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Entropy, purity, and fidelity in Majorana phase space
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Majorana phase-space representations for fermions map fermionic many-body physics into a distribution over
one of the Cartan symmetric spaces of Lie group theory. The representation is in terms of 2M × 2M complex
antisymmetric matrices, which generate the Gaussian Majorana operators. Here we show how this expansion
can be utilized to calculate quantities arising in quantum thermodynamics and quantum information. Purity and
the linear entropy are calculated, as well as the quantum fidelity between two general fermionic states, with
numerical examples for pure states. We describe the geometrical properties of the phase space, and show that
the overlap between two Gaussian Majorana states depends on the product of their antisymmetric matrices.
Fermionic phase space is divided up into two orthogonal subspaces of different number parity, whose matrix
representations differ by an orthogonal reflection in the phase space.
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I. INTRODUCTION

Much research in recent years has focused on Majorana
fermions and quasiparticles [1–9]. While studying particles
that are their own antiparticles is of intrinsic interest, the
corresponding operators have an important significance as
quadrature components of any fermionic field. One tool to
study these particles is the use of quantum phase-space meth-
ods. This approach has grown in popularity since Wigner’s
paper [10] on quantum corrections to thermodynamic equi-
librium. Such methods are widely used to study interacting
Bose systems [11–14], and this approach can also be used
in fermionic cases [15–18]. Recently, fermionic phase-space
methods have been extended to Majorana space [19,20], lead-
ing to fermionic analogs of both the Q function [18,21] and
the P function [22,23] expansions.

Majorana phase-space methods are used in this paper to
calculate the fundamental information-related quantities of
entropy, purity, and fidelity in Fermi systems. The Majorana
representation has been recently used to develop fidelity wit-
nesses [24]. This formalism has also been applied to Ising
chains [25]. Therefore, it is important to obtain an expression
for the Renyi entropy, purity, and fidelity in these representa-
tions. Entropy in quantum information is used to quantify dis-
order and entanglement. As the entropy of a system increases,
information about the system decreases, making this a fun-
damental concept in quantum thermodynamics. The relation
between entropy and information of a quantum system is due
to Shannon [26]. The Renyi or linear entropy [27] of a density
matrix ρ̂, generalizes the Shannon entropy so that it is simpler
to treat finite systems. Utilizing these results allows one to
study the thermodynamical properties of quantum many-body
Fermi systems [28] and their entanglement [29,30]. Some of
these have been performed by using Monte Carlo methods
[31–33]. The Renyi entropy has been used to study velocity
distributions [34], threshold selection [35], and cryptography
[36].

In calculating or measuring a quantum many-body state,
purity signifies whether a pure state has undergone decoher-
ence. For a given quantum density matrix ρ̂, purity is de-
fined as �(̂ρ) = Tr[ρ2]. Methods of studying purity include
quantum homodyne tomography (QHT) [37], discrimination
methods [38], and many others, although we note that these
techniques are mostly developed for bosonic cases. Purity cal-
culations are essential in the studies of quantum information
processing [39], as these applications are uniquely sensitive to
decoherence.

Fidelity is another fundamental quantity in quantum infor-
mation, which has been used to investigate quantum phase
transitions [40–42], quantum teleportation [43,44], quantum
metrology [45], evolution of open quantum systems [46],
nonadiabaticity measurements [47], quantum chemistry [48],
and quantum chaos [49]. In the literature there are investiga-
tions on the Renyi entropy based on Monte Carlo [50,51] and
holographic methods [52].

Previous calculations of Renyi entropy utilizing phase-
space methods [53] employed the positive-P distribution
[23,54,55] to calculate the linear entropy, for both bosons
and fermions. A recent review [56] analyzes the fidelity of
mixed states in a detailed way. The present paper quantifies
orthogonality properties and extends these earlier calculations
of purity, linear entropy, and fidelity to Majorana phase space
by utilizing the Majorana P representation [19,20].

In order to carry out these calculations, we give a detailed
analysis of the geometrical properties and dimensionality
of the Gaussian phase space. We prove a theorem on the
representations of Gaussian state parity for the case of pure
states, showing how the Gaussian pure states can be classified
into two orthogonal subspaces.

This paper is organized as follows: Sec. II describes the
properties of the Majorana P representation. Next, in Sec. III
we describe the fidelity measures and the derivation of the
inner product of two Gaussian Majorana operators. There we
also show the relation between the parity operator and fidelity.
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Section IV gives results for entropy and purity calculations.
Fidelity calculations for pure states are discussed in Sec. V.
Finally our conclusions are given in Sec. VI.

II. GAUSSIAN MAJORANA P REPRESENTATION

The Gaussian basis of fermions used here leads to either
fermionic P functions [16,17,57] or Q functions [18,19].
Either approach gives rise to distributions on a space of
2M × 2M matrices that grow only quadratically with the
mode number M. Another interesting and useful approach
to phase-space representations for fermions was first inves-
tigated using Grassmann variables [58]. This method is also
utilized here for analytic proofs. Grassmann variables have
an exponentially large 22M × 22M matrix representation [59],
which is infeasible for direct computational representation at
large M.

Thus, there is a practical advantage in using a Gaussian ba-
sis, as one can directly represent and visualize the phase space.
In this section we review the basic properties of the Majorana
P function, which is a fermionic P function expressed using
Majorana fermion operators.

A. Gaussian operators

The fermionic Gaussian operators are exponentials of
quadratic forms in the fermionic raising and lowering op-
erators. There is extensive literature on this approach using
un-ordered exponentials [60,61]. Here we use an alternative
approach: the normally ordered Gaussian basis [16,17,57].
This is equivalent to the traditional approach, and has a
number of advantages. In particular, one can explicitly write
the Gaussian basis in terms of a 2M × 2M correlation matrix.
This allows the calculation of differential identities, as well as
existence theorems for expansions of the identity operator.

Using unitary transformations, it is possible to transform
fermionic phase-space representations from the annihilation
and creation operator approach to an expansion using Majo-
rana operators [19]. This turns out to have many appealing
properties. The fundamental phase-space variable is simply
one of these antisymmetric matrices. As a result, there are
many useful properties from Lie group theory and the theory
of homogeneous spaces and matrix polar coordinates [62] that
are directly applicable.

Throughout the paper, we use the following notation for an
M-mode Hilbert space: M vectors are denoted in bold type as
â, 2M vectors with a single underline as â, M × M matrices
are in bold type, for example, I for the M-dimensional identity
matrix, and 2M × 2M matrices are denoted with a double
underline as in I , which is the 2M-dimensional identity.

The most general Majorana Gaussian operator is then
defined in a normally ordered form, as [20]

�̂(x) = N (x) : exp[−iγ̂ T [i + (i + ixi)−1]γ̂ /2] :, (2.1)

where i = [ 0 I

−I 0
] is a matrix square root of −I , while x is a

complex antisymmetric matrix and γ̂ is a vector of Majorana
operators such that

{γ̂i, γ̂ j} = 2δi j . (2.2)

The normalization factor N is defined as

N (x) = 1

2M

√
det[i − x], (2.3)

which gives a unit trace for the Gaussian operator.
The Majorana operators themselves are obtained as a result

of the action of a matrix [60], U = [ I I
−iI iI

] on the extended

fermionic creation and annihilation operator, â = (âT , â†)
T

and â† = (â†, âT ), so that γ̂ = Uâ.

The choice of a Gaussian operator with normal ordering,
with all creation operators ordered to the left, and signs chosen
in the standard way, allows us to define the antisymmetric
matrix x so that there are well-defined differential identities.

In the case of a real matrix x, �̂(x) is Hermitian and positive
definite and corresponds to a definite quantum state. If we
introduce the basic Majorana variance commutator,

X̂μν ≡ i

2
[γμ, γν], (2.4)

then the matrix x is simply the operator variance of the

Gaussian quantum state �̂(x), so that

x = Tr[X̂ �̂(x)]. (2.5)

B. Fermionic P representations

It is possible to express any fermionic quantum density
matrix as an expansion of the Gaussian basis and the Majorana
P function as follows [16,19,57]:

ρ̂(t ) =
∫
D

P(x, t )�̂(x)dx, (2.6)

where t is the time, �̂(x) is a normalized Gaussian operator
corresponding to the complex phase-space variable x, and
P(x, t ) is the P function. This can be real or complex. The gen-
eral integration measure is dx = ∏

i< j d2xi j over a complex
integration domain D, which we treat in more detail below.

One of the properties of the P(x, t ) distribution is that the

normalization of ρ̂ and �̂ implies that this distribution is also
normalized such that ∫

D
P(x, t )dx = 1. (2.7)

The expectation value of any Hermitian quantum operator Â
can therefore be calculated at time t given A(x) = Tr[Â�̂(x)],
so that

〈Â〉 =
∫
D

P(x, t )A(x)dx. (2.8)

This is a complete representation like the positive P dis-
tribution for bosons [23], provided complex antisymmetric
matrices are included in the phase-space domain D. One can
also define a more restricted representation similar to the
Glauber-Sudarshan P representation for bosons, if only real
antisymmetric matrices are included. In this restricted case the
basis of �̂ operators is Hermitian and positive definite.

An important property of �̂(x) is that an orthogonal matrix
transformation such that x → OT xO has the same effect as a
transformation on the Majorana operators such that γ̂ → Oγ̂ .
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Since this transformation leaves the fundamental Majorana
anticommutators invariant, it also gives a unitary transfor-
mation in the quantum Hilbert space, which is equivalent
to a change of basis. However, this is a larger group of
transformations than a simple mode transformation of the
fermion operators. It can swap the roles of annihilation and
creation operators, thus turning particles into antiparticles, as
well as other more general transformations.

C. Dimensionality of manifolds and pure states

The Hermitian Majorana Gaussian density matrices �̂(x)
are defined in terms of an antisymmetric real matrix x of
size 2M × 2M. Since this matrix is required to be antisym-
metric, the diagonal elements are zero, and the transposed
off-diagonal elements are equal and opposite. This defines
a homogeneous real vector space of real dimension D =
M(2M − 1). When bounded by the additional condition that

I − xx† > 0, (2.9)

the space is known as one of the six group theoretic irreducible
homogeneous symmetric domains [62,63]. The inequality
means that all eigenvalues of the matrix I − xx† are positive.
We extend this to include the boundary, so our integration
domain D is for I − xx† � 0.

In the case of Hermitian Gaussian states, the physical
states are characterized by real antisymmetric matrices such
that I + x2 � 0. This is the real subspace of the complex
symmetric space, with the addition of the real boundary. These
correspond to physical density matrices that are Hermitian
and positive definite. We can introduce y = ix, which is a

Hermitian matrix. By the spectral theorem, it is diagonaliz-
able, and has 2M real eigenvalues, λm. Eigenvalues of an even
dimensional antisymmetric matrix are paired, and hence the
antisymmetric imaginary matrix y has at most M independent

real eigenvalues ±λm. The same is true for x2 + I = I − y2,

except that by applying the same diagonalization, this has at
most M distinct real eigenvalues 1 − λ2

m.
The condition that x2 + I � 0 means that this inequality

holds for all the eigenvalues. Therefore, there are M inde-
pendent conditions that 1 − λ2

m � 0. This defines an interval
for each eigenvalue such that at the end points, λm = ±1,
which is the boundary of the real homogeneous space. This
boundary condition is not sufficient to characterize a Gaussian
Majorana pure state, for which x2 = −I . In the pure state case,
all the M eigenvalues of y must therefore satisfy λm = ±1,
which defines M additional constraints on the coefficients of
x. Hence the real dimensionality of the pure states must be
d = M(2M − 1) − M = 2M(M − 1).

As a result, almost all of the boundary of the homogeneous
space consists of mixed states, in which only one eigenvalue
has reached its maximal value. The dimensionality of the
pure state manifold is much smaller than this, as indicated
schematically in Fig. 1.

To give an example, in the single fermion case of a pure
state with M = 1, one has d = 0. There are only two possible
antisymmetric x matrices that satisfy these conditions, without
any continuous vector space of coefficients. These are the two

FIG. 1. Schematic diagram of the real homogeneous space as a
hypersphere with polar caps at the North and South Poles, represent-
ing pure states with positive and negative parity. These are indicated
by the red and blue colors, respectively. Mixed states occur in the
interior of the sphere, but can also exist at the boundaries, away from
the poles.

pure Fock state density matrices, so that �̂(x) = |n〉〈n| with
n = 0, 1, and there are no other pure states.

In the M = 2 Hilbert space, it follows that for the pure
states, d = 4, while the total space of Gaussian density matri-
ces has dimension D = 6. In this case, the pure state manifold
has two less dimensions than the mixed state manifold. For
this and for all higher dimensional cases, the pure state mani-
fold cannot be a boundary of the homogeneous space, because
this is necessarily a manifold of dimension δD = D − 1 =
M(2M − 1) − 1 [64]. As a result, the domain boundary is
generically composed of partially mixed and pure states, for
which at least one of the eigenvalues has reached its bounding
value of λm = ±1.

In general the manifold of pure states is a subspace of the
real manifold boundary space. For M = 2, it has dimension
d = 4, in which case the manifold boundary has dimension
δD = 5, and the homogeneous space dimension is D = 6.

D. Majorana identities and observables

In an earlier paper [19], we have explained how one
may calculate observables from these representations using
operator identities. The main identities are given below, for
(left) mixed order and (right) products, respectively:

γ̂ γ̂ T �̂ = i

[
x− d�̂

dx
x+ − �̂x+

]
,

γ̂ �̂γ̂ T = i

[
−x− d�̂

dx
x− + �̂x−

]
,

�̂γ̂ γ̂ T = i

[
x+ d�̂

dx
x− − �̂x+

]
. (2.10)

Here x± ≡ x ± iI , so that if we define the Majorana corre-

lation function as X̂μν ≡ i
2 [γμ, γν], then its expectation value

is given by

〈X̂μν〉 = Tr[ρ̂X̂μυ] =
∫
D

P(x)xμνdx. (2.11)

Since x is simply the Majorana correlation matrix for a Ma-
jorana Gaussian state, we can utilize Wick’s theorem [65,66]
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to write all higher order correlations. If we define Ĉ(p)
j1,... j2p

=
ipγ̂ j1 ...γ̂ j2p , these correlations can therefore be obtained from
x as

C(p)
j1... j2p

(x) = Tr
(
�̂(x)ipγ̂ j1 ...γ̂ j2p

) = P f (x′), (2.12)

where P f denotes the Pfaffian, 1 � j1 < ... < j2p � 2M, and
x′

ik = x ji, jk is the corresponding 2p × 2p submatrix obtained
through deletion of all rows and columns of x that do not
occur in the correlation function. Thus, one can calculate any
correlation function defined as a polynomial in the Majorana
operators. This is possible for any density matrix, whether
pure, mixed, or non-Gaussian, via a phase-space average as
in Eq. (2.8) with A(x) = P f (x′).

III. PARITY AND FIDELITY

In this section we explain how number parity can be
calculated from the antisymmetric covariance matrix of the
Majorana Gaussian operator. We also explain how parity
and orthogonal transformations relate to the inner product
of the Gaussian operators, and therefore to the fidelity and
entropy measures. These quantities are closely related to the
Renyi entropy, which is defined by using the Euclidean norm,
‖ρ̂‖2 =

√
Tr(ρ̂ρ̂†), with S2 = − ln ‖ρ̂‖2

2.

A. Fidelity measures

The Euclidean fidelity measure between two mixed quan-
tum states ρ̂ and σ̂ is defined by the relation [56],

F2 = Tr(ρ̂σ̂ )

max(Tr(ρ̂2), Tr(σ̂ 2))
. (3.1)

For Hermitian Gaussian pure states, �̂(x), �̂(y) the corre-

sponding x, y matrices are real, and

F2(�̂(x), �̂(y)) = Tr(�̂(x)�̂(y)). (3.2)

The first necessary step for the evaluation of the entropy,
purity, and fidelity using Gaussian representations is therefore
to calculate the trace of the product of two unit trace Majorana
Gaussian operators. This must include the non-Hermitian
Gaussian operators with complex x matrices. Following the
calculations given in Appendix, we obtain that the inner
product of two Majorana Gaussian operators is

F (x, y) = Tr[�̂(x)�̂†(y)]

= 2−M
√

det[I − xy∗]. (3.3)

B. Number parity

The number parity eigenvalue is an essential property of
fermion states. The corresponding parity operator depends on
the choice of basis used to define the original number states.
If one interchanges a single mode creation and annihilation
operator, which does not change the commutation relations,
the parity changes sign. However, in any basis the parity
operator is a conserved quantity under a Hamiltonian that is
quadratic in the Majorana operators, or equivalently quadratic
in the raising and lowering operators. This is because such

a Hamiltonian can only change the particle number in even
steps of 0,±2n. Of course, a lossy reservoir can change the
parity.

We wish to show that this can be calculated directly as the
Pfaffian function of the phase-space matrix x. The Majorana
parity operator is the maximal Mth-order Majorana correla-
tion function [67]:

P (̂γ ) = (−1)N̂ = iM
2M∏
i=1

γ̂i, (3.4)

where N̂ = ∑
i n̂i is the total fermionic number operator. This

can be written as

P (̂γ ) = iM γ̂1γ̂2γ̂3...γ̂2M . (3.5)

Using the expression in the above equation we evaluate the
higher order correlations given in Eq. (2.12) as

Tr(�̂P (̂γ )) = P f (x). (3.6)

Hence the mean parity of any Gaussian is simply the Pfaffian
function of the Majorana correlation matrix x so that P (x) =
P f (x).

For pure state Gaussian density matrices, Tr[�̂(x)2] =
1. The inner-product result (3.3) shows that in this case,
det [I − x2] = 22M . Pure state Gaussian density matrices are
diagonalizable as number states in some orthogonally trans-
formed number state basis [18,68]. Number states with an ith
mode occupation of ni = 0, 1, from which one can deduce
that det (x) = 1 and x2 = −I . This is consistent with hav-

ing det [I − x2] = 22M . For antisymmetric matrices P f (x)2 =
det (x), so this also means that the corresponding parity is
P (x) = ±1.

Since these are the extremal eigenvalues of the quantum
parity operator, it follows that all Gaussian pure states are
number parity eigenstates. However, they are generally not
number eigenstates, and hence are similar to the coherent
states of bosons, which are not number states either. While
physical pure states are number states, due to superselection
rules, both coherent and Gaussian states allow one to obtain a
complete mathematical basis for the physical states, which is
an extremely useful property, even though unphysical super-
positions may be included in the basis.

C. Fundamental orthogonality theorem

We now show that, unlike the coherent states of bosons, the
Gaussian pure states of fermions are fundamentally divided
into two orthogonal groups that depend on their number
parity. The fidelity result given above can then be interpreted
as showing that when two states are related by a rotation,
there is a finite relative fidelity. We will also show that if
they are Gaussian pure states related by a reflection, they are
orthogonal to each other, since there is zero relative fidelity
for pure states of opposite parity.

Theorem. If x is real, antisymmetric and orthogonal with
det (x) = 1, and y = OT xO where O is a real orthogonal

matrix with det (O) = −1, then

F (x, y) = 0. (3.7)
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Proof. A standard identity connecting Pfaffians and deter-
minants is as follows:

P f [OxOT ] = det[O]P f [x]. (3.8)

Using the relation P (x) = P f (x), the above relation can be
written as

P f [OxOT ] = det[O]P (x). (3.9)

In the case that det (x) = 1 with x real, antisymmetric and

orthogonal, the corresponding �̂(x) is a pure Fermi state
with P (x) = ±1, and hence is an eigenstate of the parity

operator P̂ . Since det (O) = −1 the parity of y must change

sign, i.e., P (y) = ∓1, as evident from Eq. (3.9). As a con-

sequence, �̂(x) and �̂(y) are eigenstates of a Hermitian

operator with different eigenvalues, and are orthogonal, so
F (x, y) = 0. �

In summary, an orthogonal rotation with det (O) = 1 does
not change the parity of the Gaussian Fermi state, but a
reflection with det (O) = −1 does. Two Gaussian pure states
that have different parity are orthogonal, since they are dis-
tinct eigenstates of a Hermitian observable. Physically, the
rotations are caused by unitary evolution generated by a
Bogoliubov-de Gennes Hamiltonian which at most creates
and destroys fermions in pairs, and does not change parity.
Reflections, which change parity, are caused by decoherence
processes in which a single particle is lost or gained from
coupling to a reservoir.

To give a more direct proof in the simplest case of a single
reflection, suppose that only one reflection is involved, so that
O = R and y = RxR, where R2 = I and det (R) = −1. Then,

F (x, y) = det[I − xRxR] (3.10)

= det[I − xR] det[I + xR].

However, det[RxT ] = det[R] det[x] = −1, so

det[I + xR] = − det[RxT ] det[I + xR]

= − det[RxT + RxT xR]

= − det[I + xR]. (3.11)

This means that det [I + xR] = F (x, y) = 0, as required by

the general theorem above. This will be investigated numer-
ically and shown to be valid in later sections.

D. Visualization

It is difficult to visualize the geometry of the homogeneous
space of the rotations and reflections of the real antisymmetric
matrices. They have a high dimensionality. One simple way
to envisage them is shown in Figs. 1 and 2. In Fig. 1, the
real homogeneous space is depicted as a sphere, although
this is a simplified picture of the actual high dimensional
geometry, since the homogeneous space exists in M(2M − 1)
dimensions. The surface of the sphere represents the bound-
ary, which has M(2M − 1) − 1 dimensions.

The North Pole of the sphere represents the positive parity
pure states, and the South Pole the negative parity pure states.
These poles are in fact two distinct lower dimensional spaces,

FIG. 2. Diagram of the pure states in the homogeneous space as
the two polar caps unfolded into hyperspherical surfaces of positive
and negative parity, indicated by the red and blue colors, respectively.
These represent spaces that are of M dimensions lower than the
original homogeneous space.

each of dimension 2M(M − 1). The pure states themselves
are two distinct, compact spaces represented as the hyper-
spherical surfaces shown in Fig. 2, although of M lower di-
mensions than the original space. The red hypersphere corre-
sponds to P = 1 and the blue to P = −1. Orthogonal rotations
can lead to any point on a sphere. Orthogonal reflections take
one to a point to the other sphere. Once there, more rotations
will lead to the point staying on this sphere, as previously.
Another reflection is needed in order to return to the starting
sphere.

IV. ENTROPY AND PURITY

Entropy is a quantity that defines a system’s uncertainty
and randomness [69]. Experimentally entropy has been mea-
sured as a function of energy [70]. These results are in agree-
ment with the theoretical results [71] by considering strongly
interacting fermions in a harmonic trap. Finite temperature
Monte Carlo simulations [72] of the entropy of a unitary
Fermi gas have also been verified by experimental results. In
some cases it is difficult to measure temperature and entropy
is measured instead.

Quantum entropies are usually defined through the von
Neumann entropy S = −Trρ̂ ln ρ̂. Here we focus on the linear
or Renyi entropy [27], which is defined as

S2 = − ln Tr(̂ρ2). (4.1)

This is important, as it is related to both purity and fidelity.
We wish to express the Renyi entropy in terms of the

Majorana P representation. This can be done by using the
expression of Eq. (2.6) in Eq. (4.1), obtaining

S2 = − ln
∫∫

P(x)P∗(y)Tr[�̂(x)�̂†(y)]dxdy. (4.2)
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This result is expressed in terms of the inner product of two
Gaussian operators, which is given in Eq. (3.3).

A. Sampled entropy

In order to sample the Renyi entropy, one can use a
sampling technique which is described below. As an example,
we consider the case where P(x) is a distribution over the pure
states. The antisymmetric matrix is expressed as an orthogonal
transformation of pure states. Thus, it is possible to evaluate
the double integral in Eq. (4.2) as a summation of samples of
orthogonal transformation of pure states. It is given by

S2 ≈ − ln

⎧⎨⎩ 1

N2

N∑
i, j=1

F (x(i), y( j) )

⎫⎬⎭,

provided x(i) and y( j) are the i.i.d samples from real positive

distributions P(x) and P(y), respectively. Using Eq. (3.3), it is

possible to rewrite the above equation as

S2 ≈ − ln

⎧⎨⎩2−M

N2

N∑
i, j=1

√
det(x(i)y∗( j) − I )

⎫⎬⎭.

We now consider a special case where P(x) is a uniform
measure over the surface of pure states with x2 = −I . From
known operator identities [18,68], this corresponds to the
identity operator, which is an infinite temperature mixed state,
ρ̂∞ = 2−MÎ . The Renyi entropy in this case is

S2 = − ln
1

22M
Tr(Î ) = M ln 2. (4.3)

To sample over the surface, we start with a reference Gaussian
pure state, and use randomly chosen orthogonal transforma-
tions to generate the sampled pure states �̂(x). The initial pure
state utilized for orthogonal transformations to generate these
real antisymmetric matrices is given by B = ⊕M

i=1Bi, where

Bi = [ 0 1
−1 0] and B = −BT . This has the explicit form of

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 . . . 0
−1 0 0 0 . . . 0
0 0 0 1 . . .

0 0 −1 0 . . . .

. 0 0 . . . . .

. . . . . . . .

. . . . . . 0 1
0 0 0 . . . −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.4)

After applying an orthogonal transformation to B, one can
generate i.i.d samples as x = OT BO, where O is an orthogonal
matrix. These pure x matrices, as well as any products of x
matrices, are isomorphic to the O(2M ) group. As a result,
sampling the Gaussian pure states is equivalent to sampling
members of the O(2M ) group located on the surface of the
Cartan symmetric space.

In Fig. 3, the Renyi entropy for infinite temperature states
corresponding to different mode numbers is plotted. Here a
sample size of N = 400 randomly chosen pure states is used.
The result agrees with the expected analytic result for the
entropy of the infinite temperature state given in Eq. (4.3).

0 2 4 6 8
0

2

4

6

FIG. 3. Renyi entropy S2 of an infinite temperature maximally
mixed state, obtained from samples of random orthogonal transfor-
mations of Gaussian pure states with x2 = −I , and different mode
numbers M for a sample size of N = 400. The sampled results are
the error bars. They agree with the solid line giving analytic values
within sampling error.

B. Purity

The purity of a quantum state ρ̂ is given by Tr(̂ρ2) [39],
which is the standard expression. Since an expression for the
inner product of two Gaussian operators in Majorana repre-
sentation has already been evaluated, one can write the purity
of a quantum state using the expansion of the density operator
provided by the Majorana P representation in Eq. (2.6), in the
form,

�(̂ρ) =
∫∫

P(x)P∗(y)Tr[�̂(x)�̂†(y)]dxdy

=
∫∫

P(x)P∗(y)F (x, y)dxdy. (4.5)

The purity of a state can be determined from the entropy
results as well, since S2 = 0 corresponds to a pure state, while
S2 > 0 corresponds to a mixed state. This is clearly very
similar to the Renyi entropy, as shown in Fig. 4.

0 2 4 6 8
0

0.2

0.4

0.6

FIG. 4. Purity, �, of an infinite temperature maximally mixed
state, obtained using samples of random orthogonal transformations
of Gaussian pure states each with x2 = −I , and different mode
numbers, M for a sample size of N = 400. Just as in Fig. 3, the
sampled results are the error bars, which agree with the solid line
giving analytic values.
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V. FIDELITY

The general expression for the fidelity of two pure states ρ̂

and σ̂ is given by

F (̂ρ, σ̂ ) =Tr(̂ρσ̂ ). (5.1)

In recent work on fidelity measures for two mixed states ρ̂

and σ̂ [56], different types of fidelities were defined. Here we
focus on the norm-based fidelity F2 which can be evaluated as

F2 (̂ρ, σ̂ )=
Tr(̂ρσ̂ )

max[Tr(̂ρ2), Tr(σ̂ 2)]
. (5.2)

This is valid in the pure state limit because, if ρ̂ and σ̂ are
pure states then Tr(̂ρ2) = Tr(σ̂ 2) = 1. This leads to

max[Tr(̂ρ2), Tr(σ̂ 2)] = 1, (5.3)

which in turn converts Eq. (5.2) as in Eq. (5.1).
Noting that σ̂ = σ̂ †, and utilizing the Majorana P function,

Tr(̂ρσ̂ ) can be evaluated for any mixed state as

Tr(̂ρσ̂ ) =
∫∫

Pρ (x)P∗
σ (y)Tr[�̂(x)�̂†(y)]dxdy. (5.4)

As the inner product of two Gaussian operators has already
been evaluated in Eq. (3.3), it is possible to write the above
expression in terms of it, as:

Tr(̂ρσ̂ ) =
∫∫

P̂ρ (x)P∗
σ̂ (y)F (x, y)dxdy. (5.5)

If this is combined with the purity measure given above,
we obtain a complete expression for the fidelity of two mixed
states. In general, since we are sampling the distribution N
times, then

F2 (̂ρ, σ̂ ) ≈ FS
2 (̂ρ, σ̂ )

=
∑N

i, j=1 Tr(�̂(x(i) )�̂(y( j) ))

max[�(̂ρ),�(σ̂ )]N2
. (5.6)

Here we can make use of the purity sampling result from
the previous section as well.

A. Fidelity distributions

Fidelities can be calculated using sampling techniques, as
given above. Here we illustrate the type of results obtained for
pure states, when the corresponding density operators are real
Majorana Gaussian operators, so that ρ̂ = �̂(x), σ̂ = �̂(y) .

This leads to

F2 (̂ρ, σ̂ ) = Tr(�̂(x)�̂(y)). (5.7)

We now ask this question: What is the distribution of relative
fidelities P(F2), given two random Gaussian pure states?
Applying the expression for the inner product of two Gaussian
operators, so that only one sample is needed, it is possible to

FIG. 5. Numbers of log fidelities, lnF2, in a given bin from two
orthogonal transformations O(2M ) of a pure state. Here we have used
M = 3, N = 10 000 random samples of matrices and the number of
bins is 50. The bins at lnF2 ≈ −40 correspond to states that are
orthogonal up to numerical rounding errors, as they have the opposite
parity.

rewrite the above equation as

F2 (̂ρ, σ̂ ) = 1

2M

√
det(x(i)y( j) − I ), (5.8)

where x, y correspond to pure states. In the numerical results

given below we consider random choices of the two Gaussian
pure state correlation matrices, and numerically investigate
the distributions of resulting fidelity. These choices are given
as x = OT BO and y = Õ

T
BÕ, where O and Õ are random

orthogonal matrices chosen with a Haar measure.
Sampling of fidelity between two random pure states gen-

erated by means of orthogonal transformation on B leads
to two possibilities, depending on the group transformations
that are sampled. In the first two figures, Figs. 5 and 6, the
orthogonal matrices are chosen randomly with a Haar measure
[73,74]. The plots are of the number of random pairs with

FIG. 6. Numbers of log fidelities, lnF2, in a given bin from two
orthogonal transformations O(2M ) of a pure state. Here we have used
M = 4, N = 10 000 random samples of matrices and the number of
bins is 50. The bins at lnF2 ≈ −40 correspond to states that are
orthogonal up to numerical rounding errors, as they have the opposite
parity.
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FIG. 7. Numbers of log fidelities, lnF2, in a given bin from
two orthogonal transformations SO(2M ) of a pure state. Here we
have used M = 3, N = 10 000 random samples of matrices and the
number of bins is 50.

inner products given in the plotted range of binned fidelities.
The logarithm (lnF2) is binned to allow better visualization
of results where the inner products have small values.

To explain this, we see that if the two states are generated
using an O(2M ) transformation with det O = ±1, then the re-
sults corresponding to different modes are as in Figs. 5 and 6,
with half of the fidelities being very small (zero apart from
numerical errors). If the matrices are restricted to the SO(2M )
group with det O = 1, the results are as in Figs. 7–9.

The difference is that in the larger O(2M ) group, half of
the transformations are parity changing, and lead to inner
products that are zero, as expected from our analytic results.
Numerically, this leads to a fidelity of order e−40 due to
rounding errors, as shown in the graphs. In the case of two
Gaussian states generated within the same subspace, the aver-
age fidelities do not vanish, but they are reduced as the space
dimension is increased. As the Hilbert space is exponentially
large, the probability that two randomly chosen Gaussian
states will overlap is exponentially small.

FIG. 8. Numbers of log fidelities, lnF2, in a given bin from
two orthogonal transformations SO(2M ) of a pure state. Here we
have used M = 7, N = 10 000 random samples of matrices and the
number of bins is 50.

FIG. 9. Numbers of log fidelities, lnF2, in a given bin from two
orthogonal transformations SO(2M ) of a pure state. Here we have
used M = 10 and N = 10 000 random samples of matrices, and the
number of bins is 50.

VI. SUMMARY

We have given expressions for the information-related
quantities of the Renyi entropy, fidelity, and purity for Ma-
jorana P representations. The essential component in the
calculation of these quantities is the trace of the inner product
of two Majorana Gaussian operators. This is given in terms
of two antisymmetric matrices. These quantities are useful in
quantum information theory, and the Majorana representation
has been recently used to develop fidelity witnesses [24]. We
have given a relation between the number parity operator and
the inner product of the Gaussian operator. This result has
been used to explain the fidelity results when considering
orthogonal transformations that relate the covariance matrices
of the Gaussian operators. We also give numerical results for
Renyi entropy and fidelity when considering pure states.
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APPENDIX: INNER PRODUCT OF TWO MAJORANA
GAUSSIAN OPERATORS

In this Appendix we give detailed calculations of trace of
two Majorana Gaussian operators. Some of these identities
have been proved in the Appendix of Ref. [18], for the case
of real matrices. To demonstrate that these can also be used
for complex matrices, we include the proofs here.

An unnormalized Majorana Gaussian operator has the
form,

�̂u(X ) =: exp[iγ̂ T X γ̂ /2] :, (A1)

where X is a 2M X 2M complex antisymmetric matrix and the
relationship connecting x and X is given by

x = i − i(X + i)−1i. (A2)
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The inner product of two unnormalized Gaussian operators
in the Majorana basis is

F u(X ,Y ) = Tr[�̂u(X )�̂u†(Y )]. (A3)

For an M-mode case, F u(X ,Y ) can be expressed as

F u(X ,Y ) = Tr[: eiγ̂ T X γ̂/2 :: eiγ̂ T Y ∗ γ̂/2 :]. (A4)

The trace of any fermion operator can be expanded [58] via
Grassmann integration utilizing Grassmann numbers α and
Grassmann coherent states |α〉:

Tr[Ô] =
∫

d2Mα〈−α|Ô|α〉. (A5)

The resolution of the identity has the expression,∫
d2Mα|α〉〈α| = Î. (A6)

Utilizing these relations, F (X ,Y ) can be evaluated as

F u(X ,Y ) =
∫

〈−α| : eiγ̂ T X γ̂/2 : |β〉

∗〈β| : eiγ̂ T Y ∗ γ̂/2 : |α〉d2Mαd2Mβ. (A7)

Evaluating the action of Grassmann variables α and β on
the Majorana variables, the inner product expression can be
rewritten as

F u(X ,Y ) =
∫

〈−α|e
i[−α†β]U0

−1XU0[ β

−α†]
|β〉

∗〈β|e
i[β† α]U0

−1Y ∗U0[ α

β†]
|α〉d2Mαd2Mβ. (A8)

It is easier to find the inner products in terms of a 2M X
2M complex antisymmetric matrix μ, and then transform it to

the required form. The relation connecting μ,μ′ and X ,Y is

μ = −2iU0
−1XU0, μ′ = −2iU0

−1Y ∗U0. (A9)

In this way, the inner product of two Gaussian operators in
terms of the complex matrix μ is

F u =
∫

d2Mαd2Mβe−(s1+s2+s3 ), (A10)

where s1 = 1
2 [−α† β]μ[ β

−α†], s2 = 1
2 [β† α]μ′[ α

β†], and

s3 = α†β − β†α + β†β + α†α.

As a next step, to get a simplified expression, we introduce
a double dimension complex matrix � as

� =
[

I J + μ

J + μ′ −I

]
. (A11)

Utilizing �, we can write the inner product expression as

F u =
∫

d2Mηd2Mη′e− 1
2 η′†�η, (A12)

where two new Grassmann variables η′† and η are given as

η′† = [α† β′†], (A13)

and

η =
[
α′
β

]
. (A14)

Also we have α = [−α

β† ], α′† = [−α′† β′],β′ = [ β′

−α′†],

and β† = [β† −α]. After applying the standard identity
[75], it is possible to get a simple expression for F u as

F u =
√

det(�). (A15)

Expansion of the determinant gives

F u
μ (μ,μ′) =

√
det[I2 + (J + μ)(J + μ′)], (A16)

provided

J =
[−I 0

0 I

]
. (A17)

The covariance matrix σ is more general since it is used in
the definition of the normalized fermionic Gaussian operator.
It will be easier to derive the required trace for normalized Ma-
jorana Gaussian operator when a relation for the trace of the
products of the normalized fermionic Gaussian operator is ob-
tained. The complex antisymmetric matrix σ is related to μ as

σ = [μ + 2J]−1, σ ′ = [μ′ + 2J]−1. (A18)

Modifying the expression in Eq. (A16) after incorporating
the normalization factor corresponding to the fermionic Gaus-
sian operator

√
det [iσ ] and utilizing Eq. (A18), it is possible

to write Eq. (A16) as

F =
√

det(iσ )(iσ ′)[I2 + (σ−1 − J )(σ ′−1 − J )]. (A19)

Expanding the terms and simplifying further using σσ−1 =
J2 = I , we obtain a simplified relation,

Fσ (σ, σ ′) =
√

det[σσ ′ + (J − σ )(J − σ ′)]. (A20)

At this stage we utilize another transformation that con-
verts the σ matrices to the x matrices [19]. This is given by

σ =
−iU0

−1(ixi + i)U0

2
, σ ′ =

−iU0
−1(iy∗i + i)U0

2
.

(A21)

Applying the above relations to Eq. (A20) and making use
of the property, U0

−1U0 = I , the expansion J = −iU0
−1iU0,

and the relation ii = −I , it is possible to write the inner
product in terms of the antisymmetric matrices x, y as

F (x, y) = Tr[�̂(x)�̂†(y)]

= 2−M
√

det[I − xy∗]. (A22)
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