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We report an alternative scheme for implementing generalized quantum measurements that does not require
the usage of an auxiliary system. Our method utilizes solely (a) classical randomness and postprocessing,
(b) projective measurements on a relevant quantum system, and (c) postselection on nonobserving certain
outcomes. The scheme implements arbitrary quantum measurement in dimension d with the optimal success
probability 1/d . We apply our results to bound the relative power of projective and generalized measurements
for unambiguous state discrimination. Finally, we test our scheme experimentally on an IBM quantum processor.
Interestingly, due to noise involved in the implementation of entangling gates, the quality with which our scheme
implements generalized qubit measurements outperforms the standard construction using an auxiliary system.
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I. INTRODUCTION

Every quantum information or quantum computing pro-
tocol contains, as a subroutine, a measurement of the quan-
tum state. Quantum theory admits measurement procedures
that are more general then the commonly known projective
measurements (PMs) of a quantum observable on a quantum
system of interest. Indeed, the most general quantum measure-
ments can be realized by projective measurements on a system
extended by the suitable ancilla [1]. Such generalized mea-
surements are mathematically described by positive operator-
valued measures (POVMs) and play an important role in many
areas of quantum information science such as quantum to-
mography [2,3], state discrimination [4–6], (multiparameter)
quantum metrology [7], and quantum computing [8]. They
are also relevant in studies of foundations on quantum theory
[9,10], nonlocality [11–14], and randomness generation [15].

Projective measurements form a subset of POVMs and
hence are generally less powerful for information processing.
However, there are two issues that need to be addressed
before one decides to implement generalized measurements in
practice. The first problem is that POVMs are often difficult
to realize as their implementation typically requires control
and manipulation over additional degrees of freedom [16–18]
(such as, for example, path in the case of quantum states
encoded in photon polarization). The second problem is that
the relative power of projective and generalized measurements
for quantum information processing remains poorly under-
stood [19], especially for Hilbert spaces of large dimension
(see, however, [24–29]). The main aim of this paper is to
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provide an alternative method for implementation of gener-
alized measurements and to advance the understanding of the
relative power of POVMs and PMs.

We start by presenting a scheme that realizes arbitrary
POVMs without the need to extend the Hilbert space [30].
Specifically, our method uses only (a) classical randomness
and postprocessing, (b) PMs (acting only on a Hilbert space
of interest), and (c) postselection on nonobserving certain
measurement outcomes. The price that we need to pay is that
in a given experimental run the measurement is carried out
with success probability 1/d . We prove that this number is
optimal in a sense that there always exist measurements for
which success probability cannot be higher. Our method can
be regarded as the manifestation of the following tradeoff.
Namely, in order to implement a generalized measurement an
experimenter can either implement a complicated PM on a
system coupled to the ancilla or implement simpler PMs and
apply postselection.

Moreover, we use our method to give insight into the
question of relative power between projective and generalized
measurements for unambiguous state discrimination (USD)
[32]. Specifically, we show that in this scenario the ratio
between optimal discrimination probabilities, when using
POVMs and projective measurements, is at most d . We also
give examples of ensembles of states for which this bound is
essentially optimal.

Finally, we demonstrate our method experimentally on an
IBM quantum processor [33–35]. We implement generalized
qubit POVMs via our scheme and via the Naimark con-
struction [1] that uses PMs on two qubits. We compare the
quality of two implementations by performing tomography of
measurement operators. Interestingly, due to noise involved
in implementation of entangling gates, the quality with which
our scheme realizes POVMs is higher than the one obtained
with the Naimark method.
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The rest of the paper is structured as follows. First, in
Sec. II we establish the notation and main concepts that
will be used in the rest of the paper. Second, in Sec. III we
present a notion of simulation of quantum measurements
via postselection and projective measurements. This part
contains also the main results of our work (Theorems 1
and 2). In Sec. IV we apply our simulation scheme to the
problem of relative advantage of projective and generalized
quantum measurements for the problem of unambiguous state
discrimination. In Sec. V we provide experimental illustration
of our findings on IBM quantum experience. Section VI
contains concluding remarks and further research directions.
We complement the main part of the paper with Appendices A
(containing proofs of some technical statements omitted in the
main text) and B–D (containing details of the experimental
procedures on IBM Q experience).1

II. NOTATION AND MAIN CONCEPTS

A n-outcome POVM on d-dimensional space can be re-
garded as a vector M = (M1, . . . , Mn) of non-negative op-
erators satisfying

∑n
i=1 Mi = 1, where 1 is the identity on

Cd . The operators (M)i := Mi are called the effects of M.
According to Born’s rule, when a POVM M is measured on
the quantum state ρ the probability of obtaining the outcome
i is given by Pr(i|ρ, M) = tr(Miρ). We denote the set of
POVMs on Cd with n outcomes by P (d, n). Given two
POVMs M, N ∈ P (d, n), their convex combination pM +
(1 − p)N is the POVM with ith effect given by [pM +
(1 − p)N]i := pMi + (1 − p)Ni. Taking convex combinations
of measurements is typically referred to as randomization as it
corresponds to realizing POVMs M and N with certain prob-
abilities and then combining the outcomes. Extremal POVMs
are the measurements that cannot be expressed by a convex
combination of two different POVMs. PMs are POVMs the
effects of which are orthogonal projectors (notice that some
of the outputs can have null effects and that effects are not
required to be rank 1).

In [24] the class of projective simulable measurements was
introduced. By definition, measurements belonging to this
class can be realized by randomization followed by classi-
cal postprocessing (see [36–38] for a detailed exposition of
these concepts) of some protective measurements P acting
on Cd alone. Short mathematical description of those notions
is as follows. Let us consider the POVM M which has
a convex decomposition M = ∑

i piPi into some projective
measurements {Pi}, with

∑
i pi = 1 and pi � 0 for all i.

Set {pi} may be interpreted as a probability distribution for
randomization of {Pi}. Randomized implementation of {Pi}
leads to the simulation of M by projective measurements
{Pi}, so far without any postprocessing. Consider now a
measurement N, which is related to M via postprocessing, i.e.,
Nj = ∑

k q( j|k)Mk , where the numbers {q( j|k)} correspond
to a particular postprocessing strategy, with

∑
j q( j|k) = 1

and q( j|k) � 0 for all j, k. Therefore, randomization of {Pi}

1The views expressed are those of the authors and do not reflect the
official policy or position of IBM or the IBM Quantum Experience
team.

according to probability distribution {pi}, followed by post-
processing specified by {q( j|k)}, realizes the simulation of
N by projective measurements {Pi}. Such simulation should
be understood in terms of sampling from the statistics that
would have been obtained if the POVM N (or M) was imple-
mented directly. We denote the class of projective simulable
n-outcome POVMs on Cd by SP(d, n). Clearly, no ancillary
system or extra dimension is needed to realize projective
simulable measurements. However, not all measurements can
be implemented in this manner. In particular, all extremal but
not projective measurements are outside SP(d, n) [24].

III. SIMULATION OF MEASUREMENTS
WITH POSTSELECTION

We will be interested in measurements that can be re-
alized by projective simulable measurements together with
postselection.

Definition 1: Simulation of POVMs by postselection. Let
M ∈ P (d, n) and N ∈ P (d, n′) be n- and n′-outcome POVMs
on Cd and let n′ > n. We say that M can be simulated by N
by postselection if for all quantum states ρ and for all i � n

Pr(i|ρ, M) = Pr(i|ρ, N)

Pr(i � n|ρ, N)
. (1)

In other words, all the statistics of measurement of M can
be interpreted as statistics of N conditioned on not observing
particular outcomes.

While Definition 1 is operationally well motivated, it is
also cumbersome to work with. Let us introduce a measure-
ment Mq ∈ P (d, n + 1) via

Mq := (qM1, . . . , qMn, (1 − q)1). (2)

It turns out that Eq. (1) is equivalent to the existence of
q ∈ (0, 1] such that

Mq =
(

N1, . . . , Nn,
∑
i>n

Ni

)
. (3)

Proof. Clearly, Eq. (3) implies Eq. (1). We will now prove
the reverse. Let M ∈ P (d, n) and N ∈ P (d, n′) be POVMs on
Cd such that for all quantum states ρ and for all i � n Eq. (1)
holds. We claim now that if (1) holds then Pr(i � n|ρ, N) does
not depend on ρ. To see this we consider a state ρ = ασ +
(1 − α)τ , for some 0 � α � 1. By the linearity of the Born
rule we obtain

Pr(i|ρ, M) = αPr(i|σ, N) + (1 − α)Pr(i|τ, N)

αPr(i � n|σ, N) + (1 − α)Pr(i � n|τ, N)
.

(4)

The above, by definition, is a linear function of α, and it
is possible if and only if Pr(i � n|σ, N) = Pr(i � n|τ, N).
Since states σ and τ were chosen arbitrarily we conclude
that Pr(i � n|ρ, N) does not depend on ρ. It follows that∑

i�n Ni = q1, where q > 0 is a proportionality constant that
can be interpreted as the success probability of implementing
the measurement M via the POVM N. �

We can now give a formal definition of measurement
simulable by projective measurements and postselection [39]
(see Fig. 1).
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FIG. 1. The idea of simulation of a generalized measurement
with projective measurements and postselection. The protocol con-
sists of four stages: (i) classical randomization, (ii) projective mea-
surements performed on a relevant quantum system, (iii) postpro-
cessing of obtained outcomes, and finally (iv) postselection on
nonobserving the last outcome.

Definition 2: Quantum measurements simulable by pro-
jective measurements and postselection. We say that a
POVM M ∈ P (d, n) can be simulated by projective mea-
surements and postselection if there exists a projective sim-
ulable measurement N ∈ SP(d, n + 1) such that Eq. (1)
holds. Or, to put it differently, there exists q > 0 such that
Mq = N ∈ SP(d, n + 1). The highest number q such that the
above condition holds is the maximal success probability with
which M can be implemented when we are allowed to use
only PMs and postselection.

Recently it was shown [24] that every quantum measure-
ment on a finite-dimensional system can be implemented
by PM on this system extended by the ancilla of the same
dimension. Our first result shows that, somewhat surprisingly,
any generalized measurement in a finite-dimensional quantum
system can be implemented via PMs and postselection.

Theorem 1: Every quantum measurement can be simu-
lated by projective measurements and postselection. Let M ∈
P (n, d ) be a quantum measurement on Cd . Then M can
be simulated by projective measurements and postselection
with success probability q = 1/d . In other words we have
M1/d ∈ SP(d, n + 1).

Proof. We prove this result by giving a concrete algorithm
that simulates any generalized measurement with success
probability 1/d . Note that it suffices to give the simulation
method for POVMs having rank-1 effects. Indeed, any quan-
tum measurement can be obtained from them via classical
postprocessing [11,36–38] (note that not all extremal rank-1
measurements are projective). Thus, if M1/d ∈ SP(d, n + 1)
holds for rank-1 measurements, it will also hold for arbitrary
measurements since, by definition, classical postprocessing of
projective simulable measurement is still projective simulable.

The effects of rank-1 measurement are of the form Mi =
αi|ψi〉〈ψi|, with αi � 0. From the condition

∑n
i=1 Mi = 1 we

get
∑n

i=1 αi = d and hence numbers αi/d define a probability
distribution. The method for simulating a rank-1 measurement
consists of three steps: (a) draw a label i with probability pi =
αi
d ; (b) perform a PM (Pi

+, Pi
−) = (|ψi〉〈ψi|, 1 − |ψi〉〈ψi|); (c)

upon obtaining the outcome “+” return i, otherwise return
n + 1. Clearly, this scheme realizes a measurement from

SP(d, n + 1). Moreover, explicit computation shows that it
implements M1/d . �

Remark. A related protocol appeared in [40] in the con-
text of deriving local POVM models for certain entangled
states. Also, a similar method was used in [24] to simulate a
noisy version of a POVM M, with effects M

′
i = (1/d )Mi +

(1 − 1/d ) tr(Mi )
d 1. The difference between these approaches

and the protocol given above is the last step, in which one
identifies the “wrong” outcomes—this allows one to simulate
any POVM M with PMs exactly once we allow for postselec-
tion.

Remark. Some experimental works [41] simulate statistics
of POVM M by statistics of a number of PMs the effects
of which are proportional to effects of M. This is done by
estimating the expectation values tr(ρ|ψi〉〈ψi|) (for a given
quantum state ρ) and then classically processing the obtained
experimental data (in analogy to the procedures performed in
standard quantum tomography). We stress that our method
is conceptually different. Namely, in a single experimental
run our scheme either samples from the correct probability
distribution or reports failure (see Example 1 for illustration).
Hence, our method provides a different operational interpre-
tation of generalized quantum measurements.

Let us illustrate the concepts presented above by consider-
ing the following example, which provides a detailed account
of the simulation of a particular qubit POVM by projective
measurements with postselection.

Example 1. Consider a four-outcome tetrahedral mea-
surement on C2, Mtetra = ( 1

2 |ψ1〉〈ψ1|, . . . , 1
2 |ψ4〉〈ψ4|), where

Bloch vectors associated to pure states |ψi〉〈ψi| form
a tetrahedron inscribed in the Bloch sphere [2]. Hav-
ing Mtetra written in this form, it is straightforward
to construct a new five-outcome measurement M̃tetra =
( 1

4 |ψ1〉〈ψ1|, . . . , 1
4 |ψ4〉〈ψ4|, 1

21). Note that the first four ef-
fects are those of Mtetra multiplied by 1

d ( 1
2 for qubits) and

the last one is (1 − 1
d )1. One can clearly see that M̃tetra ∈

SP(2, 5). Concretely, to simulate M̃tetra by projective mea-
surements, one constructs four PMs of the form (Pi

+, Pi
−) =

(|ψi〉〈ψi|, 1 − |ψi〉〈ψi|). Then in every experimental run, one
draws a label “i” with probability 1

4 (i.e., according to the
probability distribution given by coefficients standing next
to |ψi〉〈ψi| in M̃tetra, which in this case is uniform) and im-
plements a projective measurement (Pi

+, Pi
−). If the obtained

outcome is “+” one identifies it as “i,” and if it is “−” one
identifies it as “5.” Finally, upon postselecting on not obtain-
ing the fifth outcome—this happens with probability 1/2 (in
dimension d more generally with probability 1/d)—we obtain
a sample from the measurement performed by Mtetra. There-
fore, Mtetra can be simulated by projective measurements with
postselection with success probability 1/2.

What is the highest success probability for which all mea-
surements on Cd can be implemented with projective mea-
surements and postselection? Interestingly, for any dimension
d , there always exist generalized measurements that cannot be
simulated with probability higher than 1/d .

Theorem 2: Optimality of the simulation protocol. For any
dimension d , there exists a measurement M∗ ∈ P (d, d2) that
cannot be simulated by PMs and postselection with success
probability higher than 1/d , i.e., 1/d is the maximal q for
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which M∗
q ∈ SP(d, d2 + 1). The protocol presented above

attains the success probability 1/d and in this sense can be
considered as optimal.

Proof. In [42] it was shown that there exists an extremal
quantum measurement M∗ ∈ P (d, d2) with d2 pairwise non-
commuting effects M∗

i = (1/d )|ψi〉〈ψi|, where |ψi〉〈ψi| are
suitably chosen pure states [43]. In the rest of the proof, to
keep the notation compact, we will identify n ≡ d2. Consider
now a modified measurement M∗

q [see Eq. (2) for the def-
inition of Mq] and assume M∗

q ∈ SP(d, n + 1), i.e., M∗
q is

a convex combination of PMs {Pα}, M∗
q = ∑

α pαPα (recall
that effects Pα

i of Pα need not be necessarily rank 1). Since
operators M∗

i are rank 1 and effects of measurements Pα

are orthogonal projectors, for i � n we have Pα
i = λα|ψi〉〈ψi|,

with λα ∈ {0, 1}. In other words, if for a given α and i � n we
have Pα

i �= 0, then necessarily Pα
i = |ψi〉〈ψi|. As the operators

|ψi〉〈ψi| do not commute with each other, for each α we must
have either Pα = P j , where

P j :=
⎛
⎝ j−1︷ ︸︸ ︷

0, . . . , 0, |ψ j〉〈ψ j |, 0, . . . , 0, 1 − |ψ j〉〈ψ j |
⎞
⎠ (5)

for some j � n, or Pα = Pn := (0, . . . 0, 1). There are, there-
fore, only n + 1 different PMs that together can simulate
M∗

q, i.e., M∗
q = ∑n+1

j=1 p jP j , for some probability distribution

{p j}n+1
j=1. Then, by using (M∗

q ) j = p jP
j
j we obtain q/d = p j

for j � n. Finally, from the inequality
∑n

j=1 p j � 1 we obtain
that q � 1/d . �

Remark. Analogous arguments show that all rank-1
measurements M = (a1|ψi〉〈ψi|, . . . , an|ψn〉〈ψn|) for which
〈ψi|ψ j〉 �= 0 can be simulated with PMs and postselection
with success probability at most 1/d . Therefore, the protocol
given in the proof of Theorem 1 is also optimal for this broad
class of measurements. Of course, some measurements can be
implemented with higher probability.

IV. APPLICATION TO USD

We use our findings to limit the maximal advantage that
POVMs offer over projective measurements for unambiguous
discrimination of quantum states [5,6,32]. This task is about
unambiguously discriminating between (not necessarily or-
thogonal) signal states {ρi}n

i=1, each appearing with probabil-
ity pi. The problem of USD is the landmark example of task
for which POVMs offer advantage over projective measure-
ments. It currently finds applications in quantum cryptography
[44,45] and is still a subject of both theoretical [46,47] as well
as experimental studies [41,44,48].

If the signal states are generated from an ensemble E =
{pi, ρi}n

i=1 and measured with a POVM M ∈ P (d, n + 1), the
success probability for USD is given by

pUSD(E, M) =
n∑

i=1

pitr(ρiMi ), (6)

where measurement effects have to satisfy the constraints
tr(ρiMj) = 0, for i �= j, which result from the unambigu-
ity condition. Moreover, the effect Mn+1 corresponds to the
inconclusive result. In this paper we focus on ensembles

consisting of pure signal stares, i.e., ρi = |ψi〉〈ψi|. In this case
unambiguous discrimination is possible if and only if vectors
|ψi〉 are linearly independent. Given an ensemble E , we define
pPOVM

USD (E ) and pSPUSD(E ) as the optimal success probabilities of
unambiguously discriminating states from E via generalized
and projective simulable measurements (acting on n = d-
dimensional space spanned by vectors |ψi〉), respectively. The
following result limits the maximal advantage that POVMs
can offer over PMs for USD.

Lemma 1. For all ensembles of linearly independent
pure states E = {pi, |ψi〉〈ψi|}d

i=1, we have pPOVM
USD (E ) � d ·

pSPUSD(E ).
Proof. Let M∗ = (M∗

1 , . . . , M∗
d+1) be an optimal mea-

surement for which pUSD(E, M∗) = pPOVM
USD (E ). We can use

the protocol from the proof of Theorem 1 to construct the
measurement M∗

q ∈ SP(d, d + 2). By gluing outcomes d + 1
and d + 2 we get a projective simulable measurement at-
taining success probability 1

d pPOVM
USD (E ). Therefore, we have

1
d pPOVM

USD (E ) � pSPUSD(E ). �
We now show that the above bound is essentially tight

in the limit of large d by giving examples of ensembles E
for which pPOVM

USD (E )/pSPUSD(E ) ≈ d . We first state an auxiliary
result that limits the power of projective measurements for
USD.

Lemma 2. Let E = {pi, |ψi〉〈ψi|}n
i=1 and let 〈ψi|ψ j〉 �= 0 for

i �= j. Then we have pSPUSD(E ) � maxi pi.
Proof. We consider an ensemble E = {pi, |ψi〉〈ψi|}n

i=1 of
quantum states in Cd . We assume that vectors |ψi〉 are linearly
independent and 〈ψi|ψ j〉 �= 0 for i �= j. Consider a projective
measurement P = (P1, . . . , Pn+1) on a subspace spanned by
vectors {|ψi〉}n

i=1, i.e., H = span({|ψi〉}n
i=1). We require P to

satisfy the unambiguity condition, i.e., for j �= i we have
Pi|ψ j〉 = 0. We will show that projective measurements sat-
isfying the above constraints are of the form

Mi =
⎛
⎝ i−1︷ ︸︸ ︷

0, 0, . . . , 0, |φi〉〈φi|,
n−i︷ ︸︸ ︷

0, 0, . . . , 0, 1 − |φi〉〈φi|
⎞
⎠ (7)

for some j � n and a pure state |φi〉 satisfying 〈ψ j |φi〉 = 0 for
i �= j.

Assume that projector Pi is nonzero; then the unambiguity
can be written in terms of orthogonality with appropriate
subspace:

supp(Pi ) ⊥ span
({|ψ〉}n

j=1, j �=i

)
. (8)

In the above span({|ψ〉}n
j=1, j �=i ) denotes a linear subspace

spanned by vectors {|ψ〉}n
j=1, j �=i. By the definition we have

supp(Pi ) ⊂ H = span
({|ψ〉}n

j=1

)
. (9)

Thus we have obtained that supp(Pi ) is one-dimensional sub-
space and therefore Pi = |φi〉〈φi|. We will write vector |ψi〉 in
terms of vector |φi〉 and |ψk〉, for some k �= i, i.e.,

|ψi〉 = α|φi〉 + β|ψk〉 + γ |r〉, (10)

where |r〉 ∈ span({|ψ〉}n
j=1, j �=i,k ) and 〈ψi|r〉 = 〈ψk|r〉 = 0.

Moreover |a|2 + |β|2 + |γ |2 = 1 and β �= 0. Next we will
show that projector Pk must be zero. The USD property
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gives us

0 = Pk|ψi〉 = αPk|φi〉 + βPk|ψk〉 + γ Pk|r〉. (11)

From our assumption the terms Pk|φi〉 and Pk|r〉 are equal to
zero. Thus we conclude that Pk|φk〉 must be zero. Therefore
P2 = 0.

Having shown Eq. (7) we see that all projective-simulable
measurements that satisfy the unambiguity condition are of
the form N = ∑n

i=1 qiMi, where {qi}n
i=1 is a probability dis-

tribution. Therefore the success probability for such measure-
ments can be bounded as follows:

pUSD(E, N) � max
i

pi〈ψi|Pi|ψi〉 � max
i

pi. (12)

�
Example 2. Consider a uniform ensemble Esym =

{1/d, |φi〉〈φi|}d
i=1 of so-called symmetric states in Cd , i.e.,

states of the form |φi〉 = (1/
√

d )
∑d−1

k=0 ckω
ik|k〉, where

ω = exp( 2π i
d ). In [49] it was shown that pPOVM

USD (Esym ) =
d mink |ck|2. Since for any ε ∈ (0, 1) we can set mink |ck|2 =
(1 − ε)/d . We get that pPOVM

USD (Esym ) = 1 − ε. On the other
hand, since for ε ∈ (0, 1) we have 〈φi|φ j〉 �= 0 and, by the
virtue of Lemma 2, we get pSPUSD(Esym ) � 1/d , therefore (by
combining with Lemma 1) we obtain

d (1 − ε) � pPOVM
USD (Esym )

/
pSPUSD(Esym ) � d. (13)

The following example shows that the inequality
pPOVM

succ (E ) � d · pSPsucc(E ) is saturated also for randomly cho-
sen ensembles of quantum states.

Example 3. Consider a uniform ensemble Eran =
{1/n, |ϕi〉〈ϕi|}d

i=1 of d � D independently chosen Haar-
random pure states in CD [50]. We are interested in values
of the ratio of pPOVM

USD (Eran )/pSPUSD(Eran ) that appear typically,
i.e., with high probability over the choice of states |ϕi〉〈ϕi|.
In Appendix A we show that in the limit d, D → ∞, while
d/D → γ ∈ (0, 1), with high probability we have

d (1 − γ )2 � pPOVM
USD (Esym )

/
pSPUSD(Esym ) � d. (14)

Hence, for generic ensembles Eran the inequality from
Lemma 1 is asymptotically saturated in the limit d/D → γ

[up to the possible correction (1 − γ )2].
The above considerations give a fairly complete under-

standing of relative power of projective and generalized mea-
surements for USD in large dimensions. To the best of our
knowledge, the only other quantum task for which this kind
of analysis was carried out is quantum filtering [51]. The
problem of USD of random states has not been studied pre-
viously. So far the research efforts focused on minimal error
discrimination [52,53] or on distinguishing between states
that were altered by application of the infinitesimal unitary
transformation [54].

V. ILLUSTRATION ON THE IBM QUANTUM PROCESSOR

IBM Q Experience is an online platform that allows one to
remotely perform experiments on IBM’s quantum processors
[33–35]. The devices themselves consist of superconducting
transmon qubits [55], which are manipulated via coupling to
the external microwave field which, in principle, offers a full
control over the qubits in a given processor. In particular,

this interaction allows one to implement an arbitrary one-
qubit unitary and a two-qubit controlled-NOT (CNOT) gate
(via cross-resonance effect [56]). By combining those gates
with projective measurements in the computational basis al-
lowed on IBM quantum devices, one is able to construct
an arbitrary two-qubit quantum circuit [57]. We have used
access to the five-qubit quantum device ibqmx4 to implement
three different POVMs on one qubit via our scheme and
via the well-known method of Naimark’s construction [1].
The three implemented POVMs werefour-outcome tetrahedral
[2], three-outcome trine [58], and a randomly generated four-
outcome measurement. In what follows we describe in detail
how such implementation proceeded.

Naimark’s construction requires extension of a system of
interest by an ancilla system. When we get an extended
space, we construct a unitary on this space, which (followed
by a measurement) implements the desired POVM on our
system. In the case of IBM qubits, extension of space simply
required usage of two qubits, instead of a single qubit. In
order to implement a POVM on single qubit, we have imple-
mented Naimark’s unitary on two-qubit space and measured
the system, obtaining the outcomes corresponding to those
of a POVM. We note that, while in principle to imple-
ment n-outcome measurement one needs extension to only
n-dimensional space, in the case of qubits the actual Hilbert-
space dimension is restricted to be a power of 2. Therefore, to
implement three-outcome measurement via Naimark’s exten-
sion, we needed to construct a four-dimensional unitary which
is a direct sum of the three-dimensional Naimark unitary and
the number 1.

The implementation by our scheme proceeded as follows.
As described in previous sections, for a measurement of the
form M = (α1|ψi〉〈ψi|, . . . , αn|ψn〉〈ψn|), our scheme requires
implementation of each of the projective measurements P j =
(|ψ j〉〈ψ j |,1 − |ψ j〉〈ψ j |) with probability equal to α j

2 (in the
case of qubits) in each experimental run (sampling). In princi-
ple, it is possible to classically randomize one’s choice of the
projective measurement in each experimental run, according
to such a probability distribution (as illustrated in detail in Ex-
ample 1). Unfortunately, on IBM quantum devices it would be
practically infeasible to implement projective measurements
one at a time, due to the fact that there is a time-limiting queue
of jobs requested by users, and such randomization would
require a thousands-of-jobs requests. In order to overcome this
obstacle, we have decided to simulate randomization by gain-
ing statistics for every P j from a number of experimental runs
proportional to α j . Since the maximal number of experiments
performed in one commissioned job on IBM Q Experience is
8192, we have set the number of experiments implementing
projective measurement corresponding to eigenvalue α j as
Nj := 8192 α j

max j α j
, where j ∈ {1, 2, . . . , n}. In other words,

we have set the maximum probability to correspond to the
maximum number of experimental runs possible on IBM Q
Experience. Then, we commissioned experiments for projec-
tive measurements with the number of runs equal to or lower
than the maximal one, in accordance with the values of α j’s.
We note that such a method of randomization is equivalent to
sampling, provided we assume stability of the quantum device
in time. The final step was to normalize all experimental
counts to relative frequencies, simply by dividing all statistics
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TABLE I. Operational distances Dop between POVMs to be
implemented and those obtained via QMT for both methods of
implementation.

POVM Naimark construction Our scheme

Tetrahedral 0.117 0.023
Trine 0.141 0.022
Random four-effect 0.168 0.031

by the number of runs for all projective measurements. It
is worth adding that in the case of tetrahedral and trine
POVMs, which are symmetric, all α j’s were the same, hence
probability distributions were uniform for them.

To compare the quality of both implementations we have
performed quantum measurement tomography (QMT) [59],
which is a procedure of tomographic reconstruction of a
POVM based on its implementation on the informationally
complete set of quantum states. The chosen set of quantum
states consisted of both eigenstates of Pauli’s σz and two
eigenstates of σx and σy corresponding to positive eigenvalues.
We have reconstructed POVMs via linear inversion. We note
here that in the case of our scheme the statistics taken for
the QMT were additionally normalized only to nonrejected
(correct) outcomes. Details of QMT, together with remarks
regarding the impact of noise, are provided in Appendix B.
The explicit forms of both POVMs to be implemented and the
reconstructed ones are given in Appendix C.

As a figure of merit we used the operational distance [60]
between POVMs M and N, which may be calculated as

Dop(M, N) = max
x∈X

∥∥∥∥∥∑
i∈x

(Mi − Ni )

∥∥∥∥∥, (15)

where ‖ · ‖ denotes the operator norm and the maximization
is over all combinations of indices enumerating effects (i.e.,
all outcomes). Naturally, in this case M corresponds to the
ideal POVM to be implemented, and N corresponds to its
tomographic reconstruction. The operational distance given in
Eq. (15) has a nice operational interpretation of Dop(M, N) =
2pdist (M, N) − 1, where pdist (M, N) is the optimal probability
of distinguishing between measurements M and N without
using entanglement [60,61]. The results of experiments are
given in Table I.

It is clear that our scheme performs better than Naimark’s
construction. We would like to stress that this is the case de-
spite rejecting half of the data (this results from postselection
used in our method). A likely explanation of these results
is the much greater amount of noise occurring in the imple-
mentation of two-qubit unitaries required for Naimark’s con-
struction compared to local unitaries needed for our scheme
(see the pictorial representation of exemplary quantum cir-
cuits in Appendix D).

VI. DISCUSSION

We have presented a method implementing generalized
measurements on finite-dimensional Hilbert spaces that uses
only classical resources (randomization and postprocess-
ing), projective measurements, and postselection. Importantly,
the scheme does not require one to implement projective

measurements on extended Hilbert space. This simplification
comes at an expense, i.e., the probabilistic nature of the
method—in a given experimental run it succeeds with prob-
ability 1/d , where d is the dimension of the system. We have
also used this result to find a (saturable) upper bound on the
relative power of POVMs and projective measurements for the
problem of unambiguous state discrimination.

We believe that our scheme will be useful in experimental
implementations of generalized measurements. Complicated
global unitaries, that are necessary in the Naimark construc-
tion, often introduce additional errors. We have observed
this kind of behavior in the experiments carried out on the
IBM Quantum Experience platform. Of course, if a given
experimental setup allows one to reliably implement unitary
operations on the extended system, then our method will not
be beneficial. However, we expect that for the inherently noisy
near-term quantum devices [62] our scheme might prove ad-
vantageous over the standard method that requires extension
of the Hilbert space.

Here we would like to state a number of interesting di-
rections of further research. First, it would be interesting to
explore if the techniques presented here can be used to show
that Bell nonlocality with respect to projective measurements
is equivalent to Bell nonlocality with respect to POVMs
[11,12], despite the fact that postselection performed in the
Bell scenario can be used to violate Bell inequalities by local
models [63]. Second, it is interesting to relate the probabil-
ity with which a given generalized measurement M can be
simulated using projective measurements and postselection
to the amount of white noise that is necessary to simulate
with projective measurements [24]. Also, it is intriguing to
connect the probability of success with the entanglement
cost of generalized measurements [58]. Another intriguing
question will be to ask how postselection of measurements
can be meaningfully used in an infinite-dimensional setting.
Last but not least, from the foundational perspective it is
natural to explore the role of postselection for measurements
in the general probabilistic theories that go beyond quantum
mechanics (a recent work [64] studied the role of classical
randomization and postprocessing exactly in this context).
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APPENDIX A: DETAILS REGARDING EXAMPLE 3

In the main text we did not prove the technical claims given
in Example 3. Here we present a justification of Eq. (13).

By the seminal results of Eldar [65] we know that for any
uniform ensemble of quantum states |ψi〉 there exists so-called
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“equal probability measurement” Meq (this measurement Meq

can be regarded as the analog of the “pretty-good measure-
ment” [5,66] used, e.g., in the context of minimal error state
discrimination). The measurement Meq attains the success
probability

pUSD(E, Meq ) = λmin(C), (A1)

where λmin(C) is the minimal eigenvalue of the d × d cor-
relation matrix Ci j = 〈ψi|ψ j〉. Therefore, for the problem
at hand we get the lower bound pPOVM

USD (Eran ) � λmin(Cran )
with Cran being the correlation matrix of Haar-random
unit vectors |ϕi〉 from CD. The minimal eigenvalue of
Cran has been studied in the mathematical literature [67]
and for typical ensembles Eran in the limit d, D → ∞,
d/D → γ ∈ (0, 1) we have λmin(Crand ) ≈ (1 − γ )2. In order
to bound the success probability pSPUSD(Eran ) we note that
generic Haar random vectors {|ϕi〉}d

i=1 are linearly indepen-
dent but not orthogonal and, therefore, by the virtue of
Lemma 2, we have pSPUSD(Eran ) � 1/d . On the other hand, we
have pSPUSD(Eran ) � (1/d )pPOVM

USD (Eran ). Combining this with
(1 − γ )2 � pPOVM

USD (Eran ) � 1, we finally obtain

d (1 − γ )2 � pPOVM
USD (Esym )

/
pSPUSD(Esym ) � d. (A2)

APPENDIX B: QUANTUM MEASUREMENT
TOMOGRAPHY

In order to reconstruct measurement done on the quantum
system, one needs to perform a detector tomography. In this
section we describe a simple method we chose to use it for
implemented measurements. Every two-dimensional effect Mi

can be written in the form of a rescaled Bloch vector:

Mi = αi

2
(1 + �ni �σ ), (B1)

where αi ∈ (0, 1] and |�n| � 1. To obtain the value of αi and
three components of real vector �ni, we used Born’s rule
pi = Tr(Miρ) = Tr[ αi

2 (1 + �ni �σ )ρ] and the freedom to choose
initial state ρ.

We performed four experiments for four different quantum
states, which we chose to be eigenstates of Pauli matrices.
Two of them were both eigenstates of σz, while two oth-
ers were eigenstates of σx and σy corresponding to positive
eigenvalues. Elementary calculations show that to obtain αi

one can add up statistics obtained for both eigenstates of σz.
Having this value calculated, in order to obtain components
of the Bloch vector, one has to simply transform Born’s rule
equation and use statistics obtained for eigenstates of all Pauli
matrices corresponding to positive eigenvalues.

By repeating the above procedure for all effects of POVM
M, one can reconstruct the whole measurement. In general,
this method may result in reconstructing unphysical nonpos-
itive operators. At the beginning of our work with IBM Q

devices, we have been surprised that such a thing has never
occurred, either in Naimark’s case or in our scheme. We
note that, in principle, in order to avoid reconstruction of
unphysical operators, one needs to implement optimization
algorithms, such as in [59]. The systematic positivity of
obtained operators probably results from the nature of noise
in IBM Q devices.

The analysis of errors occurring during the measurements
in IBM devices lies outside the scope of this paper and
will be the subject of future work. However, already at this
point we can describe a few subtle issues we encountered
while dealing with readout errors. We have noticed that a
systematic error occurs in IBM Q devices, namely, there
exists a constant bias towards obtaining the zero result for
any kind of qubit circuit. Natural explanation of such an
error might be a decoherence occurring during a readout. For
our scheme of implementation, we first identified a zero as
a non-post-selected result and a one as a postselected one.
Bias error resulted in postselection on average on more than
1/2 of the results. To fight this bias, we have doubled the
number of implemented circuits, and for half of them we
simply applied an X gate and relabeled the outcomes. The
data obtained from circuits with an additional X gate resulted
in postselection on less than 1/2 of the results, on average.
Finally, averaged data from standard circuits and circuits with
the x gate resulted in postselection on around 1/2 of the
data, on average, and always in reconstruction of positive
operators.

The analogous method was used in the Naimark imple-
mentation, where there are four possible x gate configurations:
(i) no x gates, (ii) an X gate only on the first qubit, (iii) an X
gate only on the second qubit, and (iv) X gates on both qubits.
This procedure also led to reconstruction in which all effects
were positive operators.

In practice, to compare Naimark’s construction with our
scheme, we needed equal numbers of experiments to calculate
probabilities pi. As described in the main text, the maximum
number of experiments in a single job request on IBM Q Ex-
perience is 8192, while the chosen method of randomization
required N > 8192 runs, the exact value of which was de-
pendent on eigenvalues of effects. To compare measurements
implemented by both methods, for Naimark’s construction
we have performed around (up to divisibility of N by 3
or 4) N experiments. After gaining statistics we calculated the
operational distance given in Eq. (15). It is quite interesting to
note that for three-outcome measurements, when theoretically
there should be only three possible outcomes, in experimen-
tal realization via Naimark’s construction there were always
some additional clicks on the fourth outcome. In QMT this
resulted in the appearance of the fourth “residual” effect,
which was, naturally, taken into account for computation of
Dop(M, Mexp).

APPENDIX C: GENERALIZED MEASUREMENTS FOR QMT EXPERIMENTS

In this section, we provide explicit matrix forms of all to-be-implemented POVMs and the ones reconstructed via the method
described above. The reconstructed matrix elements are given with numerical precision of three digits.
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1. Tetrahedral POVM [68]

Tetrahedral measurement Mtetra consists of effects with Bloch vectors pointing to vertices of a tetrahedron inscribed in the
Bloch sphere:

M1 =
[ 1

2 0

0 0

]
, M2 =

[ 1
6

1
2
√

3
1

2
√

3
1
3

]
, M3 =

⎡
⎣ 1

6
1

2
√

3
e−i 2π

3

1
2
√

3
e+i 2π

3
1
3

⎤
⎦, M4 =

⎡
⎣ 1

6
1

2
√

3
e+i 2π

3

1
2
√

3
e−i 2π

3
1
3

⎤
⎦. (C1)

Quantum measurement tomography for implementation using our scheme resulted in reconstruction of the following effects:

M1 =
[

0.489 −0.007 + 0.007i

−0.007 − 0.007i 0.016

]
, M2 =

[
0.167 0.226 − 0.003i

0.226 + 0.003i 0.327

]
, (C2)

M3 =
[

0.169 −0.107 − 0.195i

−0.107 + 0.195i 0.330

]
, M4 =

[
0.175 −0.112 + 0.191i

−0.112 − 0.191i 0.327

]
. (C3)

Quantum measurement tomography for implementation using Naimark’s construction resulted in reconstruction of the following
effects:

M1 =
[

0.462 −0.025 − 0.013i

−0.025 + 0.013i 0.052

]
, M2 =

[
0.169 0.167 − 0.017i

0.167 + 0.017i 0.282

]
, (C4)

M3 =
[

0.187 −0.079 − 0.162i

−0.079 + 0.162i 0.294

]
, M4 =

[
0.182 −0.062 + 0.192i

−0.062 − 0.192i 0.371

]
. (C5)

2. Trine POVM [69]

Trine measurement Mtrine consists of effects with Bloch vectors pointing to vertices of an equilateral triangle inscribed in the
Bloch sphere:

M1 =
[

2
3 0

0 0

]
, M2 =

[ 1
6

1
2
√

3
1

2
√

3
1
2

]
, M3 =

[ 1
6 − 1

2
√

3

− 1
2
√

3
1
2

]
. (C6)

Quantum measurement tomography for implementation using our scheme resulted in reconstruction of the following effects:

M1 =
[

0.645 −0.004 + 0.004i

−0.004 − 0.004i 0.021

]
, M2 =

[
0.178 0.272 − 0.002i

0.272 + 0.002i 0.489

]
, (C7)

M3 =
[

0.177 −0.268 − 0.001i

−0.268 + 0.001i 0.490

]
. (C8)

Quantum measurement tomography for implementation using Naimark’s construction resulted in reconstruction of the following
effects:

M1 =
[

0.599 0.003 − 0.021i

0.003 + 0.021i 0.072

]
, M2 =

[
0.192 0.210 + 0.004i

0.210 − 0.004i 0.403

]
, (C9)

M3 =
[

0.170 −0.224 + 0.019i

−0.224 − 0.019i 0.460

]
, M4 =

[
0.038 0.011 − 0.003i

0.011 + 0.003i 0.065

]
. (C10)

Note, additionally, the fourth effect mentioned in the previous section.

3. Random four-outcome POVM

The last of the implemented POVMs was constructed randomly. To generate a random POVM, we constructed a Haar-random
four-dimensional unitary and took the first two elements of each column to define vectors that were used as effects of the
four-outcome POVM. Matrix elements are given with numerical precision of three digits:

M1 =
[

0.288 0.061 − 0.049i

0.061 + 0.049i 0.021

]
, M2 =

[
0.063 0.070 − 0.109i

0.070 + 0.109i 0.264

]
, (C11)

M3 =
[

0.470 0.17 − 0.002i

0.17 + 0.002i 0.062

]
, M4 =

[
0.179 −0.301 + 0.160i

−0.301 − 0.160i 0.653

]
. (C12)
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FIG. 2. Quantum circuit needed to implement POVM using Naimark’s construction method. Additional Hadamard gates at the center are
needed due to one-way connectivity of CNOT gates on IBM hardware.

Quantum measurement tomography for implementation using our scheme resulted in reconstruction of the following effects:

M1 =
[

0.281 0.054 − 0.046i

0.054 + 0.046i 0.029

]
, M2 =

[
0.068 0.068 − 0.101i

0.068 + 0.101i 0.261

]
, (C13)

M3 =
[

0.455 0.160 − 0.002i

0.160 + 0.002i 0.078

]
, M4 =

[
0.196 −0.282 + 0.149i

−0.282 − 0.149i 0.632

]
. (C14)

Quantum measurement tomography for implementation using
Naimark’s construction resulted in reconstruction of the fol-
lowing effects:

M1 =
[

0.313 0.060 − 0.044i

0.060 + 0.044i 0.064

]
,

M2 =
[

0.089 0.038 − 0.079i

0.038 + 0.079i 0.303

]
, (C15)

M3 =
[

0.411 0.129 + 0.009i

0.129 − 0.009i 0.106

]
,

M4 =
[

0.187 −0.227 + 0.114i

−0.227 − 0.114i 0.528

]
. (C16)

APPENDIX D: GENERAL QUANTUM CIRCUITS
USED IN IMPLEMENTATION

In this section we provide a pictorial presentation of
quantum circuits needed for implementation of general
qubit POVMs using Naimark’s construction method and our
scheme. In Figs. 2 and 3, SU(2) denotes the arbitrary local
unitary on the qubit and H is a Hadamard gate. The quantum

register is denoted by QR with the subscript being a label of
a qubit, whereas the classical register is merged into one line
denoted by CR.

In principle, in the qubit case Naimark’s construction re-
quires implementation of a single circuit of the general form
shown in Fig. 2, whereas our scheme requires implementation
of multiple (equal to the number of outcomes of the simulated
POVM) circuits of the form shown in Fig. 3.

FIG. 3. Quantum circuit needed to implement POVM using our
scheme.
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Acín, and M. Lewenstein, Phys. Rev. X 6, 041044 (2016).
[55] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster,

J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, Phys. Rev. A 76, 042319 (2007).

[56] S. Sheldon, E. Magesan, J. M. Chow, and J. M. Gambetta,
Phys. Rev. A 93, 060302(R) (2016).

[57] F. Vatan and C. Williams, Phys. Rev. A 69, 032315 (2004).

012351-10

https://doi.org/10.1063/1.1737053
https://doi.org/10.1063/1.1737053
https://doi.org/10.1063/1.1737053
https://doi.org/10.1063/1.1737053
https://doi.org/10.1109/JSTQE.2009.2029243
https://doi.org/10.1109/JSTQE.2009.2029243
https://doi.org/10.1109/JSTQE.2009.2029243
https://doi.org/10.1109/JSTQE.2009.2029243
https://doi.org/10.1080/00107510010002599
https://doi.org/10.1080/00107510010002599
https://doi.org/10.1080/00107510010002599
https://doi.org/10.1080/00107510010002599
https://doi.org/10.1364/AOP.1.000238
https://doi.org/10.1364/AOP.1.000238
https://doi.org/10.1364/AOP.1.000238
https://doi.org/10.1364/AOP.1.000238
https://doi.org/10.1088/1751-8113/48/8/083001
https://doi.org/10.1088/1751-8113/48/8/083001
https://doi.org/10.1088/1751-8113/48/8/083001
https://doi.org/10.1088/1751-8113/48/8/083001
https://doi.org/10.4086/cjtcs.2006.002
https://doi.org/10.4086/cjtcs.2006.002
https://doi.org/10.4086/cjtcs.2006.002
https://doi.org/10.4086/cjtcs.2006.002
https://doi.org/10.1103/PhysRevLett.91.120403
https://doi.org/10.1103/PhysRevLett.91.120403
https://doi.org/10.1103/PhysRevLett.91.120403
https://doi.org/10.1103/PhysRevLett.91.120403
https://doi.org/10.1103/PhysRevA.71.052108
https://doi.org/10.1103/PhysRevA.71.052108
https://doi.org/10.1103/PhysRevA.71.052108
https://doi.org/10.1103/PhysRevA.71.052108
https://doi.org/10.1103/PhysRevA.65.042302
https://doi.org/10.1103/PhysRevA.65.042302
https://doi.org/10.1103/PhysRevA.65.042302
https://doi.org/10.1103/PhysRevA.65.042302
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/PhysRevLett.117.150401
https://doi.org/10.1103/PhysRevLett.117.150401
https://doi.org/10.1103/PhysRevLett.117.150401
https://doi.org/10.1103/PhysRevLett.117.150401
https://doi.org/10.1103/PhysRevLett.117.260401
https://doi.org/10.1103/PhysRevLett.117.260401
https://doi.org/10.1103/PhysRevLett.117.260401
https://doi.org/10.1103/PhysRevLett.117.260401
https://doi.org/10.1103/PhysRevA.93.040102
https://doi.org/10.1103/PhysRevA.93.040102
https://doi.org/10.1103/PhysRevA.93.040102
https://doi.org/10.1103/PhysRevA.93.040102
https://doi.org/10.1103/PhysRevLett.103.240504
https://doi.org/10.1103/PhysRevLett.103.240504
https://doi.org/10.1103/PhysRevLett.103.240504
https://doi.org/10.1103/PhysRevLett.103.240504
https://doi.org/10.1103/PhysRevA.83.051801
https://doi.org/10.1103/PhysRevA.83.051801
https://doi.org/10.1103/PhysRevA.83.051801
https://doi.org/10.1103/PhysRevA.83.051801
https://doi.org/10.1103/PhysRevA.85.043808
https://doi.org/10.1103/PhysRevA.85.043808
https://doi.org/10.1103/PhysRevA.85.043808
https://doi.org/10.1103/PhysRevA.85.043808
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1103/PhysRevA.68.052303
https://doi.org/10.1103/PhysRevA.68.052303
https://doi.org/10.1103/PhysRevA.68.052303
https://doi.org/10.1103/PhysRevA.68.052303
http://arxiv.org/abs/arXiv:0810.2937
https://doi.org/10.1103/PhysRevLett.119.190501
https://doi.org/10.1103/PhysRevLett.119.190501
https://doi.org/10.1103/PhysRevLett.119.190501
https://doi.org/10.1103/PhysRevLett.119.190501
https://doi.org/10.22331/q-2017-04-25-3
https://doi.org/10.22331/q-2017-04-25-3
https://doi.org/10.22331/q-2017-04-25-3
https://doi.org/10.22331/q-2017-04-25-3
https://doi.org/10.1063/1.4994303
https://doi.org/10.1063/1.4994303
https://doi.org/10.1063/1.4994303
https://doi.org/10.1063/1.4994303
https://doi.org/10.22331/q-2019-04-26-133
https://doi.org/10.22331/q-2019-04-26-133
https://doi.org/10.22331/q-2019-04-26-133
https://doi.org/10.22331/q-2019-04-26-133
https://doi.org/10.1103/PhysRevLett.122.130404
https://doi.org/10.1103/PhysRevLett.122.130404
https://doi.org/10.1103/PhysRevLett.122.130404
https://doi.org/10.1103/PhysRevLett.122.130404
http://arxiv.org/abs/arXiv:1901.08127
https://doi.org/10.1016/0375-9601(88)90840-7
https://doi.org/10.1016/0375-9601(88)90840-7
https://doi.org/10.1016/0375-9601(88)90840-7
https://doi.org/10.1016/0375-9601(88)90840-7
http://arxiv.org/abs/arXiv:1707.03429
https://doi.org/10.1063/1.2008996
https://doi.org/10.1063/1.2008996
https://doi.org/10.1063/1.2008996
https://doi.org/10.1063/1.2008996
https://doi.org/10.1007/s11128-011-0330-2
https://doi.org/10.1007/s11128-011-0330-2
https://doi.org/10.1007/s11128-011-0330-2
https://doi.org/10.1007/s11128-011-0330-2
https://doi.org/10.1088/1751-8113/46/37/375302
https://doi.org/10.1088/1751-8113/46/37/375302
https://doi.org/10.1088/1751-8113/46/37/375302
https://doi.org/10.1088/1751-8113/46/37/375302
https://doi.org/10.1103/PhysRevLett.111.160402
https://doi.org/10.1103/PhysRevLett.111.160402
https://doi.org/10.1103/PhysRevLett.111.160402
https://doi.org/10.1103/PhysRevLett.111.160402
https://doi.org/10.1103/PhysRevLett.113.020501
https://doi.org/10.1103/PhysRevLett.113.020501
https://doi.org/10.1103/PhysRevLett.113.020501
https://doi.org/10.1103/PhysRevLett.113.020501
https://doi.org/10.1088/1464-4266/6/6/005
https://doi.org/10.1088/1464-4266/6/6/005
https://doi.org/10.1088/1464-4266/6/6/005
https://doi.org/10.1088/1464-4266/6/6/005
https://doi.org/10.1103/PhysRevApplied.7.054018
https://doi.org/10.1103/PhysRevApplied.7.054018
https://doi.org/10.1103/PhysRevApplied.7.054018
https://doi.org/10.1103/PhysRevApplied.7.054018
https://doi.org/10.1007/s11128-017-1784-7
https://doi.org/10.1007/s11128-017-1784-7
https://doi.org/10.1007/s11128-017-1784-7
https://doi.org/10.1007/s11128-017-1784-7
https://doi.org/10.1103/PhysRevA.97.032102
https://doi.org/10.1103/PhysRevA.97.032102
https://doi.org/10.1103/PhysRevA.97.032102
https://doi.org/10.1103/PhysRevA.97.032102
https://doi.org/10.1103/PhysRevLett.111.100501
https://doi.org/10.1103/PhysRevLett.111.100501
https://doi.org/10.1103/PhysRevLett.111.100501
https://doi.org/10.1103/PhysRevLett.111.100501
https://doi.org/10.1038/ncomms3028
https://doi.org/10.1038/ncomms3028
https://doi.org/10.1038/ncomms3028
https://doi.org/10.1038/ncomms3028
https://doi.org/10.1016/S0375-9601(98)00827-5
https://doi.org/10.1016/S0375-9601(98)00827-5
https://doi.org/10.1016/S0375-9601(98)00827-5
https://doi.org/10.1016/S0375-9601(98)00827-5
https://doi.org/10.1103/PhysRevLett.90.257901
https://doi.org/10.1103/PhysRevLett.90.257901
https://doi.org/10.1103/PhysRevLett.90.257901
https://doi.org/10.1103/PhysRevLett.90.257901
https://doi.org/10.1007/s00220-007-0221-7
https://doi.org/10.1007/s00220-007-0221-7
https://doi.org/10.1007/s00220-007-0221-7
https://doi.org/10.1007/s00220-007-0221-7
https://doi.org/10.1103/PhysRevA.93.062112
https://doi.org/10.1103/PhysRevA.93.062112
https://doi.org/10.1103/PhysRevA.93.062112
https://doi.org/10.1103/PhysRevA.93.062112
https://doi.org/10.1103/PhysRevX.6.041044
https://doi.org/10.1103/PhysRevX.6.041044
https://doi.org/10.1103/PhysRevX.6.041044
https://doi.org/10.1103/PhysRevX.6.041044
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevA.93.060302
https://doi.org/10.1103/PhysRevA.93.060302
https://doi.org/10.1103/PhysRevA.93.060302
https://doi.org/10.1103/PhysRevA.93.060302
https://doi.org/10.1103/PhysRevA.69.032315
https://doi.org/10.1103/PhysRevA.69.032315
https://doi.org/10.1103/PhysRevA.69.032315
https://doi.org/10.1103/PhysRevA.69.032315


SIMULATING ALL QUANTUM MEASUREMENTS USING … PHYSICAL REVIEW A 100, 012351 (2019)

[58] R. Jozsa, M. Koashi, N. Linden, S. Popescu, S. Presnell,
D. Shepherd, and A. Winter, Quantum Inf. Comput. 3, 405
(2003).

[59] J. S. Lundeen, A. Feito, H. Coldenstrodt-Ronge, K. L. Pregnell,
C. Silberhorn, T. C. Ralph, J. Eisert, M. B. Plenio, and I. A.
Walmsley, Nat. Phys. 5, 27 (2008).

[60] Z. Puchała, Ł. Pawela, A. Krawiec, and R. Kukulski, Phys. Rev.
A 98, 042103 (2018).

[61] M. Sedlák and M. Ziman, Phys. Rev. A 90, 052312 (2014).
[62] J. Preskill, Quantum 2, 79 (2018).

[63] N. Gisin and B. Gisin, Phys. Lett. A 260, 323 (1999).
[64] S. N. Filippov, T. Heinosaari, and L. Leppäjärvi, Phys. Rev. A

97, 062102 (2018).
[65] Y. C. Eldar, IEEE Trans. Inf. Theory 49, 446 (2003).
[66] For the details of the construction of Meq see Sec. 4 of [65].
[67] T. Jiang, Sankhya: The Ind. J. Stat. (2003–2007) 66, 35

(2004).
[68] J. M. Renes, Phys. Rev. A 70, 052314 (2004).
[69] S. T. Flammia, A. Silberfarb, and C. M. Caves, Found. Phys.

35, 1985 (2005).

012351-11

https://dl.acm.org/citation.cfm?id=2011546%20
https://doi.org/10.1038/nphys1133
https://doi.org/10.1038/nphys1133
https://doi.org/10.1038/nphys1133
https://doi.org/10.1038/nphys1133
https://doi.org/10.1103/PhysRevA.98.042103
https://doi.org/10.1103/PhysRevA.98.042103
https://doi.org/10.1103/PhysRevA.98.042103
https://doi.org/10.1103/PhysRevA.98.042103
https://doi.org/10.1103/PhysRevA.90.052312
https://doi.org/10.1103/PhysRevA.90.052312
https://doi.org/10.1103/PhysRevA.90.052312
https://doi.org/10.1103/PhysRevA.90.052312
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1016/S0375-9601(99)00519-8
https://doi.org/10.1016/S0375-9601(99)00519-8
https://doi.org/10.1016/S0375-9601(99)00519-8
https://doi.org/10.1016/S0375-9601(99)00519-8
https://doi.org/10.1103/PhysRevA.97.062102
https://doi.org/10.1103/PhysRevA.97.062102
https://doi.org/10.1103/PhysRevA.97.062102
https://doi.org/10.1103/PhysRevA.97.062102
https://doi.org/10.1109/TIT.2002.807291
https://doi.org/10.1109/TIT.2002.807291
https://doi.org/10.1109/TIT.2002.807291
https://doi.org/10.1109/TIT.2002.807291
https://doi.org/10.1103/PhysRevA.70.052314
https://doi.org/10.1103/PhysRevA.70.052314
https://doi.org/10.1103/PhysRevA.70.052314
https://doi.org/10.1103/PhysRevA.70.052314
https://doi.org/10.1007/s10701-005-8658-z
https://doi.org/10.1007/s10701-005-8658-z
https://doi.org/10.1007/s10701-005-8658-z
https://doi.org/10.1007/s10701-005-8658-z

