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The formalism of quantum electrodynamics for treating the interelectronic-interaction correction of first order
in 1/Z to the two-electron part of the nuclear recoil effect on binding energies in atoms and ions is developed.
The nonperturbative (in αZ) calculations of the corresponding contribution to the energies of the 1s2 state in
He-like and the 1s22s and 1s22p1/2 states in Li-like ions are performed in the range Z = 5–100. The behavior of
the two-electron part of the nuclear recoil effect beyond the lowest-order relativistic approximation as a function
of Z is studied.
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I. INTRODUCTION

Within the Breit approximation, the nuclear recoil effect
on binding energies in atoms and ions can be treated by
employing the mass shift (MS) Hamiltonian [1–3], which
is given by [the relativistic units (h̄ = 1, c = 1) are used
throughout the paper]

HM = 1

2M

∑
i, j

{
pi · p j − αZ

ri

[
αi + (αi · ri )ri

r2
i

]
· p j

}
, (1)

where the indices i and j enumerate the electrons, α are
the Dirac matrices, r is the position vector, r = |r|, p is the
momentum operator, α is the fine-structure constant, and Z
and M are the nuclear charge number and nuclear mass,
respectively. The first term in the curly braces in Eq. (1)
represents the nonrelativistic recoil operator, and the second
term corresponds to the lowest-order relativistic correction.
The Hamiltonian (1) can be written as a sum of its one- and
two-electron parts

HM = HNMS + HSMS, (2)

where

HNMS = 1

2M

∑
i

{
p2

i − αZ

ri

[
αi + (αi · ri )ri

r2
i

]
· pi

}
(3)

is the normal mass shift (NMS) operator, and

HSMS = 1

2M

∑
i �= j

{
pi · p j − αZ

ri

[
αi + (αi · ri )ri

r2
i

]
· p j

}
(4)

is the specific mass shift (SMS) operator. The terms “NMS”
and “SMS” sometimes refer only to the nonrelativistic parts
of the operators (3) and (4). In this case, the corresponding
relativistic corrections given by the second terms in curly
braces in Eqs. (3) and (4) are labeled with “RNMS” and
“RSMS”, respectively, which denote the relativistic NMS and
SMS operators. In the following, we will not separate these
contributions employing, e.g., the term SMS for the whole
operator (4).

The MS operator (1) is widely employed nowadays in rela-
tivistic calculations of the atomic electronic structure and, es-
pecially, isotope shifts (see, e.g., Refs. [4–15] and references
therein). The Hamiltonian HM allows one to take into account
the nuclear recoil corrections within the (m/M )(αZ )4mc2

approximation. The fully relativistic theory of the nuclear
recoil effect to all orders in αZ can be formulated only in the
framework of quantum electrodynamics (QED) [1,2,16–19].
For the point-nucleus case, the calculations of the QED recoil
contributions to the binding energies of few-electron ions to
all orders in αZ were performed in Refs. [19–21]. The finite
nuclear size correction for these terms was partly taken into
account for the 1s and 2s states of H-like ions in Refs. [22,23].
We note that the rigorous treatment of the latter correction is
currently accessible only within the lowest-order relativistic
approximation [24–26]. The most accurate to-date evaluation
of the QED recoil effect for all of the n = 1 and n = 2 states
of He-like ions was made in Ref. [27]. The results of the
calculations for Be- and B-like ions were presented, e.g., in
Refs. [5,11]. It is worth noting that for high-Z systems the
QED recoil corrections can be of comparable magnitude to the
values obtained within the Breit approximation. For instance,
the total nuclear recoil correction for the ground-state energy
of H-like uranium constitutes 0.46 eV [22], and only about
half of this result comes from the MS operator (1).

All the previous calculations of the nuclear recoil contribu-
tions to all orders in αZ (see Refs. [5,11,19–23,27] and ref-
erences therein) were limited by the independent-electron ap-
proximation, i.e., the interelectronic-interaction effects were
treated only to zeroth order in 1/Z . The present study aims
at further development of the QED theory of the nuclear
recoil effect in atoms. Namely, we derive the formalism for
the QED evaluation of the interelectronic-interaction correc-
tion of first order in 1/Z to the two-electron part of the
nuclear recoil effect on binding energies. The calculations of
the two-electron contribution are generally more complicated
than the evaluation of the one-electron part, which can be
taken into account within the nonrelativistic approximation
simply by replacing the electron mass m with the reduced
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one, mr = mM/(m + M ). In some sense, the contribution
under consideration provides the QED correction for the SMS
operator (4). In spite of the scaling factor of 1/Z , this term
may significantly contribute to some specific differences of
the energies or isotope shifts; see, e.g., the related discussion
of the nuclear recoil effect on the bound-state g factor in
Ref. [28]. Moreover, these calculations allow one to better un-
derstand the limits of the applicability of the MS Hamiltonian
(1) for systems where the correlation effects are of great im-
portance, e.g., for many-electron atoms and ions. For instance,
to date we have some discrepancies between high-precision
measurements and preliminary theoretical predictions for the
isotope shifts of the fine-structure splittings in singly ionized
calcium (Ca+) [29] and argon (Ar+) [30,31]. We can assume
that a more rigorous QED treatment is necessary in order
to resolve these discrepancies. To illustrate all these points,
the formalism developed is employed to calculate the two-
electron part of the nuclear recoil effect on the energies of
the 1s2 state in He-like ions and the 1s22s and 1s22p1/2 states
in Li-like ions in the wide range Z = 5–100. The behavior of
the nontrivial QED correction to the SMS with increasing Z is
analyzed. We note that for the S states, 1s2 and 1s22s, the SMS
vanishes to zeroth order in 1/Z . Therefore, the correction of
interest represents the leading two-electron contribution to the
nuclear recoil effect for these states.

The paper is organized as follows. In Sec. II we review the
basic ideas of the QED theory of the nuclear recoil effect to ze-
roth order in 1/Z . In Sec. III we consider the formulas derived
for calculations within the rigorous QED approach of the first-
order interelectronic-interaction correction to the two-electron
part of the nuclear recoil effect on atomic binding energies. In
Sec. IV the numerical results are presented and compared with
the values obtained within the Breit approximation.

II. QED THEORY OF THE NUCLEAR RECOIL
EFFECT TO ZEROTH ORDER IN 1/Z

In the present study we start with the QED theory of the
nuclear recoil effect in atoms [1,2] which was generalized in
Ref. [16]. The theory formulated in Ref. [16] leads to the
diagram technique, which represents a convenient approach
for constructing the QED perturbation series. Within this
approach, there is no need to sum infinite sequences of the
Feynman diagrams describing the electron-nucleus interac-
tion. This theory will be used in the next section in order to
obtain formal expressions for the interelectronic-interaction
correction to the two-electron part of the QED recoil effect.
However, first, we briefly review the basic formalism of the
theory.

We consider the QED system which in addition to the
electron-positron and electromagnetic fields includes also the
nucleus. The latter one is assumed to be a nonrelativistic
particle with mass M and charge Z|e| (e < 0 is the electron
charge). Since the nuclear recoil effect on energy levels does
not depend on the nuclear spin to first order in m/M, we
consider the nucleus to be spinless. Being an integral of
motion, the total momentum of the whole system conserves.
Therefore, in the center-of-mass frame the operator of the
nuclear momentum can be expressed in terms of the electron-
positron-field and electromagnetic-field momenta. Plugging

(a) (b) (c) (d)

FIG. 1. Two-electron nuclear recoil diagrams to zeroth order in
1/Z: the Coulomb (a), one-transverse (b) and (c), and two-transverse
(d) contributions. See the text and Ref. [16] for the description of the
Feynman rules.

the expression obtained into the Hamiltonian of the whole
system, one can derive a field operator HM . This operator
has to be added to the standard QED Hamiltonian of the
electron-positron field interacting with the quantized electro-
magnetic field and with the classical Coulomb potential of
the nucleus, Vnucl, in order to take into account the nuclear
recoil corrections to first order in m/M and to all orders in
αZ . The contributions of first and higher orders in α are
beyond the scope of the present study. For this reason, the non-
trivial terms involving the electromagnetic-field momentum
P f = ∫

dx [E t (x) × H(x)] contributing to these orders can be
discarded in HM actually; see the details in Ref. [16]. Within
this approximation, the operator HM in the Schrödinger repre-
sentation and the Coulomb gauge reads as follows:

HM = 1

2M

∫
dx �†(x)(−i∇x)�(x)

∫
dy �†(y)(−i∇y)�(y)

− eZ

M

∫
dx �†(x)(−i∇x)�(x) A(0) + e2Z2

2M
A(0)2,

(5)

where � and A are the electron-positron and electromagnetic
field operators, respectively.

Being interested in the QED theory to all orders in αZ , we
employ the Furry picture of QED [32], where the interaction
with the classical field of the nucleus is included in the unper-
turbed Hamiltonian. The perturbation series are constructed
by applying the two-times Green function (TTGF) method
[33]. In order to account for the nuclear recoil effect, we take
the operator HM in the interaction representation and add it
to the interaction part of the Hamiltonian. The Feynman rules
for the theory without HM are given, e.g., in Ref. [33]. The
inclusion of the term HM adds several new lines and vertices
to the diagram technique; see Ref. [16] for the details. To
introduce the notations employed in the following, we briefly
discuss the new elements of the diagram technique with the
example of the two-electron contribution.

To zeroth order in 1/Z , the two-electron contribution to
the nuclear recoil effect on binding energies of a few-electron
atom is described by the diagrams shown in Fig. 1. As usual
for bound-state QED, the double line denotes the electron
propagator in the classical field of the nucleus. The vertex with
a small black dot is the standard vertex of QED. The additional
vertices with the bold dots come from the term HM and
include the momentum operator p = −i∇. In accordance with
Ref. [16], the dotted line ended by two bold dots in Fig. 1(a)
designates the “Coulomb recoil” interaction. The dashed lines
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attached to a bold dot on one side in Figs. 1(b) and 1(c) denote
the “one-transverse recoil” interaction, because these lines
contain the transverse part of the photon propagator taken in
the Coulomb gauge

Dlk (ω, r) = − 1

4π

[
exp(i

√
ω2 + i0 r)

r
δlk

+∂l∂k
exp(i

√
ω2 + i0 r) − 1

ω2r

]
, (6)

where r = |r| and the branch of the square root is fixed with
the condition �(

√
ω2 + i0) > 0. Finally, the dashed line with

a bold dot on it [in Fig. 1(d)] contains the product of two
photon propagators (6) and, for this reason, corresponds to the
“two-transverse recoil” interaction. We note that the employed
separation of the terms as well as the terminology itself result
from operating in the Coulomb gauge, which is the most
convenient one for dealing with the nuclear recoil effect; see,
e.g., Refs. [1,2,18].

Applying the TTGF method, one can easily derive the
formulas for the two-electron contribution. For simplicity, we
consider a two-electron ion described by the one-determinant
unperturbed wave function

u2el = 1√
2

∑
P

(−1)PψPa(r1)ψPb(r2), (7)

where ψn are the solutions of the one-electron Dirac equation
with the potential of the nucleus included

[−iα · ∇ + βm + Vnucl(r)]ψn(r) = εnψn(r), (8)

P is the permutation operator, and (−1)P is the sign of the
permutation. A more general case of an N-electron atom
described by a many-determinant wave function can be treated
in the same manner. According to Ref. [33], the first-order
correction to the energy of a single level is given by

�E (1) = 1

2π i

∮
�

dE �E�g(1)
uu (E ), (9)

where �g(1)
uu is the Fourier transform of the relevant first-

order contribution to a two-time Green’s function projected
on the unperturbed state (7), �E = E − E (0)

u , and E (0)
u is the

unperturbed energy. The contour � oriented counterclockwise
has to surround the point E (0)

u . The derivation of the formulas
for the two-electron part of the nuclear recoil effect to zeroth
order in 1/Z is similar to that of the one-photon exchange
correction; see, e.g., Ref. [34]. Employing the TTGF method,
we obtain

�E (1)
c = 1

M

∑
P

(−1)P〈Pa|pk|a〉〈Pb|pk|b〉 (10)

for the Coulomb contribution in Fig. 1(a),

�E (1)
tr1 = − 1

M

∑
P

(−1)P[〈Pa|pk|a〉〈Pb|Dk (�)|b〉

+ 〈Pa|Dk (�)|a〉〈Pb|pk|b〉] (11)

for the one-transverse-photon contribution in Figs. 1(b)
and 1(c), and

�E (1)
tr2 = 1

M

∑
P

(−1)P〈Pa|Dk (�)|a〉〈Pb|Dk (�)|b〉 (12)

for the two-transverse-photon contribution in Fig. 1(d). In
Eqs. (10)–(12), the summation over the repeated indices is im-
plied (this convention is held for the subsequent expressions
as well), � = εPa − εa, and

Dk (ω) = −4παZαl Dlk (ω), (13)

where αl (l = 1, 2, 3) are the Dirac matrices. The total two-
electron contribution to the nuclear recoil effect to zeroth
order in 1/Z is given by the sum of Eqs. (10)–(12),

�E (1)
rec,2el = �E (1)

c + �E (1)
tr1 + �E (1)

tr2 . (14)

Taking into account Eq. (6), the zero-energy-transfer limit
ω → 0 of Eq. (13) reads as

Dk (0) = αZ

2r

[
αk + (αiri )rk

r2

]
. (15)

By discarding the two-transverse-photon contribution and
considering the limit ω → 0 in the one-transverse-photon
term in Eq. (14), one derives the effective two-electron op-
erator which describes the nuclear recoil effect within the
Breit approximation. Obviously, this procedure leads to the
SMS operator given in Eq. (4). The Coulomb contribution (10)
corresponds to the nonrelativistic two-electron recoil operator,
while its low-order relativistic correction arises from the one-
transverse-photon contribution.

III. INTERELECTRONIC-INTERACTION CORRECTION
TO THE TWO-ELECTRON PART OF THE NUCLEAR

RECOIL EFFECT

According to Ref. [33], the second-order correction for
energy of a single level is given by

�E (2) = 1

2π i

∮
�

dE �E�g(2)
uu (E )

−
[

1

2π i

∮
�

dE �E�g(1)
uu (E )

][
1

2π i

∮
�

dE �g(1)
uu (E )

]
,

(16)

where the contour � surrounds the pole of the level under
consideration E (0)

u and keeps outside all the other singularities
of Green’s function �g(2)

uu . The second term in Eq. (16), which
we refer to as the disconnected one, usually can be fully
canceled by separating the corresponding contributions in the
most nontrivial first term. The procedure of the analytical
cancellation of the disconnected contribution demands rather
tedious manipulations and depends on the total number of
electrons N . In this work, we consider the cases of helium-
like (N = 2) and lithiumlike (N = 3) ions and present the
formulas only for single levels described by one-determinant
unperturbed wave functions. The two-electron unperturbed
wave function was given in Eq. (7), while in case of N = 3
the wave function can be written as

u3el = 1√
3!

∑
P

(−1)PψP1(r1)ψP2(r2)ψP3(r3), (17)
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(b) (c) (d)(a)

(e) (f)

FIG. 2. The second-order diagrams describing the
interelectronic-interaction correction to the two-electron two-
transverse-photon contribution to the nuclear recoil effect. The
analogous diagrams with the Coulomb and one-transverse photon
recoil interactions have to be taken into account as well. See the text
and Ref. [16] for the description of the diagram technique.

where the one-electron states are labeled with the indices 1, 2,
and 3. The generalization to the case of a many-determinant
wave function is straightforward. Moreover, the derived for-
malism suits for any atomic systems actually and can be
generalized to describe the nuclear recoil effect on energy
levels of (quasi-)degenerate states [33].

The example of diagrams describing the interelectronic-
interaction correction to the two-electron part of the nuclear
recoil effect is shown in Fig. 2. The wavy line denotes the
photon propagator here. Other notations are the same as in
Fig. 1. In Fig. 2, only the two-transverse-photon contribution
is presented. One should consider also the diagrams with
the two-transverse-photon recoil interaction replaced with the
Coulomb and one-transverse-photon recoil interactions. As a
result, the total number of the second-order diagrams is four
times higher actually. We refer to the diagrams in Figs. 2(a)
and 2(b) as the ladder contribution and to the diagrams in
Figs. 2(c) and 2(d) as the crossed contribution. For heliumlike
ions, only these two-electron diagrams contribute. For lithi-
umlike ions, the three-electron diagrams in Figs. 2(e) and 2(f)
come into play as well. The list of diagrams, which have to be
accounted for in the disconnected term in Eq. (16), includes
the first-order diagrams in Fig. 1 and the one-photon-exchange
diagram shown in Fig. 3.

FIG. 3. The one-photon exchange diagram which along with the
first-order diagrams in Fig. 1 contributes to the second “discon-
nected” term in Eq. (16).

For the subsequent consideration, it is convenient to intro-
duce the following notations:

I (ω) = e2α
μ
1 αν

2 Dμν (ω), (18)

Rc = 1

M
p1 · p2, (19)

Rtr1(ω) = − 1

M
[p1 · D2(ω) + D1(ω) · p2], (20)

Rtr2(ω) = 1

M
D1(ω) · D2(ω), (21)

where αμ = (1,α), Dμν is the photon propagator, and the
vector D was defined in Eq. (13). We imply also that I ′(ω) =
dI (ω)/dω and R′(ω) = dR(ω)/dω, where R means any of
the operators (19)–(21). In the Coulomb gauge employed,
Eq. (18) reads as follows:

I (ω) = α

[
1

r12
− (α1 · α2) exp(i

√
ω2 + i0 r12)

r12

+ (α1 · ∇1)(α2 · ∇2)
exp(i

√
ω2 + i0 r12) − 1

ω2r12

]
. (22)

From Eqs. (13) and (22), it is obvious that in the Coulomb
gauge the following symmetry properties I (ω) = I (−ω) and
R(ω) = R(−ω) are held. For brevity, we will designate
the matrix elements of the operators (18) and (19)–(21)
as Iabcd (ω) = 〈ab|I (ω)|cd〉 and Rabcd (ω) = 〈ab|R(ω)|cd〉, re-
spectively. The zero-energy-transfer limit ω → 0 of Eq. (22)
which along with the MS operator (1) can be employed to
evaluate the effects of the interelectronic interaction on the
nuclear recoil within the Breit approximation is given by

I = α

[
1

r12
− (α1 · α2)

r12
− (α1 · ∇1)(α2 · ∇2) r12

2

]
. (23)

The derivation of the formal expressions for the
interelectronic-interaction correction to the two-electron part
of the nuclear recoil effect within the TTGF method is very
similar to the derivation of the corresponding formulas for
the two-photon exchange contribution which was considered
in details in Refs. [35,36]. We present only the final expres-
sions omitting all the intermediate steps. First, we discuss
the contribution of the two-electron diagrams presented in
Figs. 2(a)–2(d) and the related diagrams with the Coulomb
and one-transverse-photon recoil interactions. As noted
above, the two-electron diagrams provide the total result in
case of heliumlike ions. On the other hand, the three-electron
problem with the unperturbed wave function (17) can be
decomposed into three two-electron problems of the type (7).
Therefore, the two-electron contribution has to be taken into
account for all possible electron pairs (ab) = (12), (13), and
(23) in the three-electron state u3el. The contribution of the
ladder (“lad”) diagrams in Figs. 2(a) and 2(b) is divided nat-
urally into irreducible (“irr”) and reducible (“red”) parts. The
reducible part covers the terms for which an intermediate-state
energy coincides with the energy E (0)

u = εa + εb of the state
under consideration, whereas the irreducible part includes
the remainder. The irreducible part of the ladder diagrams
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reads as

�E (2)
lad,irr =

∑
P

(−1)P
∑
n1n2

′ ∑
μn1 μn2

i

2π

∫
dω

[
IPaPb n1n2 (ω)Rn1n2ab(ω − εPa + εa)(
εPa − ω − uεn1

)(
εPb + ω − uεn2

) + {I ↔ R}
]
, (24)

where u = (1 − i0) provides the proper treatment of the poles in the electron propagator, and the prime on the sum indicates
that the intermediate states with εn1 + εn2 = εa + εb are excluded. As to the reducible part, the condition εn1 + εn2 = εa + εb

generally restricts the summation over n1 and n2 to the terms with (εn1εn2 ) = (εaεb), (εbεa). However, since the matrix elements
of the operators p and D are equal to zero for states which have the same parity, one can conclude that only one of these
possibilities contributes. For the same reason, the reducible part of the ladder diagrams does not vanish identically as a whole
only if the electrons a and b belong to different electron shells having the opposite parity. The reducible part of the ladder
diagram can be expressed as

�E (2)
lad,red = 1

2

∑
P

(−1)P
∑
μãμb̃

( −i

2π

) ∫
dω

1

(ω + i0)2
[ IPaPb b̃ã(ω + εPa − εb)Rb̃ãab(ω + εa − εb)

+ IPaPb b̃ã(ω + εPb − εa)Rb̃ãab(ω + εb − εa) + Rab b̃ã(ω + εa − εb)Ib̃ãPaPb(ω + εPa − εb)

+ Rab b̃ã(ω + εb − εa)Ib̃ãPaPb(ω + εPb − εa)], (25)

where it is assumed that εã = εa and εb̃ = εb. Finally, the contribution of the crossed (“cr”) diagrams in Figs. 2(c) and 2(d) is
given by

�E (2)
cr =

∑
P

(−1)P
∑
n1n2

∑
μn1 μn2

i

2π

∫
dω

[
IPa n2n1b(ω)Rn1Pb an2 (ω − εPa + εa)(
εPa − ω − uεn1

)(
εb − ω − uεn2

) + {I ↔ R}
]
. (26)

Now, we consider the contribution of the three-electron diagrams in Figs. 2(e) and 2(f). As in case of the ladder diagrams,
one can divide the three-electron contribution into the irreducible and reducible parts. The irreducible contribution of the three-
electron diagrams reads as

�E (2)
3el,irr =

∑
PQ

(−1)P+Q
∑

n

′
[

IP2P3nQ3(�P3Q3)RP1nQ1Q2(�Q1P1)

εQ1 + εQ2 − εP1 − εn
+ {I ↔ R}

]
, (27)

where the prime on the sum indicates that the terms with vanishing denominator have to be omitted in the summation. The
contribution of the reducible part of the three-electron diagrams in Figs. 2(e) and 2(f) can be expressed as

�E (2)
3el,red = 1

2

∑
PQ

(−1)P+Q
∑

εn=εQ1+εQ2−εP1

[I ′
P2P3nQ3(�P3Q3)RP1nQ1Q2(�Q1P1) + IP2P3nQ3(�P3Q3)R′

P1nQ1Q2(�Q1P1) + {I ↔ R}]. (28)

To summarize, in case of a single level in heliumlike ion the QED interelectronic-interaction correction of first order in 1/Z
to the two-electron part of the nuclear recoil effect is given by the sum of Eqs. (24)–(26). For lithiumlike ions, in order to take
into account the corresponding correction one has to calculate Eqs. (24)–(26) for all possible pairs of electrons present in the
unperturbed three-electron state and then add the contribution of Eqs. (27) and (28). The calculations have to be performed for
all the operators (19)–(21),

�E (2)
rec,2el = �E (2)

c + �E (2)
tr1 + �E (2)

tr2 . (29)

Finally, we note that the formalism presented in this section reproduces the expressions for the interelectronic-interaction
correction to the SMS within the Breit approximation if one neglects the energy dependence in the operators D(ω) and I (ω)
in Eqs. (13) and (22), respectively, and introduces projectors on the positive-energy part of the spectrum. As previously, the
Coulomb gauge is implied for the interelectronic-interaction operator I (ω), so that within the zero-energy-transfer limit one
comes to the operator I in Eq. (23). On these assumptions, all the reducible contributions vanish since I ′(0) = 0 and R′(0) = 0,
and the ω integrations in the two-electron terms can be carried out analytically employing Cauchy’s residue theorem. The
contribution of the crossed diagram vanishes because all the zeros of the denominators in Eq. (26) lie in the upper half-plane,
and, therefore, the integration contour can be closed in the lower half-plane avoiding the singularities. Therefore, the irreducible
part of the ladder contribution yields the total two-electron correction within the Breit approximation:

�E (2)
2el,Breit =

∑
P

(−1)P
∑
n1n2

′ ∑
μn1 μn2

[
IPaPb n1n2 (0)Rn1n2ab(0)

εa + εb − εn1 − εn2

+ {I ↔ R}
]
, (30)

where the summation over n1 and n2 is restricted by
the conditions εn1 > 0, εn2 > 0, and εn1 + εn2 �= εa + εb.

The three-electron contribution within the Breit approxima-
tion is readily obtained from Eq. (27) by discarding the
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TABLE I. The two-electron recoil contribution of zeroth order in 1/Z to the binding energy of the 1s22p1/2 state expressed in terms of the
dimensionless function A(αZ ) defined by Eq. (31). For each Z , the first line shows the results of the QED calculations to all orders in αZ ,
whereas the second line displays the values obtained within the Breit approximation employing the specific mass shift (SMS) operator given
in Eq. (4). The results by Artemyev et al. [20] for point-nucleus case expressed in terms of A(αZ ) are in the last column.

Z Approach Ac(αZ ) Atr1(αZ ) Atr2(αZ ) A(αZ ) A(p)(αZ ) [20]

QED −0.078168 0.000182 −0.000000 −0.077986 −0.077986
5

HSMS −0.078168 0.000182 – −0.077986

QED −0.078565 0.000732 −0.000002 −0.077835 −0.077835
10

HSMS −0.078565 0.000732 – −0.077833

QED −0.080186 0.002989 −0.000028 −0.077225 −0.077225
20

HSMS −0.080186 0.002990 – −0.077196

QED −0.083015 0.006960 −0.000145 −0.076199 −0.076199
30

HSMS −0.083015 0.006969 – −0.076046

QED −0.087267 0.013008 −0.000482 −0.074741 −0.074741
40

HSMS −0.087267 0.013033 – −0.074234

QED −0.093301 0.021735 −0.001254 −0.072820 −0.072819
50

HSMS −0.093301 0.021795 – −0.071506

QED −0.101698 0.034138 −0.002828 −0.070388 −0.070385
60

HSMS −0.101698 0.034256 – −0.067442

QED −0.113418 0.051891 −0.005840 −0.067367 −0.067361
70

HSMS −0.113418 0.052091 – −0.061327

QED −0.130121 0.077941 −0.011452 −0.063632 −0.063623
80

HSMS −0.130121 0.078235 – −0.051886

QED −0.154856 0.117812 −0.021945 −0.058988 −0.058972
90

HSMS −0.154856 0.118162 – −0.036694

QED −0.161216 0.128274 −0.024984 −0.057926 −0.057908
92

HSMS −0.161216 0.128619 – −0.032597

QED −0.171943 0.146083 −0.030375 −0.056235 −0.056214
95

HSMS −0.171943 0.146407 – −0.025536

QED −0.193788 0.182924 −0.042259 −0.053123 −0.053097
100

HSMS −0.193788 0.183143 – −0.010645

negative-energy part of the spectrum εn < 0 and replacing
�P3Q3 and �Q1P1 with zeros. The contribution of the two-
transverse-photon operator (21) has to be omitted within this
approximation.

IV. NUMERICAL RESULTS AND DISCUSSION

In the present section, the formalism derived in Secs. II and
III is applied to the all-order (in αZ) evaluation of the two-
electron contribution to the nuclear recoil effect on the binding
energies of the 1s2 state in heliumlike ions and the 1s22s and
1s22p1/2 states in lithiumlike ions. In Ref. [16], it was shown
that the nuclear size correction to the nuclear recoil effect can
be partially taken into account by replacing the pure Coulomb
potential Vnucl = −αZ/r with the potential of an extended
nucleus. Following this prescription, we employ the Fermi
model to describe the nuclear charge distribution for all ions
except for the ones with Z = 5 and Z = 10. For the latter
nuclei, the homogeneously charged-sphere model is used
instead. The nuclear charge radii are taken from Refs. [37,38].
The summation over intermediate electron states is performed
employing the finite basis sets constructed from the B-splines
[39,40] within the dual kinetic balance approach [41].

For states under consideration, to zeroth order in 1/Z the
two-electron recoil contribution does not vanish only for the
state 1s22p1/2. The results of our calculations expressed in
terms of the dimensionless function A(αZ ),

�E (1)
rec,2el = m

M
(αZ )2A(αZ ) mc2, (31)

are given in Table I. We stress that the index “(1)” in the
left part of Eq. (31) designates that the corresponding energy
shift is obtained as the first-order perturbation within the
TTGF method. For each Z , the values evaluated according
to Eqs. (10)–(12) are shown in the first line. The results
obtained within the lowest-order relativistic approximation
employing the SMS operator HSMS are displayed in the second
lines. The functions Ac, Atr1, and Atr2 correspond to the terms
�E (1)

c , �E (1)
tr1 , and �E (1)

tr2 , respectively. One can see that to
zeroth order in 1/Z the Coulomb contribution Ac has the
same value within the both approaches. The deviation of the
one-transverse-photon term is determined by the frequency-
dependent correction in the operator D(ω) in Eq. (13). The
two-transverse-photon contribution is absent in the Breit ap-
proximation. From Table I, it is seen that the terms of the
higher orders in αZ can significantly alter the total values,
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especially, for high-Z ions, where the contribution of the
nonrelativistic part of the SMS operator (4) is canceled con-
siderably by the contribution due to the low-order relativistic
correction for it; see, e.g., the relevant discussion in Ref. [4].
For the point-nucleus case, the corresponding correction was
considered previously in Ref. [20]. We note that in Ref. [20]
the two-electron contribution for the 1s22p1/2 was presented
in terms of the dimensionless function Q(αZ ), which differs
from the function A(αZ ) by the factor of −38/29; see Eq. (74)
in Ref. [20]. For comparison, the point-nucleus results from
Ref. [20] expressed in terms of the function A(αZ ) are given
in the last column of Table I.

The interelectronic-interaction correction of first order in
1/Z to the two-electron part of the nuclear recoil effect is con-
veniently represented via the dimensionless function B(αZ )
defined by

�E (2)
rec,2el = m

M

(αZ )2

Z
B(αZ ) mc2. (32)

The results of the calculations for the 1s2, 1s22s, and 1s22p1/2

states expressed in terms of the function B(αZ ) are presented
in Tables II, III, and IV, respectively. As in Table I, for each
Z the results of the QED calculations to all orders in αZ as
well as the values obtained employing the SMS operator HSMS

are given. The functions Bc, Btr1, and Btr2 correspond to the
contributions of the Coulomb (19), the one-transverse-photon
(20), and the two-transverse-photon (21) operators, respec-
tively. The uncertainties given in the tables correspond only
to errors of the numerical calculations. They were estimated
by increasing the size of the employed basis set and also
by studying how the integrations over the energy parameter
ω in Eq. (24) and the other related contributions converge.
When the uncertainty is not specified, all the digits presented
should be correct. Except for the heaviest ions with Z � 92,
the uncertainties due to varying the nuclear charge distribution
model as well as the nuclear charge radii are below the number
of digits shown. For the heaviest ions, this varying may alter
the last digit. In addition, we should stress once more that
the calculations with the wave functions evaluated for the
extended nucleus correspond to a partial treatment of the
nuclear size corrections to the recoil effect. The uncertainty
due to this approximation can be estimated in accordance with
the prescription given, e.g., in Ref. [27].

As noted at the end of the previous section, the calculation
formulas which are valid within the lowest-order relativistic
approximation can be obtained from the general QED ex-
pressions if we neglect the energy dependence of the trans-
verse part of the photon propagator in the Coulomb gauge in
Eq. (6), restrict the consideration to the positive-energy part
of the Dirac spectrum, and omit the two-transverse-photon
contribution. As an independent crosscheck, we evaluated
the two-electron part of the nuclear recoil effect in the Breit
approximation employing the numerical code for the QED
calculations and compared the results obtained with the direct
application of the SMS operator (4). The two calculations
were found to be in agreement with each other.

From Tables II–IV, one can note that, compared to the
independent-electron approximation, the Coulomb contribu-
tion acquires the correction to the Breit-approximation re-
sult due to the higher orders in αZ . The alteration of the

TABLE II. The interelectronic-interaction correction of first or-
der in 1/Z to the two-electron part of the nuclear recoil contribution
to the binding energy of the 1s2 state expressed in terms of the
dimensionless function B(αZ ) defined by Eq. (32).

Z Approach Bc(αZ ) Btr1(αZ ) Btr2(αZ ) B(αZ )

QED 0.13393 −0.00025 0.00000 0.13368
5

HSMS 0.13394 −0.00029 – 0.13366

QED 0.13578 −0.00092 0.00000 0.13486
10

HSMS 0.13589 −0.00116 – 0.13473

QED 0.14297 −0.00326 0.00007 0.13977
20

HSMS 0.14381 −0.00494 – 0.13888

QED 0.15481 −0.00678 0.00034 0.14837
30

HSMS 0.15748 −0.01216 – 0.14532

QED 0.17169 −0.01151 0.00107 0.16125
40

HSMS 0.17774 −0.02422 – 0.15352

QED 0.19453 −0.01779 0.00262 0.17936
50

HSMS 0.20603 −0.04322 – 0.16281

QED 0.22495 −0.02633 0.00556 0.20418
60

HSMS 0.24477 −0.07234 – 0.17242

QED 0.26574 −0.03850 0.01081 0.23805
70

HSMS 0.29790 −0.11662 – 0.18128

QED 0.32176 −0.05694 0.01994 0.28476
80

HSMS 0.37224 −0.18457 – 0.18767

QED 0.40176 −0.08701 0.03591 0.35067
90

HSMS 0.48001 −0.29167 – 0.18833

QED 0.42192 −0.09527 0.04039 0.36704
92

HSMS 0.50733 −0.32006 – 0.18727

QED 0.45562 −0.10967 0.04821 0.39415
95

HSMS 0.55314 −0.36854 – 0.18460

QED 0.52333 −0.14077(1) 0.06509 0.44764(2)
100

HSMS 0.64543 −0.46918 – 0.17625

one-transverse-photon contribution is also more pronounced
than it takes place to zeroth order in 1/Z , since the cor-
responding correction is not limited to the simple inclu-
sion of the frequency-dependent correction. In addition, the
two-transverse-photon contribution increases rapidly with in-
creasing Z . As a result, the total QED values may drastically
differ from the approximate ones evaluated to lowest orders
in αZ employing the operator HSMS. In order to illustrate
the behavior of the interelectronic-interaction correction to
the two-electron part of the nuclear recoil effect, we plot the
total contributions to the binding energies of the states under
consideration in Figs. 4–6. The data given in the last columns
of Tables II–IV are presented. The results obtained employing
the SMS operator (4) are shown with dashed lines. The
values calculated by means of the ab initio approach derived
in the previous section are displayed with solid lines. It is
worth noting that for the 1s22p1/2 state the interelectronic-
interaction correction to the two-electron recoil within the
Breit approximation tends to zero as it was found for the
leading in 1/Z contribution. From Fig. 6, one can see that
taking into account the effects of higher orders in αZ changes
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TABLE III. The interelectronic-interaction correction of first or-
der in 1/Z to the two-electron part of the nuclear recoil contribution
to the binding energy of the 1s22s state expressed in terms of the
dimensionless function B(αZ ) defined by Eq. (32).

Z Approach Bc(αZ ) Btr1(αZ ) Btr2(αZ ) B(αZ )

QED 0.15655 −0.00028 0.00000 0.15627
5

HSMS 0.15657 −0.00032 – 0.15625

QED 0.15885 −0.00104 0.00000 0.15782
10

HSMS 0.15899 −0.00131 – 0.15768

QED 0.16782 −0.00372 0.00008 0.16418
20

HSMS 0.16882 −0.00558 – 0.16324

QED 0.18264 −0.00778 0.00038 0.17523
30

HSMS 0.18581 −0.01384 – 0.17197

QED 0.20386 −0.01334 0.00118 0.19169
40

HSMS 0.21107 −0.02782 – 0.18325

QED 0.23268 −0.02085 0.00290 0.21473
50

HSMS 0.24647 −0.05014 – 0.19633

QED 0.27124 −0.03123 0.00618 0.24619
60

HSMS 0.29514 −0.08481 – 0.21032

QED 0.32319 −0.04622 0.01206 0.28902
70

HSMS 0.36221 −0.13825 – 0.22396

QED 0.39489 −0.06922 0.02236 0.34803
80

HSMS 0.45657 −0.22139 – 0.23518

QED 0.49792 −0.10713 0.04057 0.43135
90

HSMS 0.59422 −0.35426 – 0.23995

QED 0.52397 −0.11761 0.04570 0.45207
92

HSMS 0.62927 −0.38976 – 0.23950

QED 0.56762 −0.13592 0.05472 0.48641
95

HSMS 0.68812 −0.45062 – 0.23750

QED 0.65556 −0.17564(2) 0.07432 0.55424(2)
100

HSMS 0.80708 −0.57769 – 0.22939

the situation. Finally, we should note also that by combining
the data presented in Tables II–IV one can readily obtain the
interelectronic-interaction correction to the two-electron part
of the nuclear recoil effect on the ionization potentials of the
1s22s and 1s22p1/2 states as well as the 2p1/2-2s transition
energy in lithiumlike ions.

The total two-electron nuclear recoil contribution to the
energy shift can be expressed as

�Erec,2el = m

M
(αZ )2F (αZ, Z ) mc2, (33)

where, in accordance with the definitions given in Eqs. (31)
and (32), one obtains

F (αZ, Z ) = A(αZ ) + 1

Z
B(αZ ) + · · · , (34)

and an ellipsis in Eq. (34) corresponds to the terms of the
second and higher orders in 1/Z . As noted above, for the
S states, 1s2 and 1s22s, the 1/Z perturbation theory starts
from the first-order correction B(αZ ), and the contribution
of interest represents the leading two-electron term. For the
1s22p1/2 state, it is not the case. Therefore, in Table V we

TABLE IV. The interelectronic-interaction correction of first or-
der in 1/Z to the two-electron part of the nuclear recoil contribution
to the binding energy of the 1s22p1/2 state expressed in terms of the
dimensionless function B(αZ ) defined by Eq. (32).

Z Approach Bc(αZ ) Btr1(αZ ) Btr2(αZ ) B(αZ )

QED 0.44462 −0.00107 0.00000 0.44355
5

HSMS 0.44464 −0.00111 – 0.44353

QED 0.44941 −0.00423 0.00001 0.44519
10

HSMS 0.44953 −0.00448 – 0.44505

QED 0.46862 −0.01693 0.00022 0.45191
20

HSMS 0.46956 −0.01872 – 0.45084

QED 0.50159 −0.03924 0.00112 0.46348
30

HSMS 0.50458 −0.04513 – 0.45946

QED 0.55062 −0.07389 0.00373 0.48046
40

HSMS 0.55745 −0.08810 – 0.46936

QED 0.61988 −0.12587 0.00977 0.50378
50

HSMS 0.63305 −0.15488 – 0.47816

QED 0.71645 −0.20385 0.02235 0.53496
60

HSMS 0.73944 −0.25740 – 0.48204

QED 0.85244 −0.32319 0.04716 0.57640
70

HSMS 0.89029 −0.41588 – 0.47441

QED 1.04942 −0.51252 0.09534 0.63224
80

HSMS 1.10983 −0.66686 – 0.44297

QED 1.34832 −0.82896 0.19041 0.70977
90

HSMS 1.44375 −1.08121 – 0.36255

QED 1.42653 −0.91650 0.21890 0.72893
92

HSMS 1.53116 −1.19463 – 0.33653

QED 1.55969 −1.06934 0.27034 0.76069
95

HSMS 1.67995 −1.39154 – 0.28841

QED 1.83558 −1.39931(2) 0.38725(1) 0.82352(2)
100

HSMS 1.98799 −1.81228 – 0.17571

0

0.1

0.2

0.3

0.4

0 20 40 60 80 100

Contribution to the binding energy of the 1s2 state
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FIG. 4. The first-order in 1/Z interelectronic-interaction correc-
tion to the two-electron part of the nuclear recoil effect on the binding
energy of the 1s2 state expressed in terms of the dimensionless
function B(αZ ) defined by Eq. (32) The solid line represents the
results of the QED calculations to all orders in αZ , whereas the
dashed line stands for the calculations based on the specific mass
shift (SMS) operator given by Eq. (4).
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FIG. 5. The first-order in 1/Z interelectronic-interaction correc-
tion to the two-electron part of the nuclear recoil effect on the binding
energy of the 1s22s state expressed in terms of the dimensionless
function B(αZ ) defined by Eq. (32). Notations are the same as in
Fig. 4.

compare the zeroth- and first-order contributions to the cor-
responding function F (αZ, Z ). The term A(αZ ) is taken from
the penultimate column in Table I, while the function B(αZ ) is
from the last column in Table IV. For illustrative purposes, the
data given in Table V are plotted also in Fig. 7. As in Figs. 4–6,
the dashed lines correspond to the calculations with the SMS
operator (4), and the solid lines represent the QED results.
The zeroth-order contributions to the function F (αZ, Z ) are
indicated with the blue lines with circles on them. The next-to-
leading approximations to the function F (αZ, Z ), given by the
sums of zeroth and first orders in 1/Z , are shown with the red
lines with squares on them. Naturally, for low-Z ions the 1/Z
perturbation theory may converge slowly. From Fig. 7, it is
seen that the interelectronic-interaction correction to the SMS
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FIG. 6. The first-order in 1/Z interelectronic-interaction correc-
tion to the two-electron part of the nuclear recoil effect on the binding
energy of the 1s22p1/2 state expressed in terms of the dimensionless
function B(αZ ) defined by Eq. (32). Notations are the same as in
Fig. 4.

TABLE V. The two-electron part of the nuclear recoil contribu-
tion to the binding energy of the 1s22p1/2 state. The values obtained
within the independent electron approximation (to zeroth order in
1/Z) are given in terms of the dimensionless function A(αZ ) defined
by Eq. (31). The interelectronic-interaction correction of first order in
1/Z is given in terms of the dimensionless function B(αZ )/Z defined
by Eq. (32).

Z Approach A B/Z A + B/Z

QED −0.077986 0.088710 0.010723
5

HSMS −0.077986 0.088706 0.010719

QED −0.077835 0.044519 −0.033316
10

HSMS −0.077833 0.044505 −0.033328

QED −0.077225 0.022595 −0.054630
20

HSMS −0.077196 0.022542 −0.054654

QED −0.076199 0.015449 −0.060750
30

HSMS −0.076046 0.015315 −0.060731

QED −0.074741 0.012011 −0.062729
40

HSMS −0.074234 0.011734 −0.062500

QED −0.072820 0.010076 −0.062744
50

HSMS −0.071506 0.009563 −0.061943

QED −0.070388 0.008916 −0.061472
60

HSMS −0.067442 0.008034 −0.059408

QED −0.067367 0.008234 −0.059133
70

HSMS −0.061327 0.006777 −0.054549

QED −0.063632 0.007903 −0.055729
80

HSMS −0.051886 0.005537 −0.046349

QED −0.058988 0.007886 −0.051102
90

HSMS −0.036694 0.004028 −0.032666

QED −0.057926 0.007923 −0.050003
92

HSMS −0.032597 0.003658 −0.028939

QED −0.056235 0.008007 −0.048227
95

HSMS −0.025536 0.003036 −0.022500

QED −0.053123 0.008235 −0.044887
100

HSMS −0.010645 0.001757 −0.008888

is comparable in magnitude with the leading contribution.
For this reason, our calculations taken alone do not pretend
to provide the best possible theoretical predictions for the
two-electron part of the nuclear recoil effect for low-Z ions. If
needed, the results obtained for these systems can be further
improved by considering within the Breit approximation the
second- and higher-order contributions to Eq. (33) by means
of, e.g., the configuration interaction [4] or the recursive
perturbation theory [42] methods. In the present work, we
pursue the aim to study the influence of the nontrivial QED
effects on the two-electron recoil contribution. In this regard,
one can see from Table V and Fig. 7 that taking into account
of the terms of higher orders in αZ considerably changes
the behavior of the function F (αZ, Z ) as a function of Z .
The calculations based on the SMS operator HSMS lead to a
underestimation of the two-electron contribution for high-Z
ions. Moreover, the dashed lines in Fig. 7 lie much closer to
each other than the solid ones for high-Z ions. This designates
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FIG. 7. The two-electron part of the nuclear recoil effect on
the binding energy of the 1s22p1/2 state expressed in terms of the
dimensionless function F (αZ, Z ) defined by Eqs. (33) and (34).
The solid lines represent the results of the QED calculations to all
orders in αZ , while the dashed lines stand for the calculations based
on the specific mass shift (SMS) operator given by Eq. (4). The
contributions of zeroth order in 1/Z, F0(αZ ) = A(αZ ), and the sums
of zeroth and first orders in 1/Z, F01(αZ, Z ) = A(αZ ) + B(αZ )/Z ,
are shown with blue (circles) and red (squares) lines, respectively.

once again that the nontrivial QED contribution of first order
in 1/Z represents the significant effect.

Finally, we consider the two-electron part of the nuclear
recoil effect on the 2p1/2-2s transition energy in lithiumlike
ions. For the point-nucleus case, the one-electron contribution
arising from the NMS operator (3) can be evaluated analyti-
cally to zeroth order in 1/Z [1]:

�E (p)
rec,1el = m2 − ε2

2M
, (35)

where ε is the Dirac energy. Since ε2s = ε2p1/2 for the pure
Coulomb potential Vnucl = −αZ/r, the one-electron contri-
bution within the Breit approximation vanishes in this limit.
Therefore, the total mass shift for this transition is determined
by the finite-nuclear-size, one-electron QED as well as two-
electron recoil effects. In Fig. 8 we plot the two-electron
nuclear recoil contribution to the 2p1/2-2s transition energy
evaluated by means of the 1/Z perturbation theory up to the
first order. The notations are the same as in Fig. 7 for the
binding energy of the 1s22p1/2 state. Since the two-electron
recoil term for the 1s22s state is equal to zero within the
independent-electron approximation, to zeroth order in 1/Z
the corresponding contributions to the transition and 1s22p1/2

state coincide with each other (the blue lines in Figs. 7
and 8 are the same). The first-order interelectronic-interaction
correction can be obtained by taking the difference of the
results presented in Tables IV and III, respectively. From
Figs. 7 and 8, one can conclude that, in principle, the behavior
of the total two-electron nuclear recoil effect with the growth
of Z is rather similar in these two cases. Compared to the
binding energy of the 1s22p1/2 state, the nontrivial QED
part of the interelectronic-interaction correction is reduced
slightly for the 2p1/2-2s transition. Nevertheless, it notably
contributes. For instance, in Refs. [7,9] the nuclear recoil
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FIG. 8. The two-electron part of the nuclear recoil effect on the
2p1/2-2s transition energy in Li-like ions expressed in terms of the
dimensionless function F (αZ, Z ) defined by Eqs. (33) and (34).
Notations are the same as in Fig. 7.

correction for the 2p1/2-2s transition energy was studied. The
approach employed there merges the calculations based on
the MS operator (1) within the Breit approximation to all
orders in 1/Z with the QED contributions evaluated within
the independent-electron approximation [20]. The nuclear
recoil corrections were presented in terms of the mass shift
coefficient K defined according to

�Erec = K

M
. (36)

In Refs. [7,9], the mass shift coefficients for the 2p1/2-2s
transition energy in lithiumlike thorium and uranium were
found to be (in units of 1000 GHz amu) KTh = −3441(57)
and KU = −3734(65), respectively. As noted in Ref. [9], the
uncertainties specified are mainly due to the estimation of the
uncalculated QED contributions of first order in 1/Z . Based
on the results obtained in this work for the interelectronic-
interaction correction to the two-electron recoil effect which
are presented in Tables III and IV, one can extract the non-
trivial QED part of first order in 1/Z . This two-electron QED
correction constitutes (in units of 1000 GHz amu) δKTh

QED,2el =
51 and δKU

QED,2el = 60 for thorium and uranium ions, respec-
tively. The theoretical accuracy of the mass shift calculations
for the 2p1/2-2s transition can be significantly improved,
provided the one-electron QED correction of first order in 1/Z
is calculated. We should stress that, to zeroth order in 1/Z , the
one- and two-electron QED recoil corrections contribute to
the total mass shift for the 2p1/2-2s transition with the same
sign enhancing each other; see Ref. [7]. If this trend persists
in first order in 1/Z , one may expect that the effect of the
uncalculated QED contributions is probably underestimated
in Refs. [7,9].

V. SUMMARY

To summarize, we have derived the formalism for ab initio
calculations of the interelectronic-interaction correction to
the two-electron part of the nuclear recoil effect on binding
energies in atoms and ions to all orders in αZ . The technique
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developed was applied to evaluate the two-electron recoil
contributions for the 1s2 state in heliumlike ions and the
1s22s and 1s22p1/2 states in lithiumlike ions in the wide range
Z = 5–100. The corresponding contribution to the 2p1/2-2s
transition energy in lithiumlike ions was investigated as well.
The results of the QED calculations to zeroth and first orders
in 1/Z were compared with their counterparts obtained by em-
ploying the specific mass shift operator HSMS given by Eq. (4).
The behavior of the nontrivial two-electron QED contribution
with increasing nuclear charge number Z was discussed. The
obtained all-order (in αZ) results allow one to estimate in a
more rigorous way the accuracy of the calculations based on
the mass shift Hamiltonian HM in Eq. (1), which describes
the nuclear recoil effects only within the (m/M )(αZ )4mc2

approximation.
In the future, we plan to extend the QED formalism de-

veloped in order to study the interelectronic-interaction cor-
rection to the one-electron part of the nuclear recoil effect on
binding energies in atoms. In particular, this will allow one to
improve the theoretical accuracy of the mass shift calculations
in highly charged ions. We note also that the largest contribu-
tion to the theoretical uncertainty of the isotope shift of the
g factor in lithiumlike calcium is currently determined by the
screened QED contributions to the nuclear recoil effect of first
order in 1/Z [43]. In view of the experiments presently imple-
mented at the Max-Planck-Institut für Kernphysik (MPIK) in
Heidelberg [44] and at GSI in Darmstadt [45,46], which are
aimed at further improvement of the experimental precision
of the g factor itself as well as the isotope shifts of the g

factor, the QED calculations of the nuclear recoil effect on
the g factor of highly charged ions turn out to be urgent. In
this connection, the QED theory of the nuclear recoil effect
on binding energies developed represents a good starting point
for the corresponding theory for the g factor.

Finally, the nonperturbative (in αZ) calculations of the
nuclear recoil contributions of first order in α for hydrogen
and light hydrogenlike ions are also of great interest. The com-
parison between the nonperturbative numerical approach and
the analytical perturbative techniques may provide important
data for the remaining higher-order contributions beyond the
known αZ-expansion terms; see the related discussion about
the contribution of the nuclear recoil effect on the Lamb shift
to zeroth order in α in Refs. [47,48].
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