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The Bethe logarithm for a large set of states of the helium atom is calculated with a precision of 12–14
significant digits. The numerical data are obtained for the case of infinite mass of a nucleus. Then we study the
mass dependence and provide coefficients of the me/M expansion, which allows us to calculate accurate values
for the Bethe logarithm for any finite mass. An asymptotic expansion for the Rydberg states is analyzed, and a
high-quality numerical approximation is found, which ensures 7–8-digit accuracy for the S, P, and D states of
the helium atom.
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I. INTRODUCTION

The Bethe logarithm is an important constituent of the
leading-order radiative contribution to the energy of light
atoms [1]. In the case of the hydrogen atom, the splitting
between 2s and 2p1/2 levels of about 1058 MHz detected in
the Lamb and Retherford experiment [2], also known as the
Lamb shift, was explained by Bethe [3] in a purely nonrel-
ativistic fashion by introducing the mean excitation energy
K0. However, already in the case of a helium atom it was
realized that to obtain numerically the mean excitation energy
K0, or more precisely the Bethe logarithm ln(K0/R∞), is a
very nontrivial task [4]. It is astonishing that one of the earliest
calculations [5] remained the most accurate for more than 30
years.

The significant breakthrough in numerical studies of the
Bethe logarithm was achieved in the 1990s. Almost simul-
taneously, three independent groups [6–8] using different
approaches reached a precision that exceeded the earlier re-
sults by three to five orders of magnitude. Since that time,
precision calculations of many other atomic and molecu-
lar systems have appeared. Among them are calculations
of rovibrational states in the hydrogen molecular ions H2

+
and HD+ [9,10], adiabatic two-electron calculation of the
Bethe logarithm for molecular hydrogen [11], three electron
Li-like [12,13], and four electron Be-like atoms and ions
[14,15].

In this work, we present a comprehensive calculation of the
Bethe logarithm for the helium atom. This study covers a wide
range of orbital angular momentum states up to and including
F states. We provide necessary numerical tools, which allow
us to calculate a precise value for the Bethe logarithm for a
helium atom with a finite nuclear mass M as well as for high n
states, where n is the principal quantum number of an excited
electron.

Atomic units are used throughout.

II. NUMERICAL APPROACH TO CALCULATE
THE BETHE LOGARITHM

In this section, we follow the method described in detail in
[16]. We define the Bethe logarithm as the ratio

β(L, v) = N
D , (1)

where the numerator N (n, L) is expressed by the following
integral:

N (n, L) =
∫ Eh

0
k dk

〈
J
(

1

E0−H −k
+ 1

k

)
J
〉

+
∫ ∞

Eh

dk

k

〈
J

(E0−H )2

E0−H −k
J
〉
, (2a)

while the denominator is

D(n, L) = 〈J[H, J]〉 = 〈[J[H, J]]〉
2

. (2b)

Here Eh is the Hartree energy (the atomic unit of energy), J
is the nonrelativistic electric current density operator of the
atomic system

J =
∑

i

zi

mi
Pi, (3)

and zi and mi are the charges and masses of the particles.

A. First-order perturbation wave function, ψ1(·), and
asymptotic expansion of J(k) at k → ∞

The key quantity for our numerical studies is

J (k) = 〈J(E0−H −k)−1J〉. (4)
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Knowing this function, one immediately gets a value for the
nonrelativistic Bethe logarithm using Eq. (2). The relation
between J (k) and other forms of the integrand in (2) may be
found in [5].

A general procedure to calculate J (k) is to solve the
equation

(E0 − H − k)ψ1 = iJψ0 (5)

for different values of k. Since we are interested in the
asymptotic behavior of J (k) for k → ∞, it is assumed that
k is sufficiently large, and as a first approximation one may
take

ψ
(0)
1 = −(i/k)Jψ0. (6)

Any approximate solution for ψ1 may be (formally) itera-
tively improved:

ψ
(n)
1 = − i

k
Jψ0 + 1

k
(E0−H )ψ (n−1)

1 (7)

and the next iteration would be

ψ
(1)
1 = − i

k
Jψ0 + 1

k2
[H, iJ]ψ0, (8)

where

[H, iJ] =
∑
i> j

ziz j

(
z j

mj
− zi

mi

)
ri j

r3
i j

, ri j = r j −ri. (9)

At small ri j , ψ1 should be smooth. To get a proper solution,
one has to consider Eq. (5) for ri j → 0 and keep only impor-

tant terms [here mi j = mimj/(mi + mj ) is the reduced mass of
a pair; we also use a notation (·) in the list of variables of a
function if the particular form of the internal variables is not
important], (

1

2mi j
�i j − k

)
ψ1(ri j, ·) = 0,

which gives homogeneous solutions of the type

∼ ri j

r3
i j

e−μi j ri j (1 + μi j ri j )

with μi j = √
2mi jk. These solutions, taken for different pairs

of particles, may be added to ψ
(1)
1 to make the whole wave

function smooth. So, we come to an approximation of ψ1 for
k →∞, which has the following form:

ψ
(1)
1 = − i

k
Jψ0(·) + 1

k2

∑
i> j

ziz j

(
z j

mj
− zi

mi

)
ri j

r3
i j

× [1 − e−μi j ri j (1 + μi j ri j )]ψ0(·). (10)

As is seen from this equation, there is no singular term in the
wave function corresponding to a pair of identical particles.

The integrand J (k) may be evaluated using the variational
formalism as a stationary solution of a functional of ψ1,

J (k) = −2〈ψ0|iJ|ψ1〉 − 〈ψ1(E0−H −k)ψ1〉.
To derive the asymptotic expansion, we substitute ψ

(1)
1 into

the functional. That results in [16]

J (k) = −1

k
〈J2〉 − 1

k2

〈 [iJ, [H, iJ]] 〉
2

− 1

k3

∑
i> j,k>l

(i, j)�=(k,l )

ziz jzkzl

(
zi

mi
− z j

mj

)(
zk

mk
− zl

ml

)〈
ri jrkl

r2
i j r

2
kl

〉

− 1

k3

∑
i> j

z2
i z2

j

(
zi

mi
− z j

mj

)2

{4πRi j + [
√

2mi jk + ziz jmi j (ln(mi jk)−ln 2−1)]4π〈δ(ri j )〉} + · · · . (11)

Here Ri j is a finite functional, which replaces a divergent 1/r4 operator, and it is defined by the following expression:

Ri j = lim
ρ→0

⎧⎨
⎩

〈
1

4πr4
i j

〉
ρ

−
[

1

ρ
〈δ(ri j )〉+ (ln ρ+γE )〈δ′(ri j )〉

]⎫⎬
⎭, (12)

where

〈φ1|δ′(r)|φ2〉 = 〈φ1|r
r
∇δ(r)|φ2〉

= −〈∂rφ1|δ(r)|φ2〉 − 〈φ1|δ(r)|∂rφ2〉.
The mixed terms (ri jrkl )/(ri jrkl )2 are finite and do not

require any regularization.

B. Variational property

If we consider the quantity

J� =
∫ �

0
k dk J (k)

=
∑

n

|〈ψ0|J|ψn〉|2
[
� − (E0−En)ln

∣∣∣∣ E0−En

E0−En−�

∣∣∣∣
]
, (13)

we would find that for the ground state of a system this quan-
tity possesses the variational property, since for the integrand
for all k the following inequality is fulfilled:

Jexact (k) � Jnumerical(k).

The same property remains satisfied for other states if in-
tegration is performed from some k0 ∼ 1, which lies above
the poles related to the states En < E0. It is known from
practical calculations that the low-k contribution becomes
numerically converged to a high accuracy at a moderate basis
length of intermediate states, and thus with good confidence
the variational property—the higher the value of J� the more
accurate the solution—remains in effect. This allows us to
perform optimization of the variational parameters of the basis
set.
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C. Numerical scheme

Here we consider the numerical scheme for the three-body
Coulomb problem, which is then used in calculations of the
Bethe logarithm for the helium and H2

+ ground states. The
wave functions both for the initial bound state and for the first-
order perturbation solution (or intermediate state) are taken in
the form

�L(l1, l2) =
∞∑

i=1

{Ui Re[e−αir1−βir2−γir]

+Wi Im[e−αir1−βir2−γir]}Y l1l2
LM (r1, r2), (14)

where Y l1l2
LM (r1, r2) are the solid bipolar harmonics as defined

in [17]; r1, r2, and r are the Hylleraas coordinates of the two
electrons in the helium atom; r = r2 − r1; and L is the total
orbital angular momentum of a state. Complex parameters αi,
βi, and γi are generated in a quasirandom manner [18]:

αi =
[⌊

1

2
i(i + 1)

√
pα

⌋
(A2 − A1) + A1

]

+ i

[⌊
1

2
i(i + 1)

√
qα

⌋
(A′

2 − A′
1) + A′

1

]
, (15)

where 
x� designates the fractional part of x; pα and qα

are some prime numbers, say, 2, 3, 5, etc.; and [A1, A2]
and [A′

1, A′
2] are real variational intervals that need to be

optimized. The parameters βi and γi are obtained in a similar
way.

The basis set for intermediate states is constructed as
follows:

(i) First we use a regular basis set, which is taken similarly
to the initial state with regular values of the parameters
(α, β, γ ) in the exponentials.

(ii) Then we build a special basis set with exponentially
growing parameters for a particular ri j ,

A(0)
1 = A1, A(0)

2 = A2,

A(n)
1 = τ nA1, A(n)

2 = τ nA2, (16)

where τ = A2/A1.
Typically, [A1, A2] = [3, 6] and nmax = 5−7, which corre-

sponds to the photon energy interval k ∈ [0, 104].
(iii) For other pairs of (i, j) we take similar basis sets to

those in (ii). It is worth noting that for identical particles, this
step should be omitted, since, as it follows from Eq. (10), there
is no singular behavior of ψ1(ri j, ·) for small ri j .

After the complete set of basis functions is constructed, we
diagonalize the matrix of the Hamiltonian HI for intermediate
states to get a set of (pseudo)state energies, Em, and then to
calculate 〈0|iJ|m〉. These two sets of data are enough to restore
J (k):

J (k) = −
∑

m

〈0|iJ|m〉2

E0 − Em − k
, (17)

and to integrate the low-energy part of the numerator N (L, v),∫ Eh

0
k dk

〈
J
(

1

E0 − H − k
+ 1

k

)
J
〉

+
∫ �

Eh

dk

k

〈
J

(E0 − H )2

E0 − H − k
J
〉
. (18)

TABLE I. The Bethe logarithm calculations for the ground and excited states of the helium atom with infinite nuclear mass MHe → +∞
and comparison with most precise previous calculations.

n n 1S n 3S n 1P n 3P

1 4.370 160 223 0703(3)
4.370 160 218(3)a

4.370 160 222 9(1)b

4.370 160 223 06(2)c

2 4.366 412 726 417(1) 4.364 036 820 476(1) 4.370 097 743 554(2) 4.369 985 364 549(3)
4.366 412 72(7)a 4.364 036 82(1)a 4.370 097 82(3)a 4.369 985 20(2)a

4.366 412 726 2(1)b 4.364 036 820 41(2)b 4.370 097 743 5(1)b 4.369 985 364 4(2)b

3 4.369 164 860 824(2) 4.368 666 996 159(2) 4.370 295 862 299(4) 4.370 235 654 775(4)
4.369 164 871(8)a 4.368 666 92(2)a 4.370 295 75(9)a 4.370 233 9(2)a

4 4.369 890 632 356(3) 4.369 723 392 715(4) 4.370 363 160 331(5) 4.370 334 604 477(5)
4.369 890 66(1)a 4.369 723 44(5)a 4.370 363 2(2)a 4.370 334 16(5)a

5 4.370 151 796 310(4) 4.370 078 509 668(4) 4.370 390 514 367(5) 4.370 375 352 464(5)
4.370 151 7(1)a 4.370 078 31(8)a 4.370 390 54(4)a 4.370 374 6(2)a

6 4.370 266 974 319(5) 4.370 229 062 747(5) 4.370 403 502 993(6) 4.370 394 624 37(2)
7 4.370 325 261 772(5) 4.370 303 319 792(5)

n n 1D n 3D n 1F n 3F

3 4.370 413 478 422(3) 4.370 420 247 640(2)
4.370 413 470(7)d 4.370 420 247(2)c

4 4.370 417 339 045(4) 4.370 421 238 038(4) 4.370 421 511 306(3) 4.370 421 527 144(3)
5 4.370 419 597 74(2) 4.370 421 809 90(2)

aDrake and Goldman [8].
bYerokhin and Pachucki [19].
cKorobov [16].
dWienczek et al. [20].
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From thus obtained J (k) we extrapolate coefficients of
asymptotic expansion,

ffit (k) =
M∑

m=1

C1m

√
k+C2m ln k+C3m

km+3
, (19)

which is taken in the same form as in analytic expansion
for the hydrogen atom. The leading-order terms of J (k) are
obtained from Eq. (11). That allows us to calculate the high-
energy part of the numerator,

∫ ∞

�

dk

k

〈
J

(E0 − H )2

E0 − H − k
J
〉
.

III. RESULTS

The results of our numerical calculations are presented in
Table I, where the infinite mass of the nucleus is assumed.
As is seen from the data, our results are in good agreement
with previous calculations [8,19], but they exceed them in
numerical precision. To calculate the data for a comprehensive
analysis of the leading-order radiative corrections, we have
to consider the mass dependence of the Bethe logarithm
and extrapolation to high-n states. That will be done in the
subsections below.

A. Finite mass

For the case of a finite mass M of the nucleus, the results
of Table I should be somehow modified. The simplest way is
to use an expansion

βM = β∞ + ln (μ/me) + a1(me/M ) + a2(me/M )2 + · · · .

(20)

The major contribution, ln (μ/me), comes from the scaling
of the electron wave function due to the finite mass effect,
where μ=meM/(M+me) is the reduced mass of an electron.
The next linear term may be calculated using the first-order
perturbation of the Bethe logarithm by the mass-polarization
operator; see [19]. In our case, we utilized a more trivial
approach. Since our code was written for a general case of
three particles of finite masses, we performed calculations of
the Bethe logarithm for two consecutive points of the variable
M, namely for M1 = M4He = 7294.299 541 36me and M2 =
M1/2. For a mass of the α particle, we take the CODATA14
recommended value [21]. The two coefficients of the linear
and quadratic terms in (20) have been obtained from a set of
two linear equations. The linear coefficients are in very good
agreement with the corresponding coefficients calculated by
Yerokhin and Pachucki in [19], as may be expected. We
also checked the quality of our approximation for the 1 1S
state using the least-squares approximation for a1 and a2

from the three-point data with the third data point M3 =
M1/3. The least-squares result—a1 = 0.094 389 42 and a2 =
−0.164 903 2—agrees well with the simple approximation
and demonstrates that the data presented in Table II are

TABLE II. Mass dependence of the Bethe logarithm. Coeffi-
cients of expansion (20).

State a1 a2

11S 0.9438944[−01] −0.16501[+00]
21S 0.1773442[−01] −0.34889[−01]
23S 0.4785558[−02] −0.95888[−02]
21P −0.3553442[−02] 0.95390[−02]
23P 0.8709662[−02] 0.37926[−02]
31S 0.5386215[−02] −0.10813[−01]
33S 0.1071013[−02] −0.29114[−02]
31P −0.1004733[−02] 0.20368[−02]
33P 0.2536963[−02] −0.11556[−02]
31D −0.6358710[−05] 0.36083[−03]
33D 0.3792498[−04] −0.22445[−03]
41S 0.2264400[−02] −0.45874[−02]
43S 0.3763586[−03] −0.12354[−02]
41P −0.4158826[−03] 0.78650[−03]
43P 0.1074222[−02] −0.72991[−03]
41D −0.6179997[−05] 0.17459[−03]
43D 0.1964547[−04] −0.17124[−03]
41F 0.3926256[−05] −0.11805[−03]
43F 0.3612599[−05] −0.11625[−04]
51S 0.1151476[−02] −0.23793[−02]
53S 0.1710350[−03] −0.51711[−03]
51P −0.2113686[−03] 0.38744[−03]
53P 0.5516224[−03] −0.41064[−03]
51D −0.4174068[−05] 0.75987[−03]
53D 0.1077559[−04] −0.64813[−04]
61S 0.6621675[−03] −0.23261[−02]
63S 0.9116608[−04] −0.64837[−04]
61P −0.1225350[−03] −0.43729[−03]
63P 0.3206520[−03] −0.33082[−03]

sufficient for a precise determination of the Bethe logarithm
for real cases of the helium atom for various nuclear isotopes.

B. Asymptotic expansions for Rydberg states

For the Rydberg states, the Bethe logarithm may be calcu-
lated using the asymptotic expansion [22,23]

β(1, s; n, l; 1,3L) = β1s + ln Z2 +
(

Z − 1

Z

)4
βnl

n3

+ 0.316 205(6)

Z6
〈x−4〉

+�β(1, s; n, l; 1,3L), (21)

where x is the distance between the outer Rydberg electron
and nucleus. In the approximation of an electron in a field of
the effective charge Z∗ = 1, this quantity given by expression
Eq. (21) is valid for states with L > 0 [22]. Here β1s =
2.984 128 555 765 is the Bethe logarithm for the ground state
of a hydrogen atom, and �β(1, s; n, l1,3L) takes into account
contributions from the higher multipole moments [23] [see
Eqs. (19) and (20)].
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TABLE III. The Bethe logarithm for the Rydberg states. Coefficients of the asymptotic expansion (22).

n1S n3S n1P n3P n1D n3D

c0 −0.03151 −0.03530 −0.004857 −0.006620 −0.0006212 −0.0003348
c1 −0.01874 −0.04245 0.003677 0.001407 0.0009306 0.0012734
c2 0.03409 0.01840 0.001809 0.009856 0.0005059 −0.0014552

In our case, we use a slightly different expansion,

β(1, s; n, l ) = β1s + ln Z2 + 1

n3

2∑
j=0

c j

n j
, (22)

where the coefficients ci are obtained by the least-squares
method [24] and data from Table I. To get a proper extrap-
olation in the case of S states, we have used data points
for states n = 3 and up to n = 7 in order to eliminate the
nonmonotonic behavior of the β(n) function for the first
two states. Coefficients of the asymptotic expansion (22) are
presented in Table III. We estimate that the values obtained
using expansion (22) for the Bethe logarithm of the Rydberg
states should be accurate up to 7–8 digits.

For the states with L � 3, the asymptotic formula
(21) works well. For example, the results for the
4F states: β(41F ) = 4.370 421 511(13) and β(43F ) =
4.370 421 527(15), agree to 10-figure accuracy with our
results presented in Table I. For further discussions, we refer
the reader to [23].

C. Conclusions

In conclusion, we want to summarize the main results
of our work. First, the more accurate values of the Bethe
logarithm have been obtained numerically for a wide range
of states with a precision that exceeds the published data by
at least three orders of magnitude. These data allowed us to
make an asymptotic extrapolation to the states with higher n, a
principal quantum number of the excited electron. Along with
results obtained by Drake in [23], our data cover the whole set
of bound states in a helium atom.
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