π )] by 71%.
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VII. SUMMARY AND OPEN QUESTIONS

Complementary to recent studies in which the temporal
profiles of spatially homogeneous electric field pulses were
optimized [7–10], in this work we have examined fields that
are temporally constant but vary in space. For a single-step
potential, given, for example, by Sauter’s tanh potential, the
theoretically maximum pair-creation rate �lim can be reached
only in the technically unachievable limit of V0 → ∞. How-
ever, with an alternative spatial profile one can obtain this
desirable upper limit for a finite potential height. We view
this exciting observation as the most important finding of
this infinite-dimensional optimization. There is also a clear
message for the distribution in the corresponding electric
field configuration. The steady-state pair-creation rate can
apparently be amplified significantly if the field energy is not
necessarily concentrated onto a small domain in space. It is
more advisable to distribute this energy along several spatial
domains in order to achieve the advantageous resonance con-
ditions. This conclusion even holds if the total pair-creation
rate (for all positron energies) needs to be maximized.

In view of the extremely short timescales of the order of
10−21 s that are characteristic of the pair-creation process,
this steady field assumption might not be so unphysical as
the experimental fields might vary temporally on signifi-
cantly longer timescales, such that the steady-state situation
assumed in this work could be reasonable. However, as the
pair-creation process can be triggered simultaneously by the
supercritical strength as well as the rapid temporal variation of
the external electromagnetic environment, future theoretical
optimization study that could maximize the particle yield for
a field with arbitrary space-time dependence would be ideal.
While optimal control theory has led to significant algorithmic
improvements in a wide variety of research areas, there has
not been sufficient study of a theoretical approach that could
optimize simultaneously the spatial and temporal dependence
of a control force field.

In contrast to the prior studies of spatially homogeneous
fields, where limitations on the amplitude or energy of the

fields had to be imposed as external constraints to avoid
undesirable fields with infinite parameters, the present study
revealed that the maximum theoretically achievable pair-
creation rate for a given final positron energy (associated
with a transmission coefficient equal to unity) can be ac-
complished in fact with finite fields and therefore possibly
technically achievable parameters. This rather encouraging
finding certainly raises the hope that similarly finite space-
time parameters can lead to an optimum pair creation.

The necessity to examine the full space-time dependence
will also permit us to include the potentially relevant effects
associated with the magnetic field component of the radiation
pulse, that were shown to trigger an amplifying as well as at-
tenuation impact on the pair-creation yield [42] depending on
the spatial orientation and other geometrical configurations.

The possibility to exploit resonances to amplify the pair-
creation rate is, of course, not a new concept in itself.
For example, in the case of temporally homogeneous fields,
Fillion-Gourdeau et al. [43] have shown that laser-induced
bound states can effectively increase the transfer rate be-
tween the lower- and upper-energy continuum states in di-
atomic molecules. Also, recently, a possible enhancement as
well as a suppression of certain positron energies due to
the presence of an additional localized field was proposed
in [44,45].

While we are still in the cradle stages of our theoretical un-
derstanding, it is our hope that the present study can motivate
further investigations with the ultimate goal to become really
useful to guide potential experiments.
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