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Faithful measure of quantum non-Gaussianity via quantum relative entropy
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We introduce a measure of quantum non-Gaussianity (QNG) for those quantum states not accessible by a
mixture of Gaussian states in terms of quantum relative entropy. Specifically, we employ a convex-roof extension
using all possible mixed-state decompositions beyond the usual pure-state decompositions. We prove that this
approach brings a QNG measure fulfilling the properties desired as a proper monotone under Gaussian channels
and conditional Gaussian operations. As an illustration, we explicitly calculate QNG for the noisy single-photon
states and demonstrate that QNG coincides with non-Gaussianity of the state itself when the single-photon

fraction is sufficiently large.
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I. INTRODUCTION

Quantum mechanics provides a profound basis for many
distinguished information processing protocols which cannot
be achieved in the classical world, such as quantum computa-
tion [1], quantum teleportation [2], and quantum cryptography
[3]. Those quantum protocols have been developed also using
continuous variables (CVs) that can be usually described
in terms of quasiprobability distributions like the Glauber-
Sudarshan P function or the Wigner function in phase space
[4,5]. A wide range of states like the coherent and squeezed
states are categorized as the so-called Gaussian states whose
quasiprobability distributions take a Gaussian form and whose
statistical properties are completely characterized by their
first-order moments (amplitudes) and second-order moments
(covariances). Gaussian states and Gaussian operations are
widely employed in many CV protocols due to their ex-
perimental feasibility in the laboratory with their compact
mathematical description [6]. Nevertheless, there exist nu-
merous no-go theorems within the Gaussian regime, which
prevent Gaussian operations from performing important tasks
such as universal quantum computation [7,8], quantum error
correction [9], and entanglement distillation [10-12], also
addressed recently in the framework of Gaussian resource
theories [13]. In such tasks, non-Gaussian states and non-
Gaussian operations become essential resources.

In this respect, it is of crucial importance to identify quan-
tum non-Gaussian states that cannot be produced by Gaussian
resources and their statistical mixtures. Furthermore, it may
provide a valuable framework and novel insight into related
studies to characterize quantum non-Gaussianity (QNG) un-
der a proper quantitative measure. In a closely related context,
several studies have investigated to quantify non-Gaussianity
(NG) of quantum states [14—16], which only represents the
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departure of a given state from Gaussian states. In particular, it
was shown that the relative entropy of NG exhibits important
properties, for example, monotonicity under Gaussian chan-
nels [17]. However, the measure is not convex because the
set of Gaussian states is not convex. There indeed exist non-
Gaussian states which can be simply generated using Gaus-
sian operations and classical randomness, for example, a mix-
ture of two different coherent states (Joe) (| + | — o) {—c|)/2.
These states, a simple mixture of Gaussian states, can be
generated without quantum non-Gaussian operations and they
are thus not suitable to perform quantum information tasks,
which require genuinely quantum non-Gaussian resources.

Recently, some works have been devoted to ruling out
Gaussian mixtures and detecting genuinely quantum non-
Gaussian states, i.e., p # Zi Pipc.i» where each component
state pg,; is a Gaussian state. Though a number of criteria
have been developed to assess quantum non-Gaussian states
[18-27], a faithful measure of quantum non-Gaussianity has
not been reported yet. Recent studies in Refs. [28,29] have
remarkably adopted the Wigner negativity as a measure of
QNG, which is a monotone under Gaussian protocols in-
cluding classical mixing. However, it is actually not a faith-
ful measure because it cannot detect quantum non-Gaussian
states with a positive Wigner function, e.g., a highly noisy
single-photon state p|0)(0| + (1 — p)|1)(1| with p > 0.5. A
recent work by Takagi et al. suggests that every resource state
can generally provide an operational advantage in view of sub-
channel discrimination even including quantum non-Gaussian
states with positive Wigner functions [30]. Therefore, it seems
necessary to come up with a QNG measure that can broadly
and faithfully assess quantum non-Gaussian states.

In this work we propose a convex-roof measure of QNG
based on quantum relative entropy. Our QNG measure is
faithful because it always gives a positive value whenever a
state cannot be described as a Gaussian mixture. We prove
that our measure satisfies properties as a proper measure of
QNG including convexity, additivity, and monotonicity under
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Gaussian channels and conditional Gaussian operations. Fur-
thermore, we illustrate how to explicitly evaluate QNG for a
noisy single-photon state. We find that its QNG coincides with
its NG if the single-photon fraction is large enough.

II. QUANTUM NG MEASURE VIA RELATIVE ENTROPY
AND ITS PROPERTIES

A. Non-Gaussianity

We first start with the notion of non-Gaussianity. For a
given mixed state p, one may define its NG in terms of
quantum relative entropy with reference to its Gaussified
state pg having the same first-order moments (average) and
second-order moments (covariance) [15], that is, M [p] =
S(pllpc), where S(p|lo) = —Tr{pIno} + Tr{p In p} is quan-
tum relative entropy. In particular, due to —Tr{pIn pg} =
—Tr{pcIn pg}, we have the relation S(pl||pg) = S(pg) —
S(p), which highlights the fact that a Gaussian state among all
states with the same covariance matrix possesses a maximal
entropy leading to the non-negativity of the defined NG [31].

B. Quantum non-Gaussianity

We are here interested in quantum non-Gaussianity of
states, which cannot be represented by a mixture of Gaussian
states, namely, p # >, p;pk. There can be several approaches
to quantify the degree of QNG and we use the convex-roof
extension of NG defined above. That is, for a given state p, its
QNG can be measured as

Qlpl = mingy, ) ) piS(pilloic), (1)

where the minimization is taken over all possible decom-
positions of p = ). p;p;. Note that this generalization in-
cludes the usual decomposition into pure states only, p =
> pil¥) (9, e.g., in [29]. By further allowing decomposi-
tions into mixed states, we may obtain a lower degree of QNG
for a given state. We will illustrate it later by pointing out a
range of noisy single-photon states whose QNG is given by a
genuinely mixed-state decomposition.

We prove the following properties of the above-defined
QNG.

Property 1. Quantum NG is non-negative.

This is obvious by its definition, as the relative entropies,
and thus their average, are non-negative.

Property 2 (faithfulness). Quantum NG is strictly positive
if and only if the state is not a mixture of Gaussian states.

This can also be readily seen. If p = ), p;pg.;, its QNG is
then zero due to the decomposition with Gaussian component
states only. On the other hand, if the QNG is zero, it also
means that the given state is a mixture of Gaussian states since
any single non-Gaussian component state, if any, would give
a strictly positive NG, leading to a positive QNG.

Property 3 (convexity). Quantum NG is convex with respect
to state mixing, i.e., Q[Ap; + (1 — A)p2] < AQ[p1]+ (1 —
M0l p2].

Proof. Let p1 =} ;pipi and py = }_;q;o; be the de-
compositions for their respective QNGs. Since D i Apipi +
>_;j(1 =2)gjo; is one possible decomposition of the state

Ap1 + (1 — X)p2, we have by definition
Olrp1 + (1 = A)pa]
<Y apiSoillpie) + (1= 2)g;S(ojllo.c)
i j

= AQlp1] + (1 = W)Qlpa1. 2)

Property 4. Quantum NG is invariant under Gaussian uni-
tary operations.

Proof. For any fixed decomposition p =), p;p;, a Gaus—
sian unitary operation leads to p’ = UGpU =Y .pi UGplU
We also note that the relative entropy of each compo-
nent NG is invariant under unitary operation, S(p;||pi.c) =
S(U p:UT||U p;i.gU™), and that the Gaussification of state com-
mutes with Gaussian unitary operations. The latter property
means that Ugp;, GU is the Gaussified state of p’ = UGplU
Therefore, Z piS(pillpi.c) is invariant under Gaussian uni-
tary operations and so is QNG.

Property 5. Quantum NG is not increasing under Gaussian
channels.

Proof. We have

Qlp] = min Y " piS(pillpi)

> Zpis[gc(,oi)ﬂgc(mc)] = 0l&c(m], 3

where the first inequality is due to the contraction property
of relative entropy under an arbitrary quantum channel. Note
again that £;(p; ) is equivalent to the Gaussified state of
Ec(pi) and that )", p;Es(p;) is one of possible decompositions
of £c(p), which leads to the second inequality in Eq. (2).

Property 6. Quantum NG is not increasing on average
under conditional Gaussian maps.

For its proof, we first introduce two preliminary tools.

Preliminary 1. Takagi and Zhuang in [28] have identified
a general conditional Gaussian map as the one attaching an
ancillary (multimode) vacuum to the system followed by a
global unitary Gaussian operation and homodyne detection.
The conditional map results from implementing a Gaussian
map conditioned on the measurement outcome. That is, with
pse = Ugl0)(0| ® p,Ug, we obtain p' =3, k) (k| ® px =
> prlk) (k| @ px, where pr = (k|psg|k) is an unnormalized
state conditioned on the homodyne outcome k with p; =
Trpx. The final conditional map reads p” = Y, prlk) (k| ®
E§(Dr)-

Preliminary 2. For two mixed states p = Zj p(j])|j)(j| ®
pj and o = Z p(2)|] ){jl ® o; where |j)’s are orthonormal
states for subsystem A, the relative entropy S(p||o’) turns out
to be

S(pllo) =HPM 1P+ ) pS(pjllep), (@)
J
where H is the Shannon relative entropy. Using these proper-
ties, we have the following proof.

Proof. We first note that the QNG of psg = Ug|0){(0] ®
,osUGT is the same as that of p, since adding either an an-
cillary Gaussian state or a unitary Gaussian operation does
not change QNG. Let psz = ), p;p; be the decomposition
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yielding its QNG, i.e., Qlps] = Qlpsel = >_; piS(pillpic)s
where p; belongs to a larger Hilbert space of {SE}.

We may introduce a further extended state of pgg
as pseer = ), pili) (il ® p;, where psg = Trp{psee} and
|i)’s are orthonormal basis states for E’. With its Gaussi-
fied version osgp = Zi pili) (il ® pi.g, we have Qlpse] =
S(psee'llosge’) due to Preliminary 2, which is expressed
in terms of the relative entropy of the total states without
decompositions.

Let us now take a homodyne measurement with basis |k)
on subsystem E for the two states psgp and osgg. We then
obtain

pseer = Psep = Y pili){il @ [k) k| © (Kl pilk)
ik

=" pipuilid il ® k) (k| ® P, (5)
ik

where py; is the normalized state obtained on the measure-
ment outcome k starting with the state p; and py; = Tr (k| p;|k)
is the corresponding conditional probability. The product
DiPkji = pix defines a joint probability as such. Similarly, we
obtain the state after measurement for oggg/; however, the
conditional probability kaIi = Tr(k|pi glk) is not necessarily
the same as py; = Tr(k|p;|k). Nevertheless, with

OSEE' = Ogpp = Z[’ilﬁ (il ® [k) (k| @ (k|pi,clk)
ik

=Y pipglidil ® k) (K| ® puic.  (6)
ik

and since a measurement on a partial system is a completely
positive map (its action is actually to eliminate all off-diagonal
elements in the subsystem), we have S(osgg/llosee) =
S(Pspp 10ggE)- Using Preliminary 2 again, the latter quantity
is given by H(pil|p§) + 3, i PuS(Puill puiic) > 3 Pk
where H > 0 is used. We have here defined the marginal

probability py = ), pix and Sy = [,LA > PiS(Puil | Pxii.)-
Noting that p; = ka > . PikPr; is the state of system
conditioned on the measurement outcome k on E, we
have therefore proved Qlp] = Olpse] = S(poseellosee) >
S(PquE/ | |G_5,‘EEf) = Zk DSk 2 Zk PiQlok] = Zk ka[g(k;(pk)]-

III. CASE OF NOISY SINGLE-PHOTON STATES

In the preceding section we have demonstrated that our
entropic QNG measure fulfills desirable properties as a proper
measure of quantum non-Gaussianity. Operationally, we may
interpret our measure as quantifying the minimum required
non-Gaussian resources to prepare a given quantum non-
Gaussian state. We have specifically introduced the convex-
roof extension adopting mixed-state decompositions beyond
the usual pure-state decompositions to define the degree of
QNG. One may then be interested in knowing if there exist
quantum non-Gaussian states whose QNG is given strictly by
a mixed-state decomposition and not by a pure-state decom-
position. We illustrate it by an example of noisy single-photon
states with the explicit calculation of their QNG based on
our approach. Before that, we remark on the case of pure
non-Gaussian states.

A. Pure states

If the state is pure, p = |V) (W], the state itself is the only
possible decomposition of it. Therefore, its QNG coincides
with its NG, Q[p] = N[p].

B. Noisy single-photon state

We now consider the case of mixed states. Specifically, we
obtain the QNG of a noisy single-photon state, i.e., p|1)(1]| +
(1 — p)|0)(0], as follows.

(i) To begin with, we obtain the non-Gaussianity, not QNG
yet, of a noisy single-photon state in a general form of p =
pl(1] 4+ (1 = p)|0)(0] + re®?|0) (1] 4+ re=|1)(0]. For this
state, we have (@) = (a%)* = re ™, (a%) = ((@")*) =0, and
(aa%y = (@*a) + 1 = p+ 1, which yield (§) = +2rcosé,
(p) = —v/2rsind, (¢*) = (F*) = L + p, and (Gp + pg) =0,

where § = ‘Al:;‘;if ‘A‘\;g; are two orthogonal quadrature

amplitudes. The covariance matrix of p is then given by

. <%+p—2r200s29

and p =

2r%sinf cos o
%+p—2r2sin29 ’
where the covariance matrix elements are defined as I';; =
%(fc,-fcj + X;%;) — (Xi)(X;), with £; =4 and %, = p. It deter-
mines the quantum entropy of the reference Gaussian state pg
as

2r2sin 6 cos @

S(pg) = (A + D In(g + 1) — gy In A, (®)
where
o=l -1 = /G4+p)(+p-27) -1 ©
The non-Gaussianity p is thus given by
Nlpl = S(pc) — S(p)
= (i, + 1) In(ig, + 1) — 7igy In 2y
+ArlnAy +A_InA_, (10)

where Ay = % + 1/(% — p)? +r? are the eigenvalues of p.
Note that the NG of the state p is independent of the phase 6,
which is indeed due to the invariance property under Gaussian
unitary operations, particularly phase rotation in this case, i.e.,
N[p] — N’[eiﬁQIoe—iﬁQ]-

(i1) From the non-Gaussianity in Eq. (10), we may find the
minimum of NG, among all states for a fixed p as

M(p) = min Np], (1)
which can be obtained by solving

d tanh~' (21, — 1 1+2 1
9 Nlp] = 4r anh™ (224 — 1) ‘l: P ianh-! —
dr 2h4y — 1 27 2,

=0 (12)

and comparing the extremal values. We plot the minimum
M (p) and the corresponding optimal parameter r,p as a func-
tion of p in Fig. 1. The minimum NG is given by a partially
mixed state [0 < 75 < 4/p(1 — p)] and a maximally mixed
state (rope = 0) for p < 0.062 and p 2 0.062, respectively.
(iii)) Using the above result, we obtain the QNG
of pp=pl){1]+ (1 —p)0){0] as follows. Given a
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FIG. 1. (a) Minimum M (p) defined in Eq. (11) as a function of
the single-photon fraction p and (b) corresponding optimal parameter
Tope fOor minimum M (p).

state p,, our task is to find a decomposition yielding
Olppl = mingy, Zk fiNlor] among all decompositions
Pp =D fupk. In particular, we let pr be the state with
single-photon fraction p; thus satisfying the constraint
p = Y, fibr. The idea of optimization here is to find values
pr with the constraint p =", fipx to have a minimum
> fiMIpel, where M[p] is the function whose values are
shown in Fig. 1.

This optimization actually corresponds to the lower convex
envelope of M(p) defined by

M(p) = sup{f(p) | f is convex and f < M in [0, 1]}, (13)

which is obtained as follows. Investigating M”(p), we find
that M (p) itself is convex on the two intervals [0, c] and [c, 1]
individually with ¢ ~ 0.062, but not in the whole interval [red
solid curve in the inset of Fig. 1(a)]. Then we may construct
the lower convex envelope by finding a line tangent to M(p)
in both intervals [black dashed line in the inset of Fig. 1(a)].
If there exists a solution to the equation

M (p1)(p2 — p1) + M(p1) = M(p2), (14)

together with the condition M'(p;) = M’'(p,), the line is
tangent to M (p) in both intervals. Indeed, we find the solution
p1 = 0.0559 and p, ~ 0.0701, respectively. Therefore, we
obtain the QNG of p, = p|1){1| + (1 — p)|0){0] as

M(p) forO0< p< pi
Olppl = ﬁM(pz) + ﬁM(m) forpi < p < p2
M(p) forp, < p <1,
(15)

where p; >~ 0.0559 and p, ~ 0.0701.

From the above analysis, we can also readily identify an
optimal decomposition of p,. For p > p, we have M(p) =
Nlpl, which means that the state p, itself is the optimal
decomposition attaining minimum convex-roof QNG. This
is a clear example for which the mixed-state decomposition
becomes optimal rather than the pure-state decomposition.
For p < pi, the equal mixture of two optimal states pf =
pIN AT+ (1 = p)|0){O0] £ rop (10)(1] + [1)(0]) achieves the
bound. For the remaining case, i.e., p; < p < p», the optimal
decomposition becomes {p%", p”", p2|1) (1] + (1 — p2)|0)(0[}

with the probability distribution {% pp2 2:;] , % [’i 2:; , ;’2 ipp‘l b

IV. DISCUSSION

We have proposed a faithful measure of quantum non-
Gaussianity adopting quantum relative entropy. Specifi-
cally, we have introduced a convex-roof extension of non-
Gaussianity using all possible mixed-state decompositions
beyond the typical pure-state decompositions. This enabled
us to come up with properties desired as a proper measure of
QNG including convexity and monotonicity under Gaussian
channels and conditional Gaussian operations. Our measure is
faithful in that it strictly gives a positive value for an arbitrary
quantum non-Gaussian state that cannot be represented as a
mixture of Gaussian states.

As an illustration, we studied the case of a noisy single-
photon state, which is a practically important QNG resource
for many applications like linear-optical quantum computa-
tion [32]. We have shown the procedures to identify its QNG
rigorously, which may be extended to quantum non-Gaussian
states with higher photon numbers. By doing so, we have
clearly illustrated that there exists a range of quantum states
for which QNG is given by a mixed-state decomposition, not
a pure-state one. Moreover, it turns out that the QNG actually
coincides with NG if the single-photon fraction is sufficiently
large.

Our measure of QNG may be interpreted as quantifying the
minimum required non-Gaussian resource to produce a given
quantum non-Gaussian state. Namely, it addresses a way of
preparing different non-Gaussian states with a proper proba-
bility distribution such that the average of non-Gaussianity of
each state becomes minimal to constitute the quantum non-
Gaussian state under investigation. While this measure has its
own merit, a more comprehensive study is still needed con-
cerning the characterization of QNG in a full variety of phys-
ical contexts. There have been several investigations demon-
strating the usefulness of non-Gaussian states and operations,
e.g., the improvement of quantum entanglement [33-39] and
enhancement of performance in quantum teleportation and
dense coding [40—-43]. However, there were only a few studies
to comprehensively and critically identify the role of QNG in
CV quantum information processing beyond the level of case
studies [44]. For instance, it is an interesting question whether
an arbitrary quantum non-Gaussian state, even though it pos-
sesses a positive-definite Wigner function, can be a critically
useful resource to provide an advantage for practical quantum
tasks. If so, what sort of QNG measure would appropriately
address such criticality in a rigorous way? These and other
related issues are left for future investigation.
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