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Efficient Bayesian credible-region certification for quantum-state tomography
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Standard Bayesian credible-region theory for constructing an error region on the unique estimator of an
unknown state in general quantum-state tomography to calculate its size and credibility relies on heavy Monte
Carlo sampling of the state space followed by filtering to obtain the correct region sample. This conventional
methodology typically gives negligible yield for very small error regions originating from large data sets. In
this article, we discuss at length the in-region sampling theory for computing both size and credibility from
region-average quantities that avoids this general problem altogether. Among the many possible numerical
choices, we study the performance and properties of accelerated hit-and-run Monte Carlo algorithm for in-region
sampling and provide its complexity estimates for quantum states. Finally with our in-region concept, by
alternatively quantifying the region capacity with the region-average distance between two states in the region
(measured for instance with either the Hilbert-Schmidt, trace-class, or Bures distance), we derive approximation
formulas to analytically estimate both region capacity and credibility without Monte Carlo computation.
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I. INTRODUCTION

All physical-quantity estimates obtained from collected
data should be accompanied by “error bars” to accurately
convey all properties of the physical system of interest.
This applies to quantum-state tomography [1–5], which is
an important preliminary step for implementing all quantum
cryptography and computation protocols [6–8] reliably.

Bootstrapping procedures [9,10] are among some of the
most widely used techniques for assigning error bars to recon-
structed quantum states. Recently, it was pointed out in [11]
that such assignments lack rigorous statistical foundations
and may produce error bars that are too small for reliable
conclusions. The rather more justified approach falls under
the study of hypothesis testing [12]. Two grand schools of
thought exist for this purpose. In the context of quantum-state
reconstruction of an unknown state ρ, one may treat ρ as
“absolute” (the frequentist school) and attempt to extract this
knowledge from collected data. This suggests the construc-
tions of confidence regions [13–15], which are error regions
for the state estimator ρ̂ from all plausible data sets, including
those unmeasured in the experiment. An accurate ρ̂ for ρ

would then entail a collection of typically small confidence
regions with high probability that ρ for each plausible data set
lies in the corresponding region.

Given that only one data set (the measured one) is really
available to the observer, we shall focus on the apt Bayesian
school of thought that instead regards this data set as “ab-
solute” and constructs credible regions [16,17] as the error
regions for ρ̂ beginning with some prior distribution p(ρ) of
ρ. A fairly accurate estimator ρ̂ for some unknown ρ naturally
implies a credible region (generated from the measured data
set) of a small size with a large probability that this ρ is
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inside the region—a high credibility [18]. In order to obtain
a reasonably small error region (be it that of credible or con-
fidence type), one may either resort to adaptive strategies [19]
and optimize additional properties of the region, or simply
increase the data set collected in quantum tomography.

The complicated quantum-state–space boundary [20,21]
renders any analytical attempt at calculating size and credi-
bility for any credible region futile, leaving numerical Monte
Carlo (MC) methods [22,23] as the only viable option. As the
size of the credible region is defined as its volume fraction
with the quantum-state space, one needs an extremely large
sample of the state space to finally end up having a reasonable
sample for the region. Despite the optimistic advantages that
some of these MC schemes may have in generating samples
of arbitrary distributions, one deleterious issue for such an
MC-filtering strategy becomes apparent when the data set
is large, which is the common situation in any tomography
experiment. The resulting credible region eventually becomes
too tiny relative to the quantum-state space for MC filtering to
produce any effective yield to properly compute the size and
credibility.

To solve this problem, we introduced the in-region sam-
pling technique [24] to feasibly compute all credible-region
properties by simply sampling an appropriate quantity over
the region itself. This follows from the logic that a change in
the region-average quantity encodes the change in both region
size and credibility. In our theory, we prove the central lemma
stating that the size (and credibility) of any credible region are
related to a class of region-average quantities through a first-
order differential equation that is solvable numerically. As an
example study, we discuss the computation of region-average
quantities using the accelerated hit-and-run algorithm, its cor-
relation properties, and estimate its complexity from geomet-
rical considerations of the quantum-state space. The region-
average formalism encourages the formulation of the region
capacity (a different way of stating “how big” a region is) by
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investigating the average relative distance between two points
in the region. This region-average distance may be induced by
any of the common measures used in quantum information,
and we shall explicitly consider the Hilbert-Schmidt, trace-
class, and Bures distance measures as popular examples. It
turns out that this perspective, together with the results in [18],
offers closed-form analytical approximation formulas for an
alternative rapid approximate Bayesian error certification with
no Monte Carlo methods necessary.

This article is organized as follows: A preliminary intro-
duction to the basic notions of standard Bayesian credible-
region theory shall ensue in Sec. II, and the stage for discus-
sions with large data is set in Sec. III. Next, we present our
in-region sampling theory for size and credibility that works
for any kind of data and prior in Sec. IV. Afterwards, we
describe how region-average quantities can be numerically
computed and estimate the computational complexities in
Sec. V. Section VI then proceeds to quantify the region
capacity in terms of region-average distances induced by
all the three aforementioned distance measures other than
the Bayesian size. Finally, for fast analytical Bayesian er-
ror estimates, we derive asymptotic formulas for all im-
portant region-average quantities in Sec. VII based on the
perspective of distance-induced size. All numerical results
and computation correlation properties are then presented and
discussed in Sec. VIII with explicit examples in quantum
tomography.

II. STANDARD BAYESIAN CREDIBLE-REGION THEORY

Before a quantum-state tomography experiment com-
mences, the observer might have some (justifiable) precon-
ception about the unknown quantum state ρ � 0 (tr{ρ} = 1)
of Hilbert-space dimension D. Such preconception is usually
not uniquely privileged, and therefore weighted with some
prior probability distribution p(ρ). After the experiment, the
observer collects a set of data D that are informationally
complete (IC) such that a unique estimator ρ̂ for ρ is ac-
quired. In quantum theory, the measurements are modeled as
a probability-operator measurement (POM) consisting of a
set of M positive operators � j � 0 that sum to the identity.
Associated to every such experiment is the likelihood function
L = L(D|̂ρ ), with which the observer obtains a posterior
probability distribution (knowledge after the fact) that is a
function of L.

It was formerly established in [16] that for this measured
data set D, if ρ̂ is taken to be the estimator that maximizes L—
the maximum-likelihood (ML) estimator—then a Bayesian
credible region (CR) R can be constructed around ρ̂ML, which
turns out to have a constant likelihood boundary ∂R within
the quantum-state space R0. For this CR, which is a subregion
of R0, we can specify its size and credibility, the latter of
which is the probability that ρ ∈ R. Such a region is optimal
in the sense that it gives the largest credibility for a given
size, or equivalently possesses the smallest size for a given
credibility.

In this article, we shall be interested in reconstructing
the (d = D2 − 1)-dimensional real vectorial parameter rrr ↔
ρ that characterizes ρ. More technically, this equivalent
parametrization is achieved with a Hermitian operator basis

{1/
√

D,� j}d
j=1 that contains d trace-orthonormal traceless

operators � j (tr{� j�k} = δ j,k ), by which rrr = tr{ρ ���} is de-
fined from the column ��� of � js. Formally, in terms of the
multivariate parameter rrr, the size and credibility of R = Rλ

for some 0 � λ � 1 are respectively given by [16]

Sλ ≡
∫

Rλ

(d rrr′) =
∫

R0

(d rrr′) η(L − λLmax),

Cλ ≡ 1

L(D)

∫
Rλ

(d rrr′) L = 1

L(D)

∫
R0

(d rrr′) η(L − λLmax) L,

(1)

where the volume measure (d rrr) incorporates the prior dis-
tribution p(rrr) for rrr, η is the Heaviside function, L(D) =∫
R0

(d rrr′) L(D|rrr′). The important variable 0 � λ � 1 specifies
the shape and size of Rλ, from which the limits Rλ=0 =
R0 and Rλ=1 = {̂rrrML} are immediate. Here, we note that
the probability parametrization was adopted in [16]. Under
the condition that each datum is collected independently, the
inherent statistics of D is multinomial and the log likelihood
reads ln L = ∑

j n j ln p′
j with the collected relative frequen-

cies
∑

j n j = N that make up N measured data copies, and
p′

j = tr{ρ ′� j} for any state ρ ′.
We can gain a clear physical picture of both size and

credibility: they respectively quantify the prior and posterior
content R, hence the symbol Sλ for the former. Owing to the
dual nature of size Sλ and credibility Cλ, it can be shown, in
fact, that

Cλ = λSλ + ∫ 1
λ

d λ′Sλ′∫ 1
0 d λ′Sλ′

. (2)

Put differently, Cλ may be straightforwardly computable
through single-parameter integrations in λ so long as Sλ is
known up to some arbitrary constant multiple.

Nonetheless, the complicated boundary ∂R0 of the
quantum-state space makes the computation of Sλ extremely
challenging even numerically. The innate definition of Sλ,
namely the volume fraction of Rλ to R0, requires, first, the
generation of a sufficiently large sample of R0, followed by
the filtering of all its sampled points that lie inside Rλ for any
λ. There exist various Monte Carlo (MC) methods to sample
R0 [22]. Ultimately, this MC-filtering strategy exhibits one
major disadvantage: in the limit of large data sample (N �
1), Rλ would become so small relative to R0 that the MC-
filtering strategy needs a sufficiently large number of random
MC sample points from R0 to produce any useful yield. The
scaling of MC sample size needed to maintain a fixed yield,
which was estimated to be O(Nd/2) [18], thus outgrows the
feasible computational yield rate very quickly. The bottom
line: a much more feasible numerical strategy to perform
Bayesian error certification is necessary in this practical data
limit.

III. LARGE-DATA CONDITION

Before presenting an alternative operational theory, unless
otherwise stated, we shall consider N � 1 as the putative limit
in pragmatic tomography experiments. We emphasize here
that N only has to be sufficiently large for the statistical central
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FIG. 1. Credible region R in (a) case A and (b) case B, con-
solidating the two very general situations that could happen in the
limit N � 1 [24]. Case A corresponds to a state estimator ρ̂ML ↔ r̂rrML

that is full rank, whereas case B implies that the estimator is rank
deficient.

limit theorem to dictate a Gaussian form for L. In this limit,
there can only be one of two cases: either R is completely
inside R0 that contains a full-rank ρ̂ML (case A) or partially
truncated by the state-space boundary ∂R0 of R0 that houses
a rank-deficient ρ̂ML (case B) (see Fig. 1).

Case A arises when the unknown state ρ is away from
∂R0, so that a sufficiently large N would produce untruncated
regions for λ values corresponding to desirably large Cλ < 1.
This case offers a simple geometrical description for R. Upon
invoking the Taylor expansion of

ln L(D|rrr′) ≈ ln Lmax − 1
2 (rrr′ − r̂rrML) · FFF ML · (rrr′ − r̂rrML) (3)

about the interior r̂rrML up to the second order, we find that
the likelihood L is essentially a Gaussian function centered
at r̂rrML of height Lmax, with its covariance profile shaped by
FFF ML, that is the Fisher information evaluated at r̂rrML. The CRs
Rλ that go with this Gaussian likelihood are, hence, simple
hyperellipsoids Eλ described by the inequality (rrr′ − r̂rrML) ·
FFF ML · (rrr′ − r̂rrML) � −2lnλ.

If rrr is located in ∂R0, then as N increases, the ML
estimator r̂rrML would eventually approach rrr and there is a
high probability that r̂rrML ∈ ∂R0 before this happens. For
sufficiently large N , we have case B where ∂R ∩ ∂R0 is not
disjointed and falls on the side of r̂rrML. To asymptotically cope
with such a situation, we may again expand

ln L(D|rrr′) ≈ ln Lmax + (rrr′ − r̂rrML) · gML

− 1
2 (rrr′ − r̂rrML) · FFF ML · (rrr′ − r̂rrML)

= ln L′
max − 1

2 (rrr′ − rrrc) · FFF ML · (rrr′ − rrrc) (4)

about the boundary r̂rrML, where this time L is a
Gaussian function centered at rrrc = r̂rrML + FFF−1

ML · gML with
gML = ∂ ln L(D|rrr′)/∂rrr′|rrr′=̂rrrML , and possesses a height
L′

max = Lmax exp(gML · FFF−1
ML · gML/2) > Lmax. The covariance

profile of this Gaussian function is still governed by FFF ML,
which produces hyperellipsoids E ′

λ described according to

FIG. 2. An infinitesimal change in λ causes a transformation in
Rλ that subsequently excludes all points in the hyperannulus Rδλ

from the region average qλ
Rλ + δλ .

(rrr′ − rrrc) · FFF ML · (rrr′ − rrrc) � −2 ln λ′ for an “effective λ”
λ′ defined by 2ln(λ/λ′) = gT

MLFFF−1
ML gML. The CR Rλ is then

asymptotically E ′
λ ∩ R0.

We point out that there is an intermediate case in which
Rλ = Eλ, centered at r̂rrML /∈ ∂R0, is truncated by ∂R0. Such
a situation can happen when N is not sufficiently large, and
tends to either case A or case B as N grows. On a separate
note, Refs. [18,19] explicitly study also this intermediate case.

IV. IN-REGION SAMPLING THEORY

Suppose we have a CR Rλ, with which we define the
average quantity

uλ ≡ qλ(rrr′)
Rλ =

∫
Rλ

(d rrr′) qλ(rrr′)∫
Rλ

(d rrr′)
= 1

Ksmp

Ksmp∑
l=1

qλ,l (5)

for some function qλ, which is approximately equivalent to the
discrete-sum average of qλ,l values over a sufficiently large
number Ksmp of region points. If we probe the response of uλ

with an incremental change λ → λ + δλ in λ as in Fig. 2, the
result is the total change

δuλ =
(

1

Sλ

− δSλ

S2
λ

)∫
Rδλ

(d rrr′) qλ − δSλ

S2
λ

∫
Rλ

(d rrr′) qλ (6)

after limiting all small changes to the first order, which reveals
that a small increment δuλ can be explained by a change
δSλ in size that is accompanied by the (in)exclusion of the
annular sum

∫
Rδλ

(d rrr′) qλ. Put simply, tracking the change in
uλ allows us to infer how much Sλ has changed.

To better utilize this intuition, we first take the derivative of
uλSλ, which gives

∂uλSλ

∂λ
= −Lmax

∫
R0

(d rrr′) δ(L − λ Lmax) qλ(rrr′)

+
∫

Rλ

(d rrr′)
∂qλ(rrr′)

∂λ
(7)

after invoking the derivative identity dη(x)/dx = δ(x) be-
tween η(x) and the Dirac delta function δ(x). Next, we
may impose the following functional form: qλ(rrr′) ≡ f (L) −
f (λLmax) for qλ, where f (L) is some arbitrary function of L.
This simplifies Eq. (7) to

∂

∂λ
(uλ Sλ) = −Sλ

∂

∂λ
f (λLmax). (8)
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We now have a first-order differential equation that de-
scribes the dynamics of Sλ according to the parametric region
average uλ. With the initial condition Sλ=0 = 1, the entire
functional form of Sλ can then be recovered with Eq. (8).
This completes the constructive proof of our so-called Region-
average computation (RAC) lemma: For any prior (d rrr′) and
measurement data D, the prior content Sλ (up to a multiplica-
tive factor) and hence the credibility Cλ are all inferable from
uλ defined in Eq. (5) with qλ(rrr′) ≡ f (L) − f (λLmax).

To proceed, we first perform the substitution yλ = uλ Sλ to
yield another differential equation

∂yλ

∂λ
= − yλ

uλ

∂

∂λ
f (λLmax). (9)

The solution to yλ can then be obtained numerically through
Euler’s method [25]. In practice, we may start from Sλ≈0 ≡ 1
and iterate

yλ j+1 = yλ j − yλ j

uλ j

∂

∂λ j
f (λ jLmax) (10)

for a sequence of discretized λ → λ j values ranging from 0
to 1. For feasible computation of uλ, we shall choose f (L) =
ln L.

V. REGION-AVERAGE NUMERICAL COMPUTATION

A. Hit-and-run algorithm

The hit-and-run algorithm is a direct convex-body MC
sampling scheme that generates random sample points in the
body according to some predefined distribution. This algo-
rithm is thus suited for sampling Rλ according to some prior
distribution p(rrr) for the unknown rrr.

The sampling principles behind an efficient hit-and-run
computation begin with defining the smallest possible convex
set B ⊇ Rλ that houses Rλ and has an easy-access geometry.
Starting from a known point in Rλ, say the ML estimator r̂rrML,
a random line segment passing through this point is generated,
with its end points fixed at ∂B that are quickly computable
because of its simple geometry. Following which, sampling
commences by repeatedly picking a random point along this
segment until it lies in Rλ. This point is next taken to be the
new reference point through which another line segment is
generated to find a new random point in Rλ, until a set of
Ksmp points is gathered.

We can make use of the straightforward hyperellipsoidal
characteristics inherent from the central limit theorem to
construct B. For case A, where Rλ = Eλ, B can just be
taken to be Eλ characterized by F̃FF ML = FFF ML/(−2lnλ) from
the earlier discussions in Sec. III. We now turn to the more
interesting and practically ubiquitous case B, where the large-
N arguments of Sec. III imply that we may fix B = E ′

λ, the
profile of which is governed by F̃FF ′

ML = FFF ML/(−2lnλ′). For
this case, if B is much larger than Rλ, sampling the latter
would incur a significant amount of wastage. Fortunately there
exists an accelerated version of hit and run [26] that adaptively
shrinks the end points of the line segment to reduce the search
space each step.

To check if the random point chosen from the line segment
is in Rλ, we recall that Rλ is equivalently the continuous
set of unit-trace operators that are both positive and sat-

isfy the hyperellipsoidal constraint defined by the inequality
L(D|rrr′) > λ Lmax under the N � 1 limit. Since all points in
B essentially fulfill the latter constraint, the primary task is to
check if the random point corresponds to a legitimate quantum
state. It is known that the Cholesky decomposition [27,28], a
routine that factorizes ρ ′ = A†A for any positive operator ρ ′,
is an efficient and numerically stable way for the job, with a
computational complexity of O(D3). A routine failure implies
that the operator corresponding to the selected point is not
positive.

The complete pseudocoded algorithm for the accelerated
hit and run, tailored for an arbitrary prior distribution p(rrr), is
stated below [26,29,30]:

Accelerated hit and run for sampling Rλ

Beginning with k = 1 and rrrref = r̂rrML of N � 1:

1. Generate a random line segment characterized by yyy = rrrref + μevevev ,
where evevev = vvv/|vvv| and vvv follows the standard Gaussian
distribution (mean 0 and variance 1 for each column entry). Its
end points are parametrized by μ± = [−b ±

√
b2 − a(c − 1)]/a,

where 			 = rrrref − rrrc, a = evevev
T AAAevevev , b = 			 T AAAevevev , c = 			 T AAA			, and

AAA = F̃FF ML or F̃FF ML

′
.

2. Define β1 ≡ μmin = min{μ+, μ−} and
β2 ≡ μmax = max{μ+, μ−}.

3. Pick a random number β1 � β � β2 according to the marginal
probability distribution p(rrrref + β evevev )/

∫
dβ ′ p(rrrref + β ′ evevev )

truncated in the interval [β1, β2] and obtain rrrtest = rrrref + β evevev .
4. Check whether ρtest ↔ rrrtest is positive.

• If so, define rrrref = rrrtest, raise k by 1, and go to step 1.
• If not, set β1 = β if β < 0, or β2 = β if β > 0, and repeat steps

3 and 4.
5. End routine if k > Ksmp, the total number of sample points

desired.

To further speed up the algorithm for case B, one can assign
B to be the hyperellipsoidal cap composed by a hyperplane
that is tangent to the iso-Gaussian level curve of E ′

λ at r̂rrML and
the part of E ′

λ below it (refer to Sec. VII C). Numerical ex-
perience shows that this speedup is negligible in the presence
of the end-point adaptation mechanism of accelerated hit and
run.

We end this introduction of hit and run by noting that a
hyperellipsoidal B is constructed based on the large-N limit,
where the boundary ∂Rλ ∩ int{R0} of the physical region is
well approximated by this hyperellipsoid. The highly skepti-
cal may insist that, perhaps, for a finite N , even if N � 1, there
might still be cases where a part of this boundary protrudes B.
To be on the safer side, one may choose a hyperellipsoidal B
of a reasonably larger size (say doubled) than the one given by
the central limit theorem. This will almost surely contain the
physical error region with a much smaller failure probability.
The pertinent question is can we verify that B contains R
with arbitrary precision? The answer unfortunately is negative
both in theory and practice. This is because a positive answer
would entail a complete knowledge about ∂R, obtaining
which is either computationally not feasible in general, or an
NP-hard problem in some context [11].
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FIG. 3. Schematic diagrams for the geometrical relationship be-
tween the CR R and the quantum-state space R0. The situation for
(a) case A is completely known and so complexity estimation for
hit and run is a simple matter. To acquire conservative complexity
estimates for case B, two special types of such CR may exist: either
the CR (b) lies on an extremely sharp corner of R0 in at least one
of its dimensions (type I) in whichever orientation, or (c) on one of
its edges that is almost flat (type II) in all its dimensions, with the
longest E ′

λ axis oriented along the flat surface.

B. Numerical complexity estimations

After suppressing dependencies on logarithmic factors and
error parameters, it was argued that the number of hit-and-
run steps needed to gather enough sample points and form an
ensemble described by p(rrr) in hit and run is O(d2R2

out/R2
in) =

O(D4R2
out/R2

in) [31,32] in the limit D � 2, where Rout is the
radius of the smallest outer sphere that contains Rλ and Rin

is that of the largest inner sphere that can be inscribed in Rλ.
Together with the floating-point-operations complexity O(D3)
in a typical Cholesky decomposition algorithm [28], we have
an estimate for the complexity cmpl = O(D7R2

out/R2
in) for the

entire hit-and-run scheme.
The treatment of case A is straightforward as we have the

complete information about Rλ ≈ Eλ in the large-N limit.
If we denote σ> and σ< to respectively be the largest and

smallest eigenvalue of F̃FF ML
−1/2

, then the corresponding outer
and inner radii are Rout = σ> and Rin = σ< [see Fig. 3(a)],
so that cmplA = O[D7cond(FFF−1

ML )] involves the conditional
number cond(FFF−1

ML ) = σ 2
>/σ 2

<.
The analysis for case B requires extra care given the

complicated state-space boundary ∂R0. While complete and
precise details of R0 are absent so far, from [21], we know that
in the Euclidean space, the largest inner sphere inscribable in
R0 has a radius that approaches 1/D for D � 2, and that the
smallest outer sphere that contains R0 has a radius going to
1 in the same dimension limit. The overall shape of R0 is
therefore a “squashed” convex body for large D, such that
at least one of its dimensions drops appreciably to zero. To
estimate the complexity for case B, we consider CRs of two

FIG. 4. Schematic diagrams for (a) type-I and (b) type-II
Bayesian regions. Type-I regions have complexities that are strongly
influenced by the cornered geometry (greatly exaggerated for visual
aid), whereas type-II regions have complexities that strongly depend
on the eigenvalue aspect ratios of FFF ML. All other intermediate CR
types give rise to complexities affected by the geometries of both
∂R0 and FFF ML.

tractable types: a type-I CR is located at an extremely sharp
corner of R0 that is made from at least one of its rapidly
shrinking dimensions, as shown in Fig. 3(b), whereas a type-II
CR is situated at an extremely flat boundary of R0 where
all of its dimensions remain approximately constant within
the CR as in Fig. 3(c). For a conservative estimate of cmpl,
we consider an R such that the longest axis of E ′

λ is aligned
with the flat surface. All other types of case-B CRs may be
viewed as intermediate situations of these two and have no
analytical complexity estimates known to us. The data-copy
number N � 1 is assumed to be sufficiently large such that
gML ≈ 000 and rrrc ≈ r̂rrML.

To estimate cmpl for a type-I CR, we assume that the
corner is extremely sharp in one particular dimension such
that the curvature of ∂R0 extending out from r̂rrML is almost
flat. Then following Fig. 4(a), the concept of similar figures
give Rout/Rin ≈ D, which is independent of FFF ML for extremely
sharp corners, and cmplB,I = O(D9). The complexity for type-
II CRs may be estimated with the help of Fig. 4(b), where
Rout/Rin ≈ 2 cond(FFF−1/2

ML ) is now independent of ∂R0 due to
its extremely mild edge features, leading us to cmplB,II =
O[D7cond(FFF−1

ML )] = cmplA.

C. Other numerical methods

Other numerical methods apart from hit and run may also
be used to perform in-region sampling, each of which has its
own merits and shortcomings [22,33–35]. Classical rejection
and importance sampling methods are two straightforward
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ways to acquire samples distributed according to some desired
prior distribution. For large D and N , these methods rapidly
become infeasible due to the decreasing ratio of the CR
volume to the full Hermitian sampling volume that includes
many more unphysical operators that are not quantum states.
To cope with this low-yield difficulty, another Markov-chain
method known as the Metropolis-Hastings MC scheme may
also be used to do in-region sampling. Such a scheme also
suffers from high correlations that are generally dependent on
the starting point of a Markov-chain iteration. Hamiltonian
MC methods are yet another promising class of algorithms
that permit larger sample-point hopping that gives a sample
with weak correlations. The scalability of such methods are,
however, still a work in progress.

VI. DISTANCE-INDUCED REGION CAPACITY

A. Operational definition

The theory of in-region sampling seamlessly paves the way
to other creative ways of defining the capacity of a region.
Doing so permits us to talk about “how big” a CR is without
referring to R0 entirely. To begin, one could measure the
region capacity in terms of the average distance between
any two points inside R, which is a separate idea from the
prior content. Intuitively, the smaller this average distance,
the smaller the region and vice versa. Using this simple
prescription, we propose the region-average quantity

SD,λ ≡ D (rrr′, r̂rrML)
Rλ =

∫
Rλ

(d rrr′) D (rrr′, r̂rrML)∫
Rλ

(d rrr′)
(11)

to measure the capacity of Rλ, where D (rrr′, r̂rrML) is some
prechosen distance metric. Notice that the ML estimator r̂rrML

is selected to be the reference point from which distances are
measured without loss of generality.

To concretize all results, we shall look at three distance
measures for states that enjoy a good reputation in quantum-
information studies. We first mention the Hilbert-Schmidt
(HS) distance

DHS = tr{(ρ ′ − ρ̂ML)2} = (rrr′ − r̂rrML)2, (12)

which is equivalent to the squared l2 norm of rrr′ − r̂rrML. Closely
related to the HS distance is the trace-class distance

Dtr = tr{
√

(ρ ′ − ρ̂ML)2} (13)

defined by the operator absolute value |A| =
√

A†A. To intro-
duce the third measure, we start by quoting the expression of
quantum fidelity [36],

F = tr{
√√

ρ̂MLρ ′√ρ̂ML}2, (14)

between ρ ′ and ρ̂ML, to which we can define the Bures distance
[37,38] DB = 2(1 − √

F ). In the limit of large N , where the
fidelity F ≈ 1 − ε differs from 1 by a small amount, DB is
also approximately the infidelity 1 − F .

B. Monotonic behavior of SD,λ for N � 1

Here, we show that, at least for sufficiently large N , SD,λ,
defined by any of these three distance measures, behave cor-

FIG. 5. The different types of state-space boundaries ∂R0 [24].
Excluding the exceptional single-qubit system that exhibits a smooth
spherical surface (a), all higher-dimensional systems result in ∂R0

that is not smooth, with corners and edges. In the large-N limit, an
ML estimator at the corner, for instance, may be well approximated
by a collection of hyperplanes relative to R since every point in ∂R0

is a well-defined quantum state.

rectly as a capacity function in the sense that SD,λ should not
increase as λ increases. We first look at the more complicated
case B, and argue that since the R0 generally has only corners
and edges with no other mathematically pathological features,
a set of hyperplanes can then be used to model any particular
boundary feature on which r̂rrML resides (see Fig. 5). This
results in the asymptotic form

SD,λ →
∫

(d rrr′′) D η(1 − rrr′′ TFFF MLrrr′′/(−2lnλ))
∏

j η
(
wwwT

jrrr
′′)∫

(d rrr′′)η(1 − rrr′′ TFFF MLrrr′′/(−2lnλ))
∏

j η
(
wwwT

jrrr
′′)

(15)

after the substitution rrr′′ = rrr′ − r̂rrML.
At this stage, we shall consider the asymptotic expressions

of the distance measures. The HS distance DHS takes on the
simplest (quadratic) form out of all three, which very straight-
forwardly gives the asymptotic dependence SHS,λ → −lnλ

provided the sufficient condition (d α rrr′) = g(α) (d rrr′), which
includes the uniform primitive prior (d rrr′) = (d rrr′)unif ≡∏

j d r j . It is not difficult to see that the same λ dependence
applies to case A by taking www j = 000, so that SHS,λ is mono-
tonically decreasing with increasing λ. Next, according to
Appendix A, in the limit of large D, Str ∼ √

SHS, which is
also clearly monotonic as well owing to SHS’s monotonicity.
For SB and SF , one can perform a Taylor expansion on them
about r̂rrML (see Sec. VII) and realizes that both functions
asymptotically depend on the dyadic (rrr′ − r̂rrML)(rrr′ − r̂rrML)T,
so that both region-average distances are also asymptotically
decreasing with λ.
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VII. APPROXIMATION FORMULAS FOR SD,λ AND uλ

The prior content Sλ discussed alongside Cλ in Secs. II–V
quantifies the size of Rλ relative to R0. In our earlier article
[18], analytical approximation formulas for Sλ were proposed
in the large-N limit, all of which are scaled with the volume
VR0 of R0. As is also shown later in the section, this volume
dependence is associated with the extension of every R0

integral,∫
R0

(d rrr′) η(L − λ Lmax) . . . → 1

VR0

∫
all space

∏
j

d r′
j . . . ,

(16)

to the entire rrr′ space ascribed with the uniform primitive
prior, which is a reasonable step to obtain analytical results
under the central limit theorem since L is narrow enough to
reside within the confines of Rλ under this limit. Therefore,
the valid usage of these theoretical expressions hinges on
the availability of VR0 . In quantum-state tomography where
we have no complete theoretical information about R0, VR0

is known only for certain priors and state parametrizations
[20,21,39,40].

On the other hand, it is obvious that VR0 is canceled out
for any region-average quantity after such integral extensions.
This allows one to derive operational asymptotic formulas
for averages like SD,λ and uλ regardless of R0 in whichever
parametrization. As a calculable standard in this section,
we continue to derive expressions in terms of the uniform
primitive prior and rrr, although the subsequent instructions
may also work for other manageable priors with which SD,λ

behaves as a proper region-capacity function. We first address
the different D measures in the large-N limit.

A. Various D measures

1. Hilbert-Schmidt and trace-class measures

The HS distance measure DHS(rrr′, r̂rrML) takes the very sim-
ple quadratic form in (12) under any circumstance, whereas
the trace-class distance Dtr has no easy functional form in
terms of rrr′ for D > 2. Nevertheless in the limits N � 1 and
D � 2, based on the principles of random matrix theory
detailed in Appendix A, it is deduced that the asymptotic
expression

Str ≈ 8
√

D SHS

3π
(17)

relating the final R averages SHS and Str is approximately
valid for both cases A and B, which incidentally takes the
same form found in [41] that was calculated for statistical-
fluctuation studies.

2. Bures measure

The Bures distance measure DB also has no tractable
functional form in rrr′ for general D. To find the asymptotic link
with rrr′ this time, it is technically more convenient to inspect
the behavior of F around ρ̂ML ↔ r̂rrML as N � 1.

A Taylor expansion about ρ̂ML as guided in Appendix B,
we have

FA ≈ 1 − 1
2 (rrr′ − r̂rrML) T QQQD (rrr′ − r̂rrML) (18)

for case A and

FB ≈ 1 + (rrr′ − r̂rrML) Ttr{Pr ���}
+ 1

2 (rrr′ − r̂rrML) T (
1
2 tr{Pr ���}tr{Pr ��� T} − QQQr

)
(rrr′ − r̂rrML)

(19)

for case B, where Pr is the projector onto the support of
ρ̂ML having the rank-deficient spectral decomposition ρ̂ML =∑r

j=1 |λ j〉λ j〈λ j |, and

QQQr =
r∑

j=1

r∑
k=1

〈λ j���|λk〉〈λk|��� T|λ j〉
λ j + λk

. (20)

B. Case A: Hyperellipsoidal theory

The presentation in Sec. VII A reduces the necessary in-
gredients for large-N (or D) analytical estimations of SD,λ to
just the scalar

∫
Rλ

(d rrr′), column
∫
Rλ

(d rrr′)			′
ML, and dyadic∫

Rλ
(d rrr′)			′

ML 			′ T
ML, where 			′

ML = rrr′ − r̂rrML.
When Rλ ≈ Eλ, these three integrals take on simple ana-

lytical forms. We start with∫
Rλ

(d rrr′) =
∫

R0

(d rrr′) η
(
1 − �′ T

MLFML�
′
ML/(−2 lnλ)

)
(21)

and transform rrr′ → rrr′′ = DDD1/2 OOO T			′
ML to the translated diag-

onal coordinate variables of FFF ML/(−2 lnλ) = OOO DDD OOO T, so that
in the large-N limit and uniform primitive prior, we may relax
the boundary of R0 and write∫

Rλ

(d rrr′) → det{DDD−1/2}
VR0

∫
(d rrr′′)unif η(1 − rrr′′2)

= Vd

VR0

(−2lnλ)d/2 det{FFF ML}−1/2, (22)

which is a function of the volume Vd = πd/2/(d/2)! of the
d-dimensional unit hyperball, the inverse of FFF ML that charac-
terizes Eλ together with the logarithm of λ.

In this case, the integral column is zero since the integrand
after variable transformation becomes odd in rrr′′, and we are
thus left with∫

Rλ

(d rrr′)			′
ML 			′ T

ML → det{DDD−1/2}
VR0

OOO DDD−1/2 III DDD−1/2 OOO T,

(23)

and

III =
∫

(d rrr′′)unif η(1 − rrr′′2) rrr′′ rrr′′ T

=
∫

unit sphere
(d rrr′′) rrr′′ rrr′′ T

=
∫ 1

0
d r′′ r′′ d+1

∫
(d {solid angle})eee′′ eee′′ T = Vd

d + 2
111,

(24)

where the last equality is explained by the orthogonal invariant
of the (d − 1)-dimensional solid-angle measure over the unit

012345-7



CHANGHUN OH, YONG SIAH TEO, AND HYUNSEOK JEONG PHYSICAL REVIEW A 100, 012345 (2019)

FIG. 6. Modeling the boundary ∂Rλ ∩ ∂R0 [24]: A hyperplane
P (red solid line) is introduced in a manner that its normal nnn is or-
thogonal to the level curve at r̂rrML to form a cap that approximates Rλ.

columns eee, and so∫
Rλ

(d rrr′)			′
ML 			′ T

ML → Vd

VR0

(−2lnλ)d/2+1 det{FFF ML}−1/2 FFF−1
ML .

(25)

With all these components, the relevant asymptotic formu-
las concerning all three distance measures are

S (A)
HS,λ ≈ Tr

{
FFF−1

ML

} −lnλ

d/2 + 1
,

S (A)
tr,λ : as in (17),

S (A)
B,λ ≈ Tr

{
FFF−1

ML QQQD
} −lnλ

d + 2
. (26)

Here Tr now addresses the dyadic character, as opposed to tr,
and we witness the manifestation of logarithmic divergences
from both the relaxation of ∂R0 and Gaussian approximation
of L.

Next, to analytically calculate uλ using f (L) = ln L with
which Cλ can be found, we note that, due to the Gaussian form
of L,

uλ = −lnλ −
∫
Rλ

(d rrr′)			′ T
ML FFF ML 			′

ML

2
∫
Rλ

(d rrr′)
(27)

is a dyadic trace function of
∫
Rλ

(d rrr′)			′
ML 			′ T

ML, so that we
may use the right-hand side of (25) and put down

uA,λ = − 2

d + 2
lnλ (28)

after some basic trace and logarithmic manipulations. It is
clear that d/(d + 2) � uA,λ � 1 is bounded.

C. Case B: Hyperellipsoidal-cap theory

In case B, although the geometry of Rλ ≈ E ′
λ ∩ R0 is now

much trickier to deal with, the central limit theorem proposed
in Sec. III allows us to approximate Rλ by a regular analytical
region.

As shown in Fig. 6, one can introduce a hyperplane P ,
described by nnn · (rrr′ − r̂rrML) = 0 (nnn ∝ gML) that is tangent to
the level curve of the Gaussian function in (4) at r̂rrML. The

hyperspherical cap formed by P and E ′
λ hence asymptotically

contains Rλ, where we have essentially modeled the highly
nontrivial ∂Rλ ∩ ∂R0 as P . This model implies the estimated
assignment∫

Rλ

(d rrr′) . . .

= 1

VR0

∫
(d rrr′)unif η(1 − (rrr′ − rrrc) T FFF ML (rrr′ − rrrc)/(−2 lnλ′))

× η(nnn · ( r̂rrML − rrr′)) . . . . (29)

The change of variable rrr′ → rrr′′ = DDD′1/2 OOO′ T (rrr′ − rrrc) with
respect to the diagonal coordinates of FFF ML/(−2lnλ′) =
OOO′ DDD′ OOO′ T leads to∫

Rλ

(d rrr′) qλ(rrr′) ≈ det{DDD′−1/2}
VR0

∫
(d rrr′′)cap qλ(OOO′ DDD′−1/2 rrr′′)

(30)

for any function q, which is parametrized by the cap
element (d rrr′′)cap = (d rrr′′)unif η(1 − rrr′′2) η(a − bbbT rrr′′), a =
nnn T(̂rrrML − rrrc), and bbb = DDD′−1/2 OOO′ T nnn. One can check that

l ≡ a

|bbb| = gML · (̂rrrML − rrrc)

|DDD′−1/2 OOO′ T gML|

=
√

(̂rrrML − rrrc) T FFF ML ( r̂rrML − rrrc)

(−2 lnλ′)
� 1. (31)

In other words, we have

qλ(rrr′)
Rλ ≈

∫
(d rrr′′)cap qλ(OOO′ DDD′−1/2 rrr′′)∫

(d rrr′′)cap
, (32)

and that for any qλ belonging to either one of the three distance
measures or ln L − ln(λLmax), as reasoned in Sec. VII C, the
building blocks of qλ(rrr′)

Rλ are only
∫

(d rrr′′)cap,
∫

(d rrr′′)cap rrr′′,
and

∫
(d rrr′′)cap rrr′′ rrr′′ T. These integrations are all carried out in

Appendix C.
In combining all results gathered from Appendixes B

and C, we denote Nd,l,x = Vd I(1−l )/2((d + x)/2, (d + x)/2),
which depends on the incomplete Euler’s beta function I(., .),
and organize two new auxiliary quantities

mmm =
[
− Vd−1

l (d + 1)
(1 − l2)(d+1)/2 + Nd,l,1

]
FFF−1

ML gML,

MMM = − ln λ′

d + 2
Nd,l,3 FFF−1

ML + 1

2
mmm gT

MLFFF−1
ML . (33)

This helps to clean the respective formulas

S (B)
HS,λ ≈ Tr{2 MMM}

Nd,l,1
,

S (B)
tr,λ : as in(17),

S (B)
B,λ ≈ tr{Pr ��� Tmmm} + Tr{MMM QQQr}

Nd,l,1
≈ tr{Pr ��� Tmmm}

Nd,l,1
(34)

for the distance-induced capacity functions and

uB,λ = [− ln λ′ + Tr{gMLmmmT − FFF ML MMM}/Nd,l,1]

× ln(λ Lmax)/ ln(λ′ Lmax). (35)
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FIG. 7. Graphs of size Sλ and credibility Cλ for case A with 2 �
D � 5. M, the number of POM outcomes, is set to D3 and the POM
is chosen to be a random square-root measurement as a simulation
example for each D. Here N/M = 500. The dashed curve in every
inset is computed with the case-A large-N formula for Cλ in Eq. (7)
of [18]. A randomly chosen rank-D true state ρ is used in each panel.
A total of 20 000 points are collected during in-region sampling of
uλ per λ.

We caution the reader once more regarding the actions of tr
and Tr at the right-hand side of S (B)

B,λ in (34).
For consistency, we end this section by noting that

Eqs. (34) and (35) cover Eqs. (26) and (27) because case A
implies that λ′ = λ (gML = 000 = mmm), such that l = 0 then gives
Nd,0,x = Vd and MMM = (− ln λ)FFF−1

ML/(d + 2).

VIII. RESULTS AND DISCUSSIONS

A. Region reconstruction

We first present, under the uniform primitive prior p(rrr) ∝
1, the computation results of Sλ and Cλ from uλ in Figs. 7 and
8 for quantum systems of various dimensions D. To be more
technically precise about our use of Euler’s method described
in Sec. IV, we first solve (9) for yλ by iterating (10) starting
with a numerically small λ value to λ ≈ 1 using the function
f (λ) = ln L.

The behavior of Sλ shows the expected decreasing trend
not only in λ, but also in overall magnitude as D increases.
This indicates that the (log) likelihood is turning into a
delta-function peak. For larger D or N , the computational
accuracy of Sλ and Cλ using Euler’s numerical method may be
maintained by exploring many more λ values near zero, such
as via logarithmic scaling of λ, as all curves possess sharp
gradient changes in this λ range.

In Fig. 9, both simulated data and theoretical curves of all
three capacity functions SHS, Str, and SB are plotted against
the credibility C for case A. In this case, there exist no other
factors that could spoil the perfect hyperellipsoidal geometry
of Rλ. As such, the analytical curves fit almost perfectly with
the simulated points. We note that even the average trace-class
distance Str, which is approximated with (17) through the
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FIG. 8. Graphs of computed Sλ and Cλ Case B against λ, with
2 � D � 4, which have, otherwise, the same specifications as Fig. 7.
The rank r of ρ̂ML, which characterizes a pure state, for each panel is
explicitly stated. The dashed curves in this figure are generated from
the case B formulas in Eq. (14) of [18].

theory of random matrices, performs very well relative to the
simulated data points.

In case B, we can start to see discrepancies between theory
and simulation from Fig. 10 especially for larger D. Such
deviations are inevitable as the hyperellipsoidal-cap estima-
tion of the actual CR Rλ proposed in Sec. VII C introduces
additional space outside R0 that is certainly not contained
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FIG. 9. Graphs of the distance-induced region-capacity function
against the credibility C for case A with 2 � D � 5 for all the full-
rank ML estimators that produced Fig. 7. The measurement POM is,
again, a set of M = D3 square-root measurement outcomes for each
D that measures N/M = 500. All horizontal axes represent C, and
vertical axes SD . The solid analytical curves are calculated using
Eq. (26). All SDs are magnified—according to the magnification
factors stated in the panels—so that all graphs and markers can be
visibly coplotted inside each panel.
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FIG. 10. Graphs of the region capacity against C for case B for
all the rank-deficient ML estimators involved in Fig. 8. The solid
curves, which originate from Eq. (34), still lie reasonably close
to the simulated markers for these low-dimensional examples. All
specifications otherwise follow those of Fig. 9. The geometrical
difference between the actual rank-deficient CR boundary and a hy-
perplane manifests as deviations from theoretical predictions. High-
rank ML estimators, nonetheless, generally give a better theoretical
predictions in contrast to low-rank estimators.

in Rλ. More specifically, for very large D, if the rank-
deficient ML estimator ρ̂ML is located at an extremely sharp
state-space corner, which is labeled as the type-I situation in
Sec. V B, this additional space would be exceedingly large
relative to the physical CR, which incurs a proportionately
large theory-simulation mismatch. On the other hand, if the
rank-deficient ρ̂ML lies on a relatively flat part of the state-
space boundary (the type-II scenario), then this overestimated
space, and hence the mismatch, would be much smaller. ML
estimators of ranks 1 and 3, which are considered in Fig. 10,
are prime examples of the respective type-I and -II situations.
Regardless, the asymptotic formulas in Sec. VII C may still be
used for an order-of-magnitude estimation of SD and C.

We note that in-region sampling is not restricted to just the
uniform distribution, so long as the MC method employed
is sufficiently general. Such is the case for hit and run. For
a calibration check of the general hit-and-run algorithm in
Sec. V, we generate and compare both uniform and Gaussian
distributions with their respective theoretically derived coun-
terparts for the single-qubit case in Fig. 11.

Next, as a real demonstration, we consider another nat-
ural prior that is asymptotically conjugate to the likelihood
function, that is the Gaussian form p(rrr) ∝ exp ( − (rrr − r̂rrML) ·
FFF ML · (rrr − r̂rrML)/(2N )) having a much broader covariance
NFFF−1

ML defined by the Fisher information for one copy . This
prior is a logical choice given that our knowledge about rrr
is updated to r̂rrML after the measurement, which should be
used as the most recent prior information for future Bayesian
analyses. The corresponding marginal distribution needed to
sample along line segments in hit and run is therefore the
one-dimensional Gaussian distribution of mean [evevev · FFF ML ·
(̂rrrML − rrrref )]/evevev · FFF ML · evevev and variance 1/evevev · FFF ML · evevev . With

FIG. 11. Example comparisons between hit-and-run simulated
and theoretical distributions made in case A, for D = 2, random
square-root measurement (M = 4), and N = 50. Their common co-
ordinate system is centered at r̂rrML and rotated in the frame of the error
region. Both uniform and Gaussian (of covariance 10 FFF ML) prior dis-
tributions considered here are projected onto the error region, which
is approximated as a hyperellipsoid for calculating the theoretical
distributions (see Appendix D for their explicit probability-density
expressions).

these specific distributions, the size and credibility plots as
well as the region capacity behaviors for D = 8 and 16 are
given in Figs. 12 and 13.

B. Correlation properties of hit and run

We recall that, at least under the uniform primitive prior
(d rrr′′)unif, hit and run converges efficiently to the correct uni-
form distribution in O(d2R2

out/R2
in) as discussed in Sec. V B.

Furthermore, it was argued [42], as a consequence of the
above expression, that given an initial point that has a short-
est distance l from the boundary ∂Rλ, hit and run eventu-
ally mixes sample points into the uniform distribution after
O(d3R2

out/R2
inln(Rout/l )) steps.

This reveals a technical caveat for almost all Markov-chain
random-walk algorithms: a random walk starting from a sharp
corner point of a convex body requires very many steps to ap-
proach the stationary target distribution. It is generally much
harder to scout the entire convex region from such a corner
than from an interior point, since the Markov chain terminates
as soon as a next admissible point is obtained, which is
probabilistically near the initial corner point around which the
admissible region is tight. Such a situation is essentially status
quo for high-dimensional state reconstruction where the state
space R0 is filled with plenty of extremely sharp corners.

Doing hit and run from an interior point is therefore a
primary objective for general CR analysis. Even without the
full knowledge about the CR, it is still possible to numerically
compute a point that is sufficiently interior for this purpose.
The idea is to first find multiple random states on ∂Rλ ∩
int(R0), the boundary of Rλ in the interior of R0, and next
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FIG. 12. Graphs of Sλ and Cλ for D = 8 and 16 under uniform
and Gaussian prior distributions for case B as explained in the main
text. The measurement configurations are set to N/M = 5000 and
N/M = 50 respectively for D = 8 and 16, where M = D3. All plot
markers are computed with 20 000 points generated during in-region
sampling of uλ per λ. All case-A credibility curves (not shown in
this figure) match the theoretical results from Ref. [18]. On the
other hand, the case-B theoretical curves for Cλ can now be very
different from the actual ones because of the complicated state-space
boundary.
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FIG. 13. Graphs of the region capacity against C for all the rank-
deficient ML estimators referred by Fig. 12. The theoretical curves
for SHS, Str, and SB are represented by the upper red, middle blue,
and bottom green solid curves respectively, whereas the simulated
marker colors are as specified in Fig. 10. The deviations from
theoretical approximations for the region capacity, which is based
on hyperplanar geometry, are apparently relatively more robust to
high-dimensional state-space boundary features as compared to S
and C. More points are concentrated around large C.

average all these states to obtain an interior state of Rλ. This
is evidently equivalent to the minimization of the convex func-
tion [(xxx′ − rrrc) · FFF ML · (xxx′ − rrrc)/(−2lnλ′) − 1]2 with respect to
ρ ′ � 0 for which xxx′ = tr{ρ ′���} multiple times in the large-N
limit. Fortunately, this can be carried out extremely quickly
by using the superfast accelerated projected gradient routine
[43] (see Appendix E).

Figures 14 and 15 supply graphical visualization of the key
sampling activities that goes on for case B with D = 4, where
a rank-1 ML estimator is obtained. It is clear that starting
hit and run from a corner point (namely the ML estimator,
for instance) introduces small average hopping distances for
subsequent Markov chains. This can be interpreted as strong
sample correlations that prevent wide coverage of the CR,
contrary to performing hit and run starting from an interior
point.

C. Constructions of plausible regions

The matter of inspecting Sλ for a fixed Cλ, say 0.95, is
rather subjective, for very often one requires experienced
judgment to decide if such a value is sufficient for subsequent
prediction tasks. As advocated in [44,45], there exists a statis-
tically meaningful treatment of the measured data set D based
on the concept of evidence. It is thus fitting for us to end this
article with a short review on how our in-region sampling
technique studied here directly supports another interesting
kind of Bayesian analysis.

By definition, we say that rrr′ is a plausible candidate
parameter for the true rrr if there is indeed evidence in favor
of this supposition. That is, its normalized posterior prob-
ability L(D|rrr′) p(rrr′)/L(D) after the measurement is larger
than its prior probability p(rrr′) before this measurement was
performed. Therefore, rrr is a plausible parameter if the ev-
idence supports the prior knowledge. Under this evidence-
belief framework, one can construct another type of Bayesian
region—the plausible region (PR)—that contains all plausible
choices of rrr. This is really the CR R = Rλ=λcrit characterized
by the critical value [17]

λcrit =
∫ 1

0
dλ′ Sλ′ , (36)

for which L(D|rrr ∈ ∂Rλ=λcrit ) = L(D), or the CR that contains
all plausible points and nothing else. This follows quickly
from the following equality chain:

L(D) =
∫

(d rrr′) L(D|rrr′) =
∫

(d rrr′)
∫ L(D|rrr′ )

0
dx′

= Lmax

∫
(d rrr′)

∫ 1

0
dλ′ η[L(D|rrr′) − λ′Lmax]

= Lmax

∫ 1

0
dλ′ Sλ′ , (37)

so that L(D|rrr ∈ ∂Rλ=λcrit ) ≡ λcritLmax = L(D) gives Eq. (36).
So, constructing a PR is nothing more than one additional

step of computing λcrit after a CR construction. In our previous
work [18,19], we have supplied MC-less asymptotic approx-
imations to the expression of λcrit for the uniform primitive
prior. In the current context, it clearly follows that λcrit is also
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FIG. 14. Case-B correlation strengths (translated to state-space hopping distances) of the first 100 hit-and-run MC-sampled points starting
from both a corner of the CR (green area made up of 10 million uniformly sampled points) and an interior point, illustrated for two-qubit
systems (D = 4), a rank-1 ρ̂ML obtained using M = D3 and N/M = 500, and a uniform primitive prior in rrr. The corner MC run starts (black
shaded marker) from ρ̂ML, and the interior run starts from a fully mixed state inside the CR generated by averaging the first 1000 points
of the hit-and-run algorithm beginning with ρ̂ML. In properly scaled axes, corner MC shows a stronger correlation (shorter average hopping
distances) than interior MC in the respective planes of (a) shortest and (b) longest average hopping distances, as the former encounters the
region boundary much more frequently than the latter. This significantly limits the span of sampled points in the entire CR.

directly computable by simply doing a Riemann summation
of the full Sλ spectrum obtained through in-region sampling
in accordance with Eq. (36).

IX. CONCLUSIONS

Quantum-state tomography is an important application
of multidimensional parameter estimation. The construction

of Bayesian credible regions for the reconstructed quantum
states after tomography is, unfortunately, a highly nontrivial
problem owing to the complex constraints inherited from the
state space. The standard numerical recipe of first doing a
Monte Carlo sampling of the state space and next discarding
points outside the credible region to compute its region qual-
ities (size and credibility) quickly becomes infeasible when
the data set collected in an experiment is relatively big, as

FIG. 15. Case-B correlation strengths (translated to state-space hopping distances) of the first 100 hit-and-run MC-sampled points for the
Gaussian prior distribution centered at ρ̂ML. All figure specifications and conclusions are otherwise identical to those in Fig. 14.
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the corresponding credible region would be very small with
respect to the state space.

In this article, we performed an extensive analysis of
our recent in-region sampling technique that can construct
credible regions that are usually very small in practice for
reasonably high credibility values and large data samples.
This technique computes credible-region qualities of a small
credible region for any given prior distribution by inspecting
how an appropriately chosen region-average quantity changes
as the shape of the region varies. This procedure transforms
the general credible-region construction into a sequence of
direct region sampling followed by a simple numerical so-
lution to a single-variable differential equation. This results
in no sample wastage since no points are discarded. The
method of accelerated hit and run is one numerical scheme
that can be used to compute region averages rather efficiently
provided that sample correlation is properly mitigated with
good Monte Carlo starting points. One can also estimate its
numerical complexity in the context of tomography despite
the complicated state-space boundary.

Furthermore, for highly complex quantum systems of
extremely large dimensions, where all numerical methods
eventually become practically infeasible, we derive a set of
analytical formulas to perform approximate Bayesian error
certification through the perspective of distance-induced re-
gion capacity measures that alternatively quantifies how large
a credible region is. These formulas are now fully operational
and further complement those for the conventional size func-
tion developed in previous works that require knowledge of
the state-space volume.
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APPENDIX A: RELATIONSHIPS BETWEEN SHS

AND Str IN THE LARGE-N (OR D) LIMIT

Apart from DHS, all other measures have no direct analogs
in the rrr′ parametrization. However in certain limits, all these
measures have approximate relations with DHS.

We start with making an approximate connection between
Str and SHS by examining the Hermitian operator 	ρ ′ = ρ ′ −
ρ̂ML (ρ ′ ∈ R). In case A, the distribution of 	ρ ′ in R has

zero mean, 	ρ ′R = 0. This is also approximately true for
the case B situation when N is sufficiently large such that
R is small. Furthermore, the space of 	ρ ′ is essentially a
bounded set of Hermitian random operators. Here, we shall
make the assumption that each matrix entry 	ρ ′

jk in the com-
putational basis is an independent random complex number.
Under this condition, the 	ρ ′s form what is now known as
a Wigner ensemble [46–49] with the second moment equal

to |	ρ ′
jk|2

R = tr{(	ρ ′)2} = SHS. Moreover, they are known
to have an independent and identically distributed eigenvalue

spectrum that follows the Wigner semicircle law,

σ (	ρ ′/
√

D) ∼ 1

2πSHS

√
4 SHS − x2

for − 2
√

SHS � x � 2
√

SHS, (A1)

in the large-D limit. The trace-class distance Dtr can thus be
calculated with the integral

Dtr ≈
√

D

2πSHS

∫ 2
√

SHS

−2
√

SHS

d x |x|
√

4 SHS − x2 = 8
√

D SHS

3π
, (A2)

so that we end up with (17).

For case B, that 	ρ ′R = 0 is obvious, but as we have no

means of analytically estimating 	ρ ′R, we make a further
approximation that as long as R is sufficiently small, the

offset to 	ρ ′R will be proportionately small, so that (17)
remains a reasonable asymptotic approximation.

APPENDIX B: FIDELITY IN THE LARGE-N LIMIT

A Taylor expansion of F about r̂rrML, or

F ≈ 1 + (rrr′ − r̂rrML) T ∂FML

∂ r̂rrML

+ 1

2
(rrr′ − r̂rrML) T ∂

∂ r̂rrML

∂FML

∂ r̂rrML

(rrr′ − r̂rrML), (B1)

reveals the large-N characteristics that is needed for analysis.
The structure of (14), however, demands the operator variation
of

√
A for a positive (semidefinite) A. An integral representa-

tion of
√

A exists [50] and can be written as

√
A = lim

ε→0+

∫ ∞

0

d t

π
√

t

A

t + A + ε
, (B2)

where the limit is understood to be applied at the very end of
all calculations so that Eq. (B2) is valid even for A with zero
eigenvalues.

The first-order variation of tr{√A}2
produces

δ tr{
√

A}2 = 2 tr{
√

A} lim
ε→0

∫ ∞

0

d t

π
√

t
tr

{
δ

A

t + A + ε

}
= 2 tr{

√
A} lim

ε→0

∫ ∞

0

d t

π
√

t
tr

{
δA

1

t + A + ε

− A

t + A + ε
δA

1

t + A + ε

}
= 2 tr{

√
A} lim

ε→0
tr

{
δA

A + 2 ε

2 (A + ε)3/2

}
. (B3)

In terms of F , we substitute A ≡ ρ̂
1/2
ML ρ ′ ρ̂1/2

ML , and evaluate
the above result with ρ ′ = ρ̂ML, or A → AML = ρ̂2

ML, then with
δAML = ρ̂

1/2
ML δ̂rrrML · ��� ρ̂

1/2
ML ,

∂ FML

∂ r̂rrML

= 2 lim
ε→0

tr

{
ρ̂ML

ρ̂2
ML + 2 ε

2 (̂ρ2
ML + ε)3/2

���

}
, (B4)

where we remind the reader that tr acts on operators
only, not on the vectorial character. For case B in which
ρ̂ML = ∑r

j=1 |λ j〉λ j〈λ j | is rank deficient, we get, after taking
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the trace,

∂ FML

∂ r̂rrML

= tr{Pr ���}, (B5)

where Pr = ∑r
j=1 |λ j〉〈λ j |. It is then trivial to realize that this

first-order derivative is zero for case A. Qualitatively, this
confirms the fact that when r̂rrML is an interior point, F has
a local maximum at this point as it should, while a boundary
estimator evaluates to a nonzero F slope.

Upon denoting WWW ML = ρ̂
1/2
ML ��� ρ̂

1/2
ML , the second-order vari-

ation follows from the second line of (B3):

δ
∂ tr{√A}2

∂ rrr′ = 2 δ

[
tr{

√
A} lim

ε→0

∫ ∞

0

d t

π
√

t

× tr

{
WWW ML

t + ε

(t + A + ε)2

}]
. (B6)

A product-rule dissociation of (B6) comprises a δ tr{√A} and

lim
ε→0

∫ ∞

0

d t

π
√

t
tr

{
WWW MLδ

t + ε

(t + A + ε)2

}
= − lim

ε→0

∫ ∞

0

d t

π
√

t
tr

{
WWW ML

[
t + ε

t + A + ε
δA

1

(t + A + ε)2

+ t + ε

(t + A + ε)2
δA

1

t + A + ε

]}
. (B7)

After evaluating the variation at ρ ′ = ρ̂ML and further undoing
all integrations with the help of its spectral decomposition,
case B yields

∂

∂ r̂rrML

∂FML

∂ r̂rrML

= 1

2
tr{Pr ���}tr{Pr ��� T}

−
r∑

j=1

r∑
k=1

〈λ j |���|λk〉〈λk|��� T|λ j〉
λ j + λk

. (B8)

The counterpart expression for case A is immediate, of course.

APPENDIX C: HYPERELLIPSOIDAL-CAP AVERAGES

Under the uniform primitive prior, calculations of the
hyperellipsoidal-cap integrals

I0 =
∫

(d rrr′′)cap, (C1)

III1 =
∫

(d rrr′′)cap rrr′′, (C2)

III2 =
∫

(d rrr′′)cap rrr′′rrr′′ T
, (C3)

specified by the uniform cap-volume element (d rrr′′)cap =
(d rrr′)unif η(1 − rrr′′2) η(a − bbbTrrr′′) for 0 � a � |bbb| and some
column bbb, include systematic manipulations of the double
Heaviside functions. One route to take exploits the following
integral representation:

η(x) =
∫

d t

2π i

eix

t − i ε
(C4)

with the implicit limit ε → 0+. We then have, for (C1),

I0 =
∫

d t

2π i

ei t

t − i ε

∫
d t ′

2π i

ei a t ′

t ′ − i ε

∫
(d rrr′′)unif

e−i t rrr′′2 − i t ′ bbbTrrr′′

= πd/2
∫

d t

2π

ei t

(i t )d/2+1

∫
d t ′

2π

ei a t ′

i t ′ e(i/4 t ) t ′2bbb2
, (C5)

upon noting the well-known d-dimensional Gaussian integral
result

∫
(d rrr′′)unif e−rrr′′ T AAArrr′′ + ccc Trrr′′ = πd/2

det{AAA}1/2
eccc T AAA−1 ccc/4

(C6)

for any positive AAA. Let us first do the t ′ integration by invoking
the useful transformation

1

zm
= 1

(m − 1)!

∫ ∞

0
d y ym−1 e−z y for m > 0 : (C7)

∫
d t ′

2π

ei a t ′

i t ′ e(i/4 t ) t ′2bbb2

=
∫ ∞

0
d y

∫
d t ′

2π
e(i/4 t ) t ′2bbb2 + i (a − y) t ′

=
√

i t

π bbb2

∫ ∞

0
d y e−i t (a − y)2/bbb2

. (C8)

As a consequence,

I0 = π (d−1)/2

|bbb|
∫ ∞

0
d y

∫
d t

2π

ei t

(i t )(d+1)/2
e−i t (a − y)2/bbb2

= π (d−1)/2(
d−1

2

)
!|bbb|

∫ ∞

0
d y

∫ ∞

0
d y′ y′(d−1)/2

×
∫

d t

2π
ei t[1 − y′ − (y − a)2/bbb2]︸ ︷︷ ︸

= δ(1 − y′ − (y − a)2/bbb2)

= π (d−1)/2(
d−1

2

)
!|bbb|

∫ a+|bbb|

0
d y [1 − (y − a)2/bbb2](d−1)/2. (C9)

The above integral in y represents well-known special func-
tions and to see this we further perform the substitutions
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cos u = (y − a)/|bbb| and l = a/b:∫ a+|bbb|

0
d y [1 − (y − a)2/bbb2](d−1)/2

= |bbb|
∫ cos−1 l

0
d u (sin u)d

= |bbb| B

(
1

2
,

d + 1

2

)
I(1−l )/2

(
d + 1

2
,

d + 1

2

)
, (C10)

which is a product of the beta function and its normalized
incomplete form

I 0�a�1(b, c) = 1

B(b, c)

∫ a

0
d u ub (1 − u)c. (C11)

The final answer reads

I0 = Vd I(1−l )/2

(
d + 1

2
,

d + 1

2

)
. (C12)

For (C2),

III1 =
∫

d t

2π i

ei t

t − i ε

∫
d t ′

2π i

ei a t ′

t ′ − i ε

×
∫

(d rrr′′)unif rrr′′ e−i t rrr′′2 − i t ′ bbbTrrr′′
, (C13)

where the rrr′′ integration∫
(d rrr′′)unif rrr′′ e−i t rrr′′2 − i t ′ bbbTrrr′′

= − 1

i t ′
∂

∂ bbb′

∫
(d rrr′′)unif e−i t rrr′′2 − i t ′ bbbTrrr′′

= −i
πd/2 t ′

2 (i t )d/2+1
bbb e(i/4 t ) t ′2 bbb2

(C14)

is simplified after a differentiation under the integral sign.
Then

III1 = − πd/2

2
bbb

∫
d t

2π

ei t

(i t )d/2+2

∫
d t ′

2π
e(i/4 t ) t ′2 bbb2 + i a t ′

− π (d−1)/2

2

bbb

|bbb|
∫

d t

2π

ei t (1 − l2)

(i t )(d+3)/2
. (C15)

To simplify the t integration, we again recall Eq. (C7) to
finally get

III1 = −π (d−1)/2

2
(

d+1
2

)
!

bbb

|bbb|
(
1 − l2

)(d+1)/2
, l = a

|bbb| . (C16)

We can at least verify the d = 1 for Eq. (C16) after paying
attention to the convention bbb → −b, for b � 0. This corre-
sponds to the integral

I1,d=1 =
∫

d r′′η(1 − r′′2) η(a + b r′′) r′′

=
∫ 1

−1
d r′′ η(a + b r′′) r′′

=
∫ −l

−1
d r′′ r′′ = −1

2
(1 − l2). (C17)

By the same token, we may explore the dyadic integral III2

in (C1) first with (C4) to obtain

III2 =
∫

d t

2π i

ei t

t − i ε

∫
d t ′

2π i

ei a t ′

t ′ − i ε

×
∫

(d rrr′′)unif rrr′′rrr′′ T e−i t rrr′′2 − i t ′ bbbTrrr′′
, (C18)

where the dyadic rrr′′ subintegral∫
(d rrr′′)unif rrr′′rrr′′ T e−i t rrr′′2 − i t ′ bbbTrrr′′

= − 1

i t

δ

δAAA

∫
(d rrr′′)unif e−itrrr′′ TAAArrr′′ − it ′bTr′′

∣∣∣∣
AAA=111

= − πd/2

(i t )d/2+1

δ

δAAA

1

det{AAA}1/2
e(i t ′2/4 t )bbbTAAA−1bbb

∣∣∣∣
AAA=111

(C19)

after an application of Eq. (C6) and a dyadic differentiation
under the integral sign this time.

This time, we choose to perform the t and t ′ integrals
before taking the derivative, inasmuch as

III2 = − δ

δAAA

πd/2

det{AAA}1/2

∫
d t

2π

ei t

(i t )d/2+2

×
∫

d t ′

2π

ei a t ′

i t ′ e(i t ′2/4 t )bbbTAAA−1bbb
∣∣∣∣∣
AAA=111

, (C20)

where the usage of (C7) evaluates the t ′ integral∫
d t ′

2π

ei a t ′

i t ′ e(i t ′2/4 t )bbbTAAA−1bbb

=
∫ ∞

0
d y

∫
d t ′

2π
e(i t ′2/4 t )bbbTAAA−1bbb + i t ′ (a − y)

=
√

i t

π bbbTAAA−1bbb

∫ ∞

0
d y exp

(
−i

(y − a)2t

bbbTAAA−1bbb

)
(C21)

into another Gaussian integral. Its convenient feature becomes
clear when substituted back into (C20):

III2 = − δ

δAAA

π (d−1/2)√
det{AAA}bbbTAAA−1bbb

×
∫

d t

2π

ei t

(i t )(d+3)/2

∫ ∞

0
d y exp

(
−i

(y − a)2t

bbbTAAA−1bbb

)∣∣∣∣
AAA=111

= − δ

δAAA

π (d−1)/2√
det{AAA}bbbTAAA−1bbb

× 1(
d+1

2

)
!

∫ ∞

0
d y

∫ ∞

0
d y′ y′(d+1)/2

×
∫

d t

2π
exp

[
−i t

(
1 − y′ − (y − a)2t

bbbTAAA−1bbb

)]
︸ ︷︷ ︸

= δ

(
1 − y′ − (y − a)2t

bbbTAAA−1bbb

)
∣∣∣∣
AAA=111

= −π (d−1)/2(
d+1

2

)
!

δ

δAAA

1√
det{AAA}bbbTAAA−1bbb

012345-15



CHANGHUN OH, YONG SIAH TEO, AND HYUNSEOK JEONG PHYSICAL REVIEW A 100, 012345 (2019)

×
∫ a+

√
bbbTAAA−1bbb

0
d y

[
1 − (y − a)2

bbbTAAA−1bbb

](d+1)/2

= −π (d−1)/2(
d+1

2

)
!

δ

δAAA

1

det{AAA}1/2

∫ cos−1 lAAA

0
d u (sin u)d+2

∣∣∣∣∣
AAA=111

.

(C22)

The end of the tunnel becomes visible after a product-rule
differentiation carried out with the basic dyadic identities

δAAA−1 = − AAA−1δAAA AAA−1,

δ det{AAA} = det{AAA}Tr{AAA−1δAAA}, (C23)

after which we end up with the final answer,

III2 = π (d−1)/2

2
(

d+1
2

)
!

[
B

(
1

2
,

d + 3

2

)
I(1−l )/2

(
d + 3

2
,

d + 3

2

)
111

+ l (1 − l2)(d+1)/2 bbbbbbT

bbb2

]
. (C24)

The one-dimensional special case can again be extracted from
Eq. (C24),

III2

∣∣∣
d=1

= 1

2

[
B

(
1

2
, 2

)
I(1−l )/2(2, 2) + l (1 − l2)

]
= 1

2

[
8
∫ (1−l )/2

0
d u u(1 − u) + l (1 − l2)

]
= 1

2

[
8

(
l3

24
− l

8
+ 1

12

)
+ l (1 − l2)

]
= 1

3
(1 − l3), (C25)

and compared with the direct calculation

I2,d=1 =
∫

d r′′η(1 − r′′2) η(a + b r′′) r′′2

=
∫ 1

−1
d r′′ η(a + b r′′) r′′2

=
∫ −l

−1
d r′′ r′′2 = 1

3
(1 − l3). (C26)

APPENDIX D: PROJECTION OF UNIFORM AND
GAUSSIAN DISTRIBUTIONS ONTO A HYPERELLIPSOID

One may begin with a rotated coordinate system (centered
at r̂rrML) that diagonalizes the Fisher information FFF ML, so that
the projected uniform distribution onto the error region in the
large-N approximation is calculated from the integral

punif ∝
∫

dz η(1 − ax2 − by2 − cz2) (D1)

for the eigenvalues a, b, and c of FFF ML/(−2lnλ). The preceding
exercises of Appendix C swiftly give punif ∝

√
1 − ax2 − by2.

The Gaussian distribution, with covariance chosen to be
proportional to FFF ML that possesses the eigenvalues a′, b′, and
c′, is given by

pgauss ∝
∫

dz η(1 − ax2 − by2 − cz2) e−a′x2 − b′y2 − c′z2
.

(D2)

This can be simplified to pgauss ∝ e−a′x2−b′y2
γ (1/2, c′(1 −

ax2 − by2)/c) in terms of the lower incomplete Gamma func-
tion γ (., .) using again results from Appendix C.

APPENDIX E: GRADIENT OPTIMIZATION FOR
OBTAINING AN ERROR-REGION INTERIOR POINT

To acquire an interior point of a CR for state tomography,
which is essentially a Hilbert subspace, it is sufficient to
generate very many (>D) region boundary points and take
the average of these points. In the limit of large N , we may
approximate the inner boundary of the region as part of the
hyperellipsoid described by (xxx′ − rrrc) · AAA · (xxx′ − rrrc) � 1.

If we perform a variation on the relevant function

f = [(xxx′ − rrrc) · AAA · (xxx′ − rrrc) − 1]2, (E1)

where AAA = FFF ML/(−2lnλ′), we get

δ f = 4 [(xxx′ − rrrc) · AAA · (xxx′ − rrrc) − 1] δxxx′ · AAA · (xxx′ − rrrc).

(E2)

A gradient method, such as the accelerated projected gradient
method, requires the definition of the (operator) gradient
defined by δ f /δρ ′, which requires the connection δxxx′ =
tr{δρ ′ ���}. Naturally then, we must acquire the resulting op-
erator,

δ f

δρ ′ = 4 [(xxx′ − rrrc) · AAA · (xxx′ − rrrc) − 1] ��� · AAA · (xxx′ − rrrc),

(E3)

where the dot products operate only on the vectorial character
only.

The mechanisms that drive the accelerated projected gra-
dient search algorithm are beyond the scope of this article.
Instead we provide a simple manual to immediately mod-
ify and use the open-source MATLAB code file qse_apg.m
[51]. For this purpose, we note the three important variables
fval_varrho, fval_new, and gradient, which stores the
function values of f evaluated with the varrho and rho_new
variables, as well as the gradient operator δ f /δρ ′ evaluated
with varrho . In order to minimize f with qse_apg.m,
one may simply overwrite the existing functional expressions
[namely -f’.*log(probs_...) and -qmt(...) ] for the
three variables with the ones in Eqs. (E1) and (E3). By
our numerical experience with this minimization task, it is
advisable to set the parameters defaults.threshold_fval
and defaults.imax respectively to eps and >10−8 for better
accuracies.
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