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Coherence is one of the most basic concepts and resources in quantum information. To clear the role coherence
plays on the essential operator level in Grover’s search algorithm, here we discuss the coherence dynamics of
the state after each basic operator is applyied. As it is known, Grover’s search algorithm repeats the application
of Grover operator G, which can be decomposed into G = H⊗nPH⊗nO, where H is Hadamard operator, P is
the condition phase-shift operator, and O is the oracle operator. First, we show that O and P are incoherent
operators while H⊗n is coherent. Second, we prove that the amount of the operator coherence of the first H⊗n

and the operator coherence produced or depleted by H⊗n depends not only on the size of the database and the
success probability, but also on target states. Moreover, the amount of operator coherence is larger when the
superposition state of targets is entangled rather than product. Third, we show that the two H⊗n have different
effects on coherence that one produces coherence and the other depletes coherence, and the depletion plays a
major role. Therefore, the coherence is vibrating during the search process and the overall effect is that coherence
is in depletion.
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I. INTRODUCTION

Coherence, as one of the essential quantum properties
which derived from the superposition principle of quantum
states, plays an important role in quantum physics [1,2] and
quantum information [3–5]. Coherence not only exists in bi-
partite and multipartite systems, but also exists in a single sys-
tem. However, a rigorous framework for quantifying coher-
ence was proposed by Baumgratz et al. recently [6]. From the
viewpoint of the resource theory, the authors established the
quantitative theory of coherence following the approach that
has been established for entanglement [7–9]. Following their
footsteps, the characterization and quantification of coherence
aroused a great deal of interest [10–15]. It is worth noting that
coherence can be converted to other quantum resources, such
as entanglement and discord, by suitable operations [16–19].
Egloff et al. [20] unified entanglement, discord, and coherence
as different aspects of a single underlying resource theory.

The role of coherence in quantum algorithms has attracted
people’s attention [21–27]. For the Deutsch-Jozsa algorithm,
Hillery showed that coherence can be viewed as a resource
in the sense that a bigger amount of coherence decreases
the failure of this algorithm [21]. In deterministic quantum
computation with one qubit (DQC1), Matera et al. [22] dis-
played that the precision is directly related to the recoverable
coherence.
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Grover’s search algorithm (GSA) [28], as one of the fa-
mous quantum algorithms, was introduced to speed up the
search process which is a quadratic improvement over its
classical one [29]. To achieve the speedup, it was proven that
multipartite entanglement is necessary for GSA operating on
pure state [30]. Therefore, a great deal of research works have
been done to investigate the properties of entanglement in
GSA [31–36]. These works showed that entanglement plays
an important role in GSA and relates to the success proba-
bility. As an important quantum resource, coherence in GSA
has been investigated [24–26]. Anand and Pati [24] studied
the relation between coherence and success probability in
the analog GSA, which was based on adiabatic Hamiltonian
evolution. They found that the success probability of the
algorithm is related to the amount of coherence. Shi et al.
[25] investigated the role of quantum coherence dynamics
in GSA. They showed that the behavior about the quantum
coherence depletion enhances the success probability. Refer-
ence [26] introduced a discrete coherence monotone named
the coherence number and showed the similar conclusion that
the enhancement of success probability consumes coherence
as iteration number increases. These works discussed the
coherence of the state after each iteration of G in GSA.

GSA repeats the application of Grover iteration G which
consists of G = H⊗nPH⊗nO, where H is Hadamard operator,
P is the condition phase-shift operator, and O is the oracle
operator. To investigate how these operators contribute to
coherence and the relationship among them and the success
probability, in this paper, we would investigate the coherence
dynamics of each basic operator in GSA. We show that O
and P are incoherent operators while two H⊗n are coherent
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operators. The two H⊗n have different effects on coherence
that one produces coherence and the other depletes coherence
in terms of the l1 norm of coherence. Therefore, in the whole
process, the coherence is vibrating. With the help of O, P
which are incoherent but entangling operators, the vibration of
the coherence is weakened. We discuss different cases of the
target states and show that the coherence of the state after the
first H⊗n is lower when the target states are product states than
that when the target states are entangled states. In addition,
the amount of the operator coherence depends directly on the
success probability and also on the target states.

The paper is structured as follows. In Sec. II, we review
GSA and conceptions about incoherent states, incoherent
operators, and the previous works on coherence dynamics in
GSA. Then, in Sec. III, we investigate the coherence dynamics
of the states after the four basis operators applied in GSA. In
particular, in Sec. IV, we discuss the operator coherence for
different cases of the target states. In Sec. V, we study the
coherence production and depletion by the changes before and
after the basis operators are applied. In addition, in Sec. VI,
we compare our works with previous works on coherence
dynamics in GSA. Finally in Sec. VII, we conclude with a
summary and future works.

II. PRELIMINARIES

In this section, we recall Grover’s search algorithm (GSA)
and definitions about quantum coherence, and then review the
coherence dynamics in GSA.

A. Grover’s search algorithm

Suppose we search through a set of N = 2n elements and
the task is to find out one of t targets which satisfy some
special conditions. Grover’s search algorithm employs n-qubit
pure states and begins with the state |0〉⊗n. Then, Hadamard
operator H , which the corresponding matrix representation
is H = 1√

2
[1 1
1 −1], is applied to each qubit |0〉. Therefore,

H⊗n is applied to |0〉⊗n and then the state is transferred into
an equal superposition state of all computational basis states
|ψ0〉 = 1/

√
N

∑N−1
x=0 |x〉 , which can be more conveniently

written as

|ψ0〉 =
√

N − t

N
|χ0〉 +

√
t

N
|χ1〉 , (1)

where |χ0〉 = 1√
N−t

∑
xn

|xn〉 denotes the superposition of all

the states |xn〉 that are not-target states, and |χ1〉 = 1√
t

∑
xs

|xs〉
represents the superposition of all the states |xs〉 that are
targets (i.e., the solutions of search problem).

The algorithm then repeats the application of a quantum
subroutine, which is named as Grover iteration or Grover
operator and denoted as G. The Grover iteration consists of
the application of four basis operators:

(i) Apply the oracle O, where the oracle consists of a func-
tion f (x): f (x) = 1 if x ∈ {xs}, else f (x) = 0. It inverts the
target states and leaves the not-target states unchanged, i.e.,

O =
∑

x

(−1) f (x) |x〉 〈x| = I − 2
∑

xs

|xs〉 〈xs| .

(ii) Apply the Hadamard operator H⊗n.

(iii) Apply the conditional phase shift operator P, with
every computational basis state except |0〉 receiving a phase
shift of −1,

P |x〉 → −(−1)δx0 |x〉.

It was shown that P = 2 |0〉 〈0| − I .
(iv) Apply the Hadamard operator H⊗n.
In other words, Grover operator G = H⊗nPH⊗nO.
For the equal superposition state |ψ0〉 , k iterations of

Grover operator give

|ψk〉 ≡ Gk |ψ0〉 = cos θk |χ0〉 + sin θk|χ1〉, (2)

with θk = (2k + 1)θ and θ = arcsin
√

t/N when 1 � t 	 N .
Accordingly, the success probability of |ψk〉 to find out one
of the targets is pk = sin2 θk . In the limit t 	 N , the optimal
number of iterations is kopt = 
π

4

√
N/t�.

B. Incoherent states, incoherent operators,
and coherence measures

The definitions of incoherent states and incoherent opera-
tions were presented by Baumgratz et al. in Ref. [6], where
quantum operations are specified by a set of Kraus operators.
Since the operators in Grover’s algorithm are unitary, we
present the notion of incoherent unitary operator following the
definition of incoherent operations as follows.

Definition 1 (Incoherent states). In d-dimensional Hilbert
space H, fix a particular basis {|i〉}i=1,2...d . If the density
matrix of a state is diagonal in this basis, then this state is
called incoherent, and we label the set of incoherent states by
I ⊂ H.

Definition 2 (Incoherent unitary operator). Let U be a
unitary operator. Then, it is called an incoherent operator if
it fulfils UIU † ⊂ I.

According to Refs. [10,11,20], all the unitary incoherent
operators have the form as presented in Lemma 1.

Lemma 1. All the unitary incoherent operators take the
form U = ∑

i e jαi |β(i)〉 〈i|, where β(i) is relabeling of {i}.
According to Lemma 1, it is easy to learn that a diago-

nal unitary operator is incoherent. In the view of quantum
resource theory [37], an incoherent unitary operator is “free”
of coherence.

Based on the work in Ref. [6], a number of coherence
measures, such as the relative entropy of coherence [6], the
l1 norm of coherence, geometric coherence [17], and the
coherence of formation [19], have been proposed. Among
these quantifiers, the l1 norm of coherence Cl1 is the simplest
and direct, which is defined as all the nonzero off-diagonal el-
ements of a density matrix. Hence, we choose it to investigate
the coherence in GSA.

The expression of the l1 norm of coherence for a given
density operator ρ is defined as [6]

Cl1 (ρ) ≡
∑
i 
= j

|ρi j |, (3)

where i, j are the ith row and jth column in ρ.
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C. Coherence in Grover’s search algorithm

Let the density operator of state |ψk〉 be ρk = |ψk〉 〈ψk| in
GSA. By employing Eqs. (2) and (3), the coherence dynamics
in GSA is [25]

Cl1 (ρk ) = (
√

t sin θk + √
N − t cos θk )2 − 1 (4)

when 0 � k � kopt. Using Eq. (4), the l1 norm of coherence
can be rewritten as a function of the success probability pk =
sin2 θk as

Cl1 (ρk ) = [
√

t pk +
√

(N − t )(1 − pk )]2 − 1. (5)

According to Eq. (5), Cl1 (ρk ) is indeed a smooth function of
pk in the interval [0,N]. In the asymptotic limits 1 � t 	 N ,
the l1 norm of coherence Cl1 (ρk ) takes the simple form [25]

Cl1 (ρk ) � −pkN + N. (6)

Here, A � B means that A asymptotically equals to B under
the condition t 	 N . Obviously, the coherence is monotone
decreasing with the success probability increasing. From
another perspective, the success probability depends on the
quantum coherence depletion in terms of l1 norm of coherence
measure [25].

III. COHERENCE DYNAMICS OF OPERATORS
IN GROVER’S SEARCH ALGORITHM

To clarify the characters of coherence of the state after
each basic operator applied in GSA, we give the following
definition.

Definition 3 (Operator coherence). Let U be a unitary op-
erator. Operator coherence of U of a state |ψ〉 is the coherence
of the state after U operating on |ψ〉 that C(ρU ) = C(UρU +),
where ρ = |ψ〉 〈ψ |.

Now, we discuss the characters of coherence of the state
after the four basic operators applied in each application of
one Grover iteration in GSA.

A. Operator coherence of oracle and conditional
phase-shift operators

According to the action of the oracle, the state |ψk〉 after O
applied on becomes∣∣ψkO

〉 ≡ O |ψk〉 = cos θk |χ0〉 − sin θk|χ1〉. (7)

Denote ρkO = |ψkO〉 〈ψkO |, according to Eqs. (3) and (7), we
have

Cl1

(
ρkO

) = Cl1 (ρk ). (8)

Obviously, the oracle does not change the coherence.
Moreover, we can show that the oracle and the conditional

phase-shift operator are incoherent operators in the following
theorems.

Theorem 1. The oracle O = I − 2
∑

xs
|xs〉 〈xs| is an inco-

herent operator, where {xs} is the set of target states.
Proof. The expression of oracle is

O = I − 2
∑

xs

|xs〉 〈xs| =
∑

x

(−1) f (x) |x〉 〈x|,

where f (x) = 1 if x ∈ {xs}, else f (x) = 0. Observably, the
oracle is a diagonally unitary. It is clear that the oracle is an
incoherent operator according to Lemma 1. �

Theorem 2. The condition phase-shift operator P = 2|0〉
〈0| − I is an incoherent operator.

Proof. For the condition phase-shift operator P, we have

P = 2 |0〉 〈0| − I =
∑

x

−(−1)δx0 |x〉 〈x|.

According to Lemma 1, it is easy to obtain that the conditional
phase-shift operator P is an incoherent operator. �

B. Operator coherence of Hadamard operator

It is known that coherence depends on the preselected
basis states. For convenience, we choose the computational
basis states as the preselected basis states. For N-dimension
Hadamard matrix, aside from the common coefficient 1/

√
N ,

it has the following properties:
(i) The elements of first row and first column are 1.
(ii) In any other row or column, a half of the elements are

1, and the others are −1.
When H⊗n applies on a superposition state |ψ〉 =∑N−1
x=0 ax |x〉, we have

H⊗n |ψ〉 = 1√
N

N−1∑
x=0

N−1∑
y=0

ax(−1)xy|y〉. (9)

Let Ak = cos θk and Bk = sin θk, k ∈ [0, kopt]. For clarity,
denote the first H⊗n following O as HO and the second H⊗n

following P as HP in one Grover iteration. Denote |ψkHO
〉 the

state after HO applied that after k iterates of G and cascades
O applied and |ψkHP

〉 the state after HP applied that after k
iterates of G and cascades PH⊗nO applied:

∣∣ψkHO

〉 ≡ H⊗n
∣∣ψkO

〉

= 1√
N

N−1∑
y=0

⎡
⎣ Ak√

N − t

∑
x∈{xn}

(−1)xy− Bk√
t

∑
x∈{xs}

(−1)xy

⎤
⎦ |y〉

(10)

and

∣∣ψkHP

〉 ≡ H⊗n(PH⊗nO |ψk〉) = |ψk+1〉
= Ak+1 |χ0〉 + Bk+1|χ1〉. (11)

According to Eqs. (6) and (11), it is easy to obtain

Cl1

(
ρkHP

) � −pk+1 N + N. (12)

In the following part, we will discuss the properties of
the coherence of |ψkHO

〉. Denote Hy,x the element of y row x
column in Hadamard matrix and ty is as

ty = |{Hy,x|Hy,x = 1, x ∈ {xs}}|, (13)
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where {xs} denotes the set of all target states. We can derive
that

Cl1 (ρkHO
) = 1

N

⎡
⎣2

∑
y 
=0

|(t − 2ty)(Ak

√
N − t − Bk

√
t )|

×
(

Ak√
N − t

+ Bk√
t

)
+

∑
y, y′ 
= 0
y 
= y′

|(t − 2ty)(t − 2ty′ )|

×
(

Ak√
N − t

+ Bk√
t

)2
⎤
⎦. (14)

The derivation of Eq. (14) is given in Appendix A. Accord-
ing to Eq. (14), we can obtain that Cl1 (ρkHO

) relates to |t − 2ty|.
Since t, ty depend on the target states, the coherence Cl1 (ρkHO

)
is easy to calculate once the target states are given. However,
it is difficult to obtain a universal theoretical result without
knowing the target states. In the asymptotic limits t 	 N , we
can derive the following theorem.

Theorem 3. The coherence of the state |ψkHO
〉 can be ex-

pressed as

Cl1

(
ρkHO

) � γ (t, ty)pkN

when 1 � t 	 N , where ty ∈ [0, t] is the number of 1 in y
row xs columns in Hadamard matrix, γ (t, ty) is a positive
coefficient about t and ty, and pk is the success probability
after k iterations of Grover operator.

Proof. For
∑

y 
=0 |(t − 2ty)| in Eq. (14), the summation
is over all y ∈ (0, N − 1] and ty ∈ [0, t], hence,

∑
y 
=0 |(t −

2ty)| = γ ′(t, ty)N , where γ ′(t, ty) is a positive coefficient
about t and ty.

Therefore, when t 	 N , Eq. (14) becomes

Cl1

(
ρkHO

) � 1

N

∑
y, y′ 
= 0
y 
= y′

[
|(t − 2ty)(t − 2ty′ )|

(
Bk√

t

)2
]

= 1

N

∑
y, y′ 
= 0
y 
= y′

|(t − 2ty)(t − 2ty′ )|
t

B2
k

� γ (t, ty)pkN, (15)

where pk = B2
k and γ (t, ty) = γ ′(t, ty)γ ′(t, ty′ )/t , i.e., γ (t, ty)

is a positive coefficient about t and ty. �
Clearly, the coherence of the state |ψkHO

〉 is a positive
function of the success probability pk and the size N of the
database; meanwhile, it is also a positive function of target
states (t, ty).

IV. COHERENCE IN GROVER’S ALGORITHM FOR
SPECIAL TARGET STATES

In this section, we discuss some properties of the operator
coherence in GSA by supposing the target states are known as
the following. Since the operator coherence of O, P, HP are
clear in Sec. III, we focus on the operator coherence of HO.

A. For product states

For the special cases that |χ1〉 is a product state, we have
the following theorem.

Theorem 4. When the superposition state |χ1〉 of t target
states is a product state, the coherence of the state |ψkHO

〉 is
Cl1 (ρkHO

) � N
t pk when 1 � t 	 N .

Proof. For an n-qubits system, when |χ1〉 is a product state,
it can be written as

|χ1〉 = |φ1〉 |φ2〉 . . . |φn〉, (16)

where |φi〉 is a single-qubit state. Since |χ1〉 = 1√
t

∑
xs

|xs〉 is
an equal superposition state of t targets, when it is a product
state, |φi〉 will be |0〉 , |1〉, and (|0〉 + |1〉)/

√
2 and there are

l = log2 t items of (|0〉 + |1〉)/
√

2. Denote |χ1H 〉 = H⊗n |χ1〉.
It is easy to obtain that |χ1H 〉 is also a product state. Moreover,
there are n − l items of (|0〉 ± |1〉)/

√
2 in |χ1H 〉 which means

that there are 2(n−l ) = N/t states in the computational basis.
After k iterates of G and cascades O and H⊗n are applied,

the state becomes∣∣ψkHO

〉 = H⊗nO |ψk〉
= AkH⊗n |χ0〉 − BkH⊗n |χ1〉
= AkH⊗n |ψ0〉 − B0 |χ1〉

A0
− BkH⊗n |χ1〉

= Ak

A0
|0〉 −

(
Bk + AkB0

A0

)
|χ1H 〉. (17)

Therefore, we have

∣∣ρkHO

〉 =
(

Ak

A0

)2

|0〉 〈0|

− Ak

A0

(
Bk + AkB0

A0

)
(|0〉 〈χ1H | + |χ1H 〉 〈0|)

+
(

Bk + AkB0

A0

)2

|χ1H 〉 〈χ1H | (18)

and

Cl1

(
ρkHO

) = 2
Ak (BkA0 + AkB0)

A2
0

√
N

t

+
(

Bk + AkB0

A0

)2(N

t
− 1

)
. (19)

In the asymptotic limits t 	 N , we can derive

Cl1

(
ρkHO

) � N

t
B2

k = N

t
pk . (20)

�

B. For general t

To further demonstrate the properties of the operator co-
herence in GSA, we first discuss the case when t � 4, then
extend to general cases in the following.

Theorem 5. When the number of targets is small that t � 4
in Grover’s search algorithm, the coherence of the state |ψkHO

〉
will be as follows when t 	 N :

(1) when t = 1, Cl1 (ρkHO
) � pkN ;
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(2) when t = 2, Cl1 (ρkHO
) � N

2 pk;
(3) when t = 3, Cl1 (ρkHO

) � 3N
4 pk;

(4) when t = 4,

Cl1

(
ρkHO

) �

⎧⎪⎪⎨
⎪⎪⎩

N

4
pk, |χ1〉 is product ;

9N

16
pk, otherwise.

Proof. (1) Let us first discuss the case of one single target
state, i.e., t = 1. For one single target state, it is always a
product state. According to Theorem 4, it is easy to obtain
that

Cl1

(
ρkHO

) � pkN (21)

when 1 � t 	 N .
(2) When the target number t = 2, we denote the target

states are |xs1〉 and |xs2〉 (xs1 < xs2 ). Then, we have |χ1〉 =
1√
2
(|xs1〉 + |xs2〉). We discuss the two cases that |xs1〉 = |0〉 and

|xs1〉 
= |0〉, respectively.
Case I: |xs1〉 = |0〉. According to the properties of the

matrix of H⊗n, its elements Hy,x are all 1 or −1; particularly,
Hy,0 = 1 for each y. According to Eq. (13), we have

ty =
{

1, if Hy,x2 = −1

2, if Hy,x2 = 1.

For y ∈ [0, N − 1], the numbers of y satisfying ty = 1 and 2
are both N/2. Therefore, we have

N−1∑
y=0

|t − 2ty| = N

2
|2 − 2 × 2| + N

2
|2 − 2 × 1| = N.

Case II: |xs1〉 
= |0〉. According to the properties of the
matrix of H⊗n and Eq. (13), we have

ty =

⎧⎪⎨
⎪⎩

0, if {Hy,xs} = {−1,−1}
1, if {Hy,xs} = {1,−1}
2, if {Hy,xs} = {1, 1}.

Then, we will obtain that the numbers of y satisfying ty =
0, 1, 2 are N/4, N/2, N/4 for y ∈ [0, N − 1]. Therefore, we
also have

∑
y |t − 2ty| = N .

As a result, according to Eq. (14), we have

Cl1

(
ρkHO

) � 2(
√

N − 2Ak −
√

2Bk )

(
Ak√

N − 2
+ Bk√

2

)

+ N

(
Ak√

N − 2
+ Bk√

2

)2

. (22)

For t 	 N , we can derive

Cl1

(
ρkHO

) � N

2
pk . (23)

(3) When the target number t = 3, according to Eq. (14),
the coherence is always

Cl1

(
ρkHO

) = 1

N

⎡
⎣2

∑
y 
=0

|(t − 2ty)(Ak

√
N − 3 − Bk

√
3)|

×
(

Ak√
N − 3

+ Bk√
3

)
+

∑
y, y′ 
= 0
y 
= y′

|(3−2ty)(3−2ty′ )|

×
(

Ak√
N − 3

+ Bk√
3

)2
⎤
⎦. (24)

The numbers of y satisfying ty = 0, 1, 2, 3 are either
0, 3N

8 , 3N
8 , N

4 or N
8 , 3N

8 , 3N
8 , N

8 , respectively. Nevertheless, they
are the same from the viewpoint of l1 norm of coherence. In
the asymptotic limits t 	 N , we can derive

Cl1

(
ρkHO

) � 3N

4
pk . (25)

(4) For t = 4, there are two cases that |χ1〉 is a product state
or not.

Case 1: When |χ1〉 is a product state, ty just are 0,2,4
without 1,3 and the ratio among them are 1 : 6 : 1. In this case,
according to Theorem 4, it is easy to obtain that Cl1 (ρkHO

) �
N
4 pk .

Case 2: When |χ1〉 is not a product state, ty are 0,1,2,3,4
with ratio 1 : 4 : 6 : 4 : 1. For this case that |χ1〉 is an entan-
gled state, and according to Eq. (14), we have Cl1 (ρkHO

) �
9N
16 pk when 4 	 N . �

According to Theorems 4 and 5, we get the conjecture for
general cases.

Conjecture 1. The coherence Cl1 (ρkHO
) of the state |ψkHO

〉
depends on the success probability pk and the size N of the
database and the target states. It may be

N

t
pk � Cl1

(
ρkHO

)
� pkN

when 1 � t 	 N . The upper bound can reach when t = 1
while the lower bound obtains when |χ1〉 is a product state.

V. COHERENCE PRODUCTION AND DEPLETION

In the above sections, we have discussed the coherence of
the states when the operators O, HO, P, HP are applied. Now,
we discuss how the coherence changes before and after these
operators are applied.

Definition 4 (Coherence production and depletion). Let U
be a unitary operator. Coherence production (depletion) when
the variation of coherence after and before U applied on |ψ〉
is positive (negative), i.e., �C(ρU ) > 0 [�C(ρU ) < 0], where
ρ = |ψ〉 〈ψ |.

Since O, P are incoherence operators, we can just discuss
the operator coherence of two H⊗n. Define the variations
of operator coherence between two consecutive iterations of
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HO, HP, G in Grover’s search algorithm as follows:

�C
(
ρkG

) ≡ Cl1 (ρk+1) − Cl1 (ρk ), (26)

�C
(
ρkHO

) ≡ Cl1

(
ρ(k+1)HO

) − Cl1

(
ρkHO

)
, (27)

�C
(
ρkHP

) ≡ Cl1

(
ρ(k+1)HP

) − Cl1

(
ρkHP

)
. (28)

Define the variations of suboperator coherence of each basic
H⊗nO, H⊗nP in one Grover iteration as follows:

�C
(
ρk�HO

) ≡ Cl1

(
ρkHO

) − Cl1 (ρk ), (29)

�C
(
ρk�HP

) ≡ Cl1

(
ρkHP

) − Cl1

(
ρkHO

)
. (30)

The properties of coherence production and depletion by
HO, HP, G can be concluded by the following theorems.

Theorem 6. When t 	 N , the variations of operator co-
herence between two consecutive iterations of HO, HP, G in
Grover’s search algorithm are

�C
(
ρkG

) � −(pk+1 − pk )N < 0,

�C
(
ρkHO

) � γ (t, ty)(pk+1 − pk )N > 0,

�C
(
ρkHP

) � −(pk+2 − pk+1)N < 0. (31)

Proof. By substituting Eq. (6) into (26), we get

�C
(
ρkG

) � −(pk+1 − pk )N.

Since pk = sin2 θk is monotonously increasing with k as θk ∈
[0, π/2], we have pk+1 > pk and

�C
(
ρkG

) � −(pk+1 − pk )N < 0.

Similarly, substitute Eq. (15) into (27), then

�C
(
ρkHO

) � γ (t, ty)(pk+1 − pk )N > 0,

and substitute Eq. (12) into (28), then

�C
(
ρkHP

) � −(pk+2 − pk+1)N < 0.

The theorem holds. �
According to Theorem 6, HP and G deplete coherence and

their operator coherence depend only on the success proba-
bility pk and the size N of database. However, HO produces
coherence and its operator coherence depends on pk and the
size N of database, and also depends on the target states.

Furthermore, according to Theorem 6, the relationship
among the operator coherence of HO, HP, G is clear as
shown in Corollary 1.

Corollary 1. When t 	 N , the variations of operator co-
herence between two consecutive iterations of HO, HP, G in
Grover’s search algorithm satisfy

�C
(
ρkG

) � �C
(
ρ(k−1)HP

) � − 1

γ (t, ty)
�C

(
ρkHO

)
.

Theorem 7. When t 	 N , the variations of suboperator
coherence of HO, HP in one Grover iteration are

�C
(
ρk�HO

) � N{[γ (t, ty) + 1]pk − 1}{
� 0, [γ (t, ty) + 1]pk � 1

> 0, [γ (t, ty) + 1]pk > 1
(32)

and

�C
(
ρk�HP

) � N{1 − [γ (t, ty)pk + pk+1]}{
> 0, [γ (t, ty)pk + pk+1] � 1

� 0, [γ (t, ty)pk + pk+1] > 1.
(33)

Proof. Substitute Eqs. (6) and (15) into (29), then

�C
(
ρk�HO

) = [γ (t, ty) + 1]pkN − (−pkN + N )

= N{[γ (t, ty) + 1]pk − 1}. (34)

For [γ (t, ty) + 1]pk in Eq. (34), whether it is greater than 1
depends on γ (t, ty) and pk . That is,

�C
(
ρk�HO

) = N{[γ (t, ty) + 1]pk − 1}{
� 0, [γ (t, ty) + 1]pk � 1

> 0, [γ (t, ty) + 1]pk > 1.

Similarly, by substituting Eqs. (12) and (15) into (30), we can
obtain

�C
(
ρk�HP

) = N{1 − [γ (t, ty)pk + pk+1]}{
> 0, [γ (t, ty)pk + pk+1] � 1

� 0, [γ (t, ty)pk + pk+1] > 1.

�
According to Theorem 7, we have the following corollary.
Corollary 2. When t 	 N , in the curves of C(ρk�HP

) and
�C(ρk�HO

), there exists a turning point

kT �
⎡
⎣arcsin

√
1

γ (t,ty )+1

2θ

⎤
⎦,

where [x] is the rounded integer of x. When k � kT , HO

depletes coherence and HP produces coherence; when k >

kT , HO produces coherence and HP depletes coherence.
Proof. According to Eq. (32), there exists a turning point in

the curve of �C(ρk�HO
), where �C(ρk�HO

) = 0. Let kT be the
turning iteration. When t 	 N , we have γ (t, ty)pkT − 1 = 0.
Since pkT = sin2(2kT + 1)θ , we can obtain

kT �
⎡
⎣arcsin

√
1

γ (t,ty )+1

2θ

⎤
⎦.

Similarly, there also exists a turning point in the curve of
�C(ρk�HP

) according to Eq. (35) which asymptotically equals
to the above kT when t 	 N . �

According to Theorem 7 and Corollary 2, the coherence
variations of HO and HP in each suboperator of one Grover
iteration depend on the success probability and the target
states. In addition, we can obtain that there exist turning
points which depend on the target state (t, ty) in the curves of
�C(ρk�HO

) and �C(ρk�HP
). Before the turning point, the first

H⊗n with the help of O is negative that depletes the coherence;
while the second H⊗n with the help of P is negative that
depletes the coherence after the turning point.

Remark 1. According to the above Theorems 6 and 7 and
Corollaries 1 and 2, we obtain different results from different
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FIG. 1. The coherence dynamics with the search iteration. The
red dashed line is the success probability (pk), the black dotted line
is the coherence after k iterates of G, the blue line is the coherence
when O, H⊗n, P, H⊗n (corresponding to •, �, �, �) are applied
in each iteration, the light-green line is the coherence just H⊗n, H⊗n

without O and P. Here, the target numbers are t = 2 and the qubit
numbers are n = 16 (top) and n = 8 (bottom).

views of operator coherence in GSA. But, there is a unan-
imous conclusion that the two H⊗n always have different
effects on coherence that one produces coherence and the
other depletes coherence. Therefore, during the search pro-
cess, operator coherence is depleted and produced alternately
instead of depleted monotonously on the essential operator
level.

Examples. For clarity, we provide a diagrammatic sketch
of the operators’ coherence in Grover’s search algorithm in
Figs. 1 and 2 when t = 2 where γ (t, ty) = 1

2 . More examples
are presented in Appendix B. Note that we use Cl1/N instead
of Cl1 as y axis in figures for clarity. As can be seen from
Fig. 1, there is a turning iteration kT in the curve of opera-
tor coherence. When O → HO → P → HP is applied in one
Grover iterator, the coherence is “unchange → decrease →
unchange → increase” ask � kT while it is “unchange →
increase →unchange → decrease” as k > kT . In other words,
the coherence does not change when O and P applied while
it vibrates between 1 − pk and pk/t = pk/2 when H⊗n ap-
plied. Therefore, the operator coherence is oscillating during
the search processing. For comparison, we also present the
coherence when just two H⊗n are applied, where the coher-
ence vibrates between 1 and 0. Therefore, the incoherence
operators O and P weaken the vibration of coherence.

According to Fig. 2, the operator coherences of HO, HP,
and G begin and end with zero and �C(ρkG ) � �C(ρkHP

) �
−2�C(ρkHO

). The depletion plays a major role that the
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FIG. 2. (Top) The operator coherence of G, HO, HP (corre-
sponding to the green circle line, red dashed line, and black line).
(Bottom) The suboperator coherence of each HO (red dashed line)
and HP (black line) in one Grover iteration. Here the qubit numbers
are n = 16 and the target numbers are t = 2.

amount of coherence of depletion is more than that of the
production. Therefore, the overall affect is that coherence
depletes as the success probability improves. For suboperator
coherence of each HO and HP in one Grover iteration, there
exists a point kT that �C(ρ�kHO

) < 0 and �C(ρ�kHP
) > 0

which means HO depletes coherence and HP produces co-
herence when k � kT ; on the contrary, �C(ρ�kHO

) > 0 and
�C(ρ�kHP

) < 0 which means HO produces coherence and HP

depletes coherence when k > kT .

VI. COMPARISON WITH PREVIOUS WORKS

In order to clarify the contribution of this paper, we would
like to compare our work with most relevant previous works.

A. Comparison with Ref. [25]

In Ref. [25], Shi et al. investigated the role of coherence
depletion in GSA by using several typical measures of coher-
ence and quantum correlations. They discussed the coherence
of the state after each iteration of G applying on. In terms
of l1 norm of coherence measurement, the important result of
Ref. [25] is presented in the Sec. II. The authors showed that
the coherence of state after each G depends only on the size
of the database and the success probability. In the limit case,
the depletion of coherence enhances the success probability.
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In this work, on essential operator level, we discuss the
coherence of the states after operators O, P, H⊗n applied
in one G iteration. We show that the oracle operator O and
the condition phase operator P are incoherent operators while
H⊗n is typical coherent operator. The amount of coherence
of the state after H⊗n with the help of O or P in one Grover
iteration not only depends directly on the size of the database
and the success probability, but also on the targets’ number
and their positions. During the search process, coherence
is not always depleted, rather it is depleted and produced
alternately.

B. Comparison with Ref. [36]

In [36], we showed that H⊗n does not change entanglement
while O increases entanglement and R = H⊗nPH⊗n decreases
entanglement in terms of GME. Moreover, during the process,
there exists a turning point with the following properties.
Before the turning point, the Oracle O increases entanglement
and plays a major role, while R decreases entanglement and
makes more contribution to the entanglement after the turning
point.

In this paper, we show that O and P are incoherent opera-
tors while two H⊗n are coherent operators. There also exists
a turning point in the dynamic suboperator coherence during
the process on basic operator lever. Before that turning point,
the first H⊗n with the help of O is negative that depletes
coherence while the second H⊗n with the help of P is positive
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FIG. 3. The coherence dynamics with iteration number k for n =
16, t = 4. (Top) The target state |χ1〉 is a product state; (bottom) |χ1〉
is an entangled state. The red dashed line is the success probability
(pk), the blue line is the coherence when O, H⊗n, P, H⊗n are
applied in each iteration, the light-green line is the coherence just
for applying H⊗n, H⊗n without O and P.

that produces coherence; after the turning point, the first H⊗n

produces coherence while the second one depletes coherence.
Meanwhile, both H⊗n play important roles to coherence dur-
ing the whole search process.

Furthermore, we show that the coherence values between,
with, and without O and P are different. In other words, they
bring a cascade effect which makes the coherence change
when the oracle operator O or the condition phase operator P
is applied and then H⊗n is applied. When just H⊗n cascading
H⊗n is applied on |ψ0〉, where the coherence of the state
vibrates between 0 and 1. With the help of O, P, which are
incoherent but entangling operators, the coherence is vibrating
that it first decreases then increases before the turning point,
while it increases then decreases after the turning point. The
value of coherence is larger than 0 and smaller than 1. There-
fore, the entangling operators O and P weaken the vibration
of the coherence. The amount of operator coherence of the
first H⊗n is larger when |χ1〉 is an entangled state than that
when |χ1〉 is a product state. According to these works, we
can learn that entanglement has an important contribution to
operator coherence in GSA.

C. Discussion

According to the above comparisons, it is clear that as the
success probability improves, coherence as the resource is
depleted after each G application as the algorithm processes.
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FIG. 4. The operator coherence of G, HO, HP with iteration
number k for n = 16, t = 4. (Top) The target state |χ1〉 is a product
state; (bottom) |χ1〉 is an entangled state. The green circle line, the
red dashed line, and the black line correspond to the variations of the
operator coherence of G, HO, HP, respectively.
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FIG. 5. The suboperator coherence of each HO and HP in one
Grover iteration for n = 16, t = 4. (Top) The target state |χ1〉 is a
product state; (bottom) |χ1〉 is an entangled state. The red dashed
line and the black line correspond to the variations of suboperator
coherence of each HO and HP, respectively.

By means of our results, the two H⊗n are nonfree operations
from the resource theoretical point of view for coherence.
Different operators make different effects to coherence, and
the coherence is changed exactly by these nonfree opera-
tions. Moreover, its coherence depends directly on the success
probability. In other words, the success probability is directly
affected by the application of these nonfree operations.

VII. CONCLUSION

In this paper, to clear how the essential operators contribute
to the coherence and what affect the operator coherence has
in Grover’s search algorithm, we have studied the coherence
dynamics of the state in Grover’s algorithm via the l1 norm of
coherence.

We have shown that the oracle O and the phase-shift
operator P are incoherent operators while two Hadamard
operators H

⊗
n are coherent operators. Specifically, based on

the computational basis, the two H⊗n have different effects on
coherence that one produces coherence and another depletes
coherence. In other words, the coherence is vibrating during
the search process. We have also proved that the amount of
the operator coherence depends not only on the size of the
database and the success probability, but also on target states
during the search.

According to this work, we have discovered the roles the
four operators play to coherence in Grover’s search algorithm
and the relationship of operators’ coherence with the success
probability and target states. Entanglement and coherence are
two important resources, and we have shown that entangle-
ment has an impact on operator coherence in GSA. However,
how entanglement and coherence are directly connected with
each other is still a problem to be further clarified. Can we
find suitable measurements of entanglement and coherence
to obtain a conversion formula to describe their relationship?
On the other hand, the hidden meanings of the oscillation of
operator coherence in GSA are worthy to further study.
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APPENDIX A: PROOF OF EQ. (14)

Proof. For the sake of simplicity, denote Dy the coefficients
of |y〉 of |ψkHO

〉 in Eq. (10) that

Dy = Ak√
N − t

∑
x∈{xn}

(−1)xy − Bk√
t

∑
x∈{xs}

(−1)xy. (A1)

According to the properties of Hadamard operator, we can get

Dy=0 = Ak√
N − t

(N − t ) − Bk√
t
t

= Ak

√
N − t − Bk

√
t (A2)

and

Dy 
=0 = {(N/2 − ty) + [N/2 − (t − ty)](−1)} Ak√
N − t

+ [ty − (t − ty)]
−Bk√

t
= (t − 2ty)

(
Ak√
N − t

+ Bk√
t

)
. (A3)

Therefore, we have

∣∣ψkHO

〉 = 1√
N

⎡
⎣(Ak

√
N − t − Bk

√
t ) |0〉 +

∑
y 
=0

(t − 2ty)

(
Ak√
N − t

+ Bk√
t

)
|y〉

⎤
⎦ (A4)
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and

ρkHO
= 1

N

[
(Ak

√
N − t − Bk

√
t )2 |0〉 〈0| +

∑
y 
=0

(t − 2ty)(Ak

√
N − t − Bk

√
t )

(
Ak√
N − t

+ Bk√
t

)
(|0〉 〈y| + |y〉 〈0|)

+
∑

y, y′ 
= 0

(t − 2ty)(t − 2t ′
y)

(
Ak√
N − t

+ Bk√
t

)2

|y〉 〈y′|
]
. (A5)

According to Eq. (3), we obtain Eq. (14) that

Cl1

(
ρkHO

)= 1

N

⎡
⎢⎢⎢⎣2

∑
y 
=0

|(t − 2ty)(Ak

√
N − t − Bk

√
t )|

(
Ak√
N − t

+ Bk√
t

)
+

∑
y, y′ 
= 0
y 
= y′

|(t − 2ty)(t − 2t ′
y)|

(
Ak√
N − t

+ Bk√
t

)2

⎤
⎥⎥⎥⎦. (A6)

APPENDIX B: NUMERAL EXAMPLES

For clarity, we give more examples here. Take the same qubit number n = 16 and the same target number t = 4, but different
target states |χ1〉 that one is a product state with γ (t, ty) = 1/4 and the other is an entangled state with γ (t, ty) = 9/16 as shown
in Theorem 5.

As is shown in Fig. 3, we can clearly see that the amount of operator coherence is larger when |χ1〉 is an entangled state than
|χ1〉 is a product state. The reason may be that the operators make more contributions to coherence when the target state |χ1〉 is
an entangled state than it is a product state as seen from Figs. 4 and 5.
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