
PHYSICAL REVIEW A 100, 012328 (2019)

Optimal measurement strategies for fast entanglement detection
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With the advance of quantum information technology, the question of how to most efficiently test quantum
circuits is becoming of increasing relevance. Here we introduce the statistics of lengths of measurement
sequences that allows one to certify entanglement across a given bipartition of a multiqubit system over the
possible sequence of measurements of random unknown states and identify the best measurement strategies in
the sense of the (on average) shortest measurement sequence of (multiqubit) Pauli measurements. The approach
is based on the algorithm of truncated moment sequences, which allows one to deal naturally with incomplete
information, i.e., information that does not fully specify the quantum state. We find that the set of measurements
corresponding to diagonal matrix elements of the moment matrix of the state are particularly efficient. For
symmetric states their number increases only like the third power of the number N of qubits. Their efficiency
increases rapidly with N , leaving already for N = 4 less than a fraction 10−6 of randomly chosen entangled
states undetected.
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I. INTRODUCTION

With the availability of the first small quantum processors,
the task of characterizing such processors has become a key
challenge. Indeed, long before proving full functionality, one
of the major questions that faces a quantum processor is
whether it “truly” works quantum mechanically—or could
rather be explained by classical processes. Similar questions
arise already at the level of a quantum state: Given a physical
system in an unknown quantum state, can the statistics arising
from it be explained by a classical state? If the state is fully
characterized, one can apply nonclassicality measures to find
out, but since a mixed quantum state of N qubits is specified
by d = 22N − 1 real parameters, it is clear that an answer
based on full quantum state tomography quickly becomes im-
practical. In addition, one can only estimate expectation val-
ues based on averages over finitely many measurements that
are themselves imperfect, and the resulting uncertainty can
lead to nonphysical states in the inversion procedure underly-
ing full quantum state tomography. More robust approaches
to state tomography are maximum likelihood estimation of
the state [1–4] and Bayesian inference [5,6], which output
estimates of the state that are by construction bona fide phys-
ical states, as well as “self-consistent quantum tomography,”
which does not necessarily rely on perfect measurements [7],
but none of these approaches remedies the efficiency problem.

Recent developments based on compressed sensing make
use of prior information on states. They provide a large gain
in efficiency, in particular, for the typically low-rank states
relevant for quantum information tasks [8–12] or matrix-
product states that describe interacting condensed-matter sys-
tems in low dimensions [13,14]. Machine learning aimed at
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determining by itself what the best measurements are for a
certain task, or to recognize entanglement from measurement
data, was considered, e.g., in [15–18], but the efficiency of
such approaches needs further study. Other proposals include
few-copy multiparticle entanglement detection based on prob-
abilistic verification [19,20].

For testing quantum circuits, the approach of randomized
benchmarking has emerged [21–24]. Key to this approach is
that for estimating fidelities between actual and ideal gate sets,
only low moments of the matrix elements are required. In this
case, averaging over the full unitary group can be replaced by
averaging over a unitary t design [25] or producing required
input states by random quantum circuits (see also [26]). Refer-
ences [27] and [28] showed that a small number of parameters
of a quantum process can be efficiently obtained, but it is
not as clear what the most relevant parameters that should be
chosen are.

It is often stated that quantum states and quantum pro-
cessors are much harder to test and characterize than their
classical analogs because of the exponential growth of the
Hilbert space [13,29,30]. However, also classically the num-
ber of possible memory configurations of N bits increases
exponentially as 2N —and with N of order 1013 for a standard
laptop computer, it is completely out of the question to test
all possible configurations. Costs of integration itself have
decreased exponentially according to Moore’s law; for the
same reason, functional testing of classical memory devices
has evolved to the most expensive (because time-consuming)
part of the production of integrated memory chips. Functional
testing of classical memories has therefore evolved to test-
ing the most critical known configurations with the goal of
demonstrating failure of memory cells as quickly as possible.
“Most critical” depends on the architecture of the chip, and
information on its design goes into the design of memory
patterns to be tested. For example, a cell on a given bit line
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might resist storing a “0,” most likely if all other cells on the
same bit line contain a “1.” In MRAM devices, magnetic stray
fields from a set of cells can destabilize others in the vicinity
when uniformly polarized, etc.

Quantum information processing may still have a long way
to go before such economical pressure on functional testing
will be felt. At the moment, rather than showing failure, one
would like to prove basic quantum functionalities as quickly
as possible. Nevertheless, the principles of classical functional
testing can also provide guidance in the current state of affairs
on characterizing quantum processors and states: rather than
aiming at full quantum tomography, one may want to focus on
producing states that are likely to be particularly unstable and
show their “functionality” as quickly as possible. In practice,
this will require information about the physical realization of
the quantum processor, but in the absence of such input, a
reasonable target is highly entangled states or, more generally,
highly nonclassical states known to be prone to decoherence.
Indeed, experimental efforts have early on concentrated on
producing such states (see, e.g., [31–35] for states with large
numbers of entangled particles).

The question then arises: What is the most efficient mea-
surement strategy to prove that such a state is entangled
(or, more generally, nonclassical)? That is, What would you
choose to measure first, second, and so on, in order to be able
to prove as quickly as possible, with the limited knowledge
about the state that you will gain from those measurements,
chosen from a given set, that the state is entangled? What are
the minimum and average numbers of measurements needed
to prove entanglement or, more generally, the statistics on the
length of measurement sequences when going down a certain
path of measurements?

These are the questions that we start to answer in the
present paper. Note that this is not about choosing optimal
entanglement witnesses but, rather, about deciding whether or
not the intersection of hyperplanes defined by the expectation
values of certain observables cuts the set of separable states
(see Fig. 4). Perfectly suited for answering these questions is
the formalism of truncated moment sequences (TMSs) that
we introduced in [36] for the analysis of entanglement. The
TMS problem aims at finding a probability measure for which
only some moments are known. If the probability measure is,
furthermore, constrained to be supported on a compact set K ,
the problem is known as the K-TMS problem. As reviewed
below, it can be solved with a hierarchy of flat extensions
that maps onto a convex optimization algorithm, using a
semidefinite relaxation procedure. Each expectation value can
be associated with a moment of a measure, and instead of
fixing all moments up to a certain order as in the standard
TMS algorithm, one might just specify any set A of moments.
The problem of deciding whether a classical measure that
reproduces all these moments exists is then known as the
“AK-TMS” problem [37]. It can still be solved with a convex
optimization algorithm.

In the present work we exploit this approach in order to
obtain the statistics of lengths of measurement sequences in
the simplest case of two qubits depending on the chosen
measurement strategy. For larger numbers of qubits, the full
numerical solution of the AK-TMS problem becomes too
demanding, but it turns out that surprisingly efficient sufficient

conditions for entanglement can be obtained for symmetric
states from the diagonal matrix elements of the moment
matrix used in the approach (see below for a definition). These
correspond to certain linear combinations of expectation val-
ues of (possibly multipartite) measurements in the Pauli basis
and have to be positive for a solution of the AK-TMS problem
to exist. Checking the positivity of moment matrices is in fact
the first step in the TMS algorithm, and negativity of any of
the diagonal matrix elements hence witnesses entanglement.
With these we can find numerical estimates of the fraction of
randomly drawn states that are already detected as entangled
by just measuring the observables corresponding to the diag-
onal matrix elements of the moment matrix.

Similar ideas for certifying entanglement with incomplete
measurements were considered in [38] for continuous vari-
able systems. Here we focus on the statistics of lengths of
sequences of measurements for multiqubit systems and the
insights that can be drawn from the TMS algorithm, which we
review in the next section, before applying it to incomplete
measurements.

II. FRAMEWORK AND NOTATION

We now briefly summarize the TMS algorithm approach
described in detail in [36], which is the framework for the
following sections. The basic idea is to map the quantum
entanglement problem onto the mathematically well-studied
truncated moment problem. Indeed, finding out whether an
arbitrary multipartite state can be decomposed into product
states corresponds to finding out about the existence of a prob-
ability distribution whose lowest-order moments are fixed.
Analytically, the mapping allows one to make use of theorems
from the TMS literature providing necessary and sufficient
separability conditions; numerically, semidefinite optimiza-
tion techniques yield an algorithm which gives a certificate of
entanglement or separability. The algorithm applies—at least
in principle—to arbitrary quantum states with an arbitrary
number of constituents and arbitrary symmetries between the
subparts. The general case is dealt with in [36]; we only recall
here the main key points for the case of symmetric states
of qubits, defined as mixtures of symmetric pure states (the
latter are invariant under any permutation of the qubits). To do
so, we use a convenient representation in terms of symmetric
tensors which was introduced in [39], generalizing the Bloch
sphere picture of spins-1/2. We can write a generic state ρ of
a spin- j state as

ρ = 1

2N

3∑
μ1,μ2,...,μN =0

Xμ1μ2...μN Ps
(
σμ1 ⊗. . .⊗σμN

)
P†

s , (1)

where σ0 is the 2 × 2 identity matrix, σ1, σ2, and σ3 are the
Pauli matrices, and Ps is the projector onto the symmetric
subspace spanned by the Dicke states | j, m〉 (eigenstates of
pseudoangular momentum component Jz and with total angu-
lar momentum quantum number j). They can also be seen as
symmetric states of N = 2 j spins-1/2 (or qubits). The tensor
Xμ1μ2...μN is then given by

Xμ1μ2...μN = tr
(
ρσμ1 ⊗. . .⊗σμN

)
, (2)
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with 0 � μi � 3. It is real and invariant under permutation of
indices and verifies X00...0 = tr(ρ) = 1. Moreover, it has the
property that

3∑
a=1

Xaaμ3μ4...μN = X00μ3μ4...μN (3)

for any choice of the μi. A separable pure state can be
seen as a spin-coherent state, which in representation (2)
has tensor entries Xμ1μ2...μN = nμ1 nμ2 . . . nμn , with n0 = 1 and
(n1, n2, n3) the unit vector giving the direction of the coherent
state on the Bloch sphere. In terms of this tensor representa-
tion, a symmetric state is separable if and only if its tensor
representation can be written as

Xμ1μ2...μN =
∑

i

ωin
(i)
μ1

n(i)
μ2

. . . n(i)
μN

, ωi � 0, (4)

where n(i)
0 = 1 and n(i) is the Bloch vector of the single qubit.

If we express (4) in the equivalent integral form,

Xμ1μ2...μN =
∫

K
xμ1 xμ2 . . . xμN dμ(x), (5)

with x0 = 1, K = {x ∈ R3 : x2
1 + x2

2 + x2
3 = 1} the unit

sphere, and dμ(x) = ∑
i ωiδ(x − n(i) ) a positive measure on

K , we can say that a symmetric state is separable if and only
if there exists a positive measure dμ supported by K such
that all entries of the tensor Xμ1μ2...μN are given by moments
of that measure.

Problems of this type are known as K-TMS problems,
or AK-TMS problems in the case of partial knowledge of
a state where only a subset of the moments, specified by
set A, is known. They can be solved by a semidefinite
relaxation procedure. The algorithm proposed in [36] uses
indeed semidefinite programming (SDP) and the concept of
“extensions,” introduced in [40], but based on a matrix of
moments and a theorem in the theory of moment sequences.
In order to present more clearly the mathematical setting
for the AK-TMS problem, we introduce a more compact
notation for Eq. (5). For any N-tuple (μ1, . . . . , μN ) we define
a triplet α = (α1, α2, α3) of integers such that xμ1 xμ2 . . . xμN =
xα , where we use the notation xα = xα1

1 xα2
2 xα3

3 . The degree of
the monomial xα is |α| = ∑

i αi. We then set yα ≡ Xμ1μ2...μN .
The (yα )|α|�d is a TMS, that is, a sequence of moments of
μ truncated at degree d . When only a subset α ∈ A of these
moments is known, we consider the TMS (yα )α∈A. With this
notation we can rewrite (5) as

yα =
∫

K
xαdμ(x). (6)

To a TMS y of degree d , for any integer k � d/2, we can
associate a matrix Mk (y) defined by Mk (y)αβ = yα+β with
|α|, |β| � k, which we call the kth-order moment matrix.
A necessary condition for a TMS to admit a representing
measure is that the moment matrix of any order be positive
semidefinite. A second necessary condition can be obtained
from the polynomial constraint x2

1 + x2
2 + x2

3 = 1, which de-
fines set K . For even degree d we define a “shifted TMS” of
degree d − 2, and its moment matrix of order k − 1 is called
the kth-order localizing matrix of y. It is necessarily positive
semidefinite if a TMS admits a representing measure.

Beyond these two necessary conditions, a sufficient condi-
tion was obtained in [41] for an even-degree TMS. Namely, if
a TMS z of even degree 2k is such that

rankMk (z) = rankMk−1(z), (7)

then the TMS z admits a representing measure. As the above
condition is only sufficient, a TMS admitting a representing
measure does not necessarily fulfill it, but one can always
search for an extension of it which does. An extension of a
TMS y of degree d is defined as any TMS z of degree 2k
with 2k > d , such that zα = yα for all α ∈ A. An extension
z is called flat if it satisfies Eq. (7). If z verifies the sufficient
conditions above, then it has a representing measure, and so
does y as a restriction of z. Then it is possible to formulate
a necessary and sufficient condition for the existence of a
representing measure as follows.

Theorem. A state ρ is separable if and only if its coor-
dinates Xμ1μ2...μN are mapped to a TMS (yα )α∈A such that
there exists a flat extension (zβ )|β|�2k with 2k > d and whose
corresponding kth-order moment and localizing matrices are
positive semidefinite.

This necessary and sufficient condition can be translated
into an algorithm looking for flat extensions of the TMS y
associated with a quantum state ρ. One runs the algorithm
with the input of the state ρ (which means fixing yα for all
α ∈ A), starting from the lowest possible extension order k.
If the corresponding SDP is “infeasible,” then the conditions
of the theorem are not satisfied and the TMS admits no
representing measure dμ, which means that the quantum state
whose coordinates are given by yα is entangled. If, on the
contrary, the SDP problem is “feasible,” then the TMS ad-
mits a representing measure, and the corresponding quantum
state is separable. The algorithm also extends to the case of
nonsymmetric states (see [36] for further detail).

III. UNORDERED MEASUREMENTS

A. Goal

Let us now consider the question raised in Sec. I. Our goal
is to identify the smallest set of measurements that should
be performed on an unknown spin state to detect that it is
entangled. This is possible in a real experiment when many
identical copies of the same state are available, so that a
different measurement can be performed on each copy. We
first discuss the case of symmetric two-qubit states, which,
as we see in detail, already presents some complexity. In this
case the positive-partial-transpose criterion [42,43] applied
to a partially known density matrix would also provide a
way of detecting entanglement via SDP. Nevertheless, we
use our TMS approach, since it allows for a straightforward
generalization to an arbitrary number of qubits, and moreover,
it applies SDP to the matrix of moments, whose entries are
directly given by measurement results.

B. Symmetries and measurements

For a symmetric two-qubit state ρ, Eq. (2) with N = 2
gives

Xμ1μ2 = tr
(
ρσμ1 ⊗ σμ2

)
(8)
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with 0 � μi � 3 and (σ0, σ1, σ2, σ3) ≡ (1, σx, σy, σz ). In this
case the tensor Xμ1μ2 reduces to a 4 × 4 real symmetric
matrix. Its 10 entries Xμ1μ2 with μ1 � μ2 can be seen as the
result of the measurement of the joint operator σμ1 ⊗ σμ2 . We
now ask which are the possible measurements that we can
perform and how many there are; the observables considered
are the simplest, i.e., Pauli spin operators. Let us denote these
inequivalent measurement operators

M = {Mx, My, Mz, Mxx, Mxy, Mxz, Myy, Myz, Mzz} (9)

(we omit the identity operator corresponding to X00 = 1,
and we always order sets of measurements in degree-
lexicographic order). For instance, Mx is the measurement of 1
on the first qubit and of σx on the second one (or the reverse),
while Mxx is the measurement of the joint operator σx ⊗ σx.
Since the tensor Xμ1μ2 is such that

3∑
i=1

Xii = X00, (10)

only two of the three diagonal entries are independent, and
measuring two of three of the observables Mxx, Myy, and
Mzz yields the third value. Thus, carrying a tomography to
its end for a single spin-1 state consists in measuring eight
observables in total.

Our aim is to find the probability that a state is detected
as entangled if only the result of measurements of a certain
subset of these eight observables is known. Let us first observe
that these probabilities should not depend on the choice of the
reference frame for the axes along which the measurement
is performed. As a consequence, the results for equivalent
measurements in different directions should be the same. We
therefore consider only sets which are nonequivalent under
permutation of the axes, that is, sets that are unchanged under
transpositions {Pxy, Pxz, Pyz}, which exchange two axes, and
cyclic permutations Pyzx and Pzxy.

We consider all possible nonequivalent sets of k
measurements, with 1 � k � 8, disregarding the order of
measurements within a set. For sets of length k = 1 we can
easily see that the nonequivalent measurements are only
three: Mx, Mxx, and Mxy. Indeed, the local measurements
Mx, My, and Mz are equivalent, as well as the two-qubit
“diagonal” measurements Mxx, Myy, and Mzz [giving the
diagonal entries of matrix (Xμν )1�μ,ν�3] and, also, the
two-qubit “off-diagonal” measurements Mxy, Mxz, and Myz

(giving its off-diagonal entries). For k = 2, there are 28
possible pairs, among which only 9 are inequivalent, namely,
{Mx, My}, {Mx, Mxx}, {Mx, Mxy}, {Mx, Myy}, {Mx, Myz},
{Mxx, Mxy}, {Mxx, Myy}, {Mxx, Myz}, {Mxy, Mxz}. We
denote by mk the number of nonequivalent sets of k
measurements, and we list them in Table I. The corresponding
complete lists of measurements for all k are given in
Appendix A.

For each k, our question reduces to finding out which set of
measurements, among the mk possible ones, yields the highest
entanglement detection probability. Note that performing k
measurements is not exactly equivalent to having k fixed
moments. Indeed, since moments are related by Eq. (10),
measuring Mxx and Myy fixes the three moments X11, X22, and

TABLE I. First row of data: Number mk of nonequivalent un-
ordered sets of measurements for 1 � k � 8. Second row of data:
Number mk of nonequivalent ordered sequences of measurements for
1 � k � 8.

k

1 2 3 4 5 6 7 8

mk (unordered) 3 9 19 26 23 14 5 1
m′

k (ordered; Mxx fixed) 1 5 26 128 524 1604 3228 3228

X33. Any measurement set of length k containing both Mxx

and Myy will in fact correspond to a TMS with k + 1 moments
fixed. We therefore always discard Mzz from the measurement
sets.

C. Set probabilities

In terms of the TMS algorithm, performing a measurement
means obtaining a value of a tensor entry Xμ1μ2...μN or, equiv-
alently, of a moment yα . Performing k measurements means
that the k moments yα corresponding to these measurements
are fixed, as well as all moments obtained via relation (3).

For a given number k of measurements, we indicate a
specific set of measurements among the mk possible ones as
{M}I . For instance, if k = 3, we could have I = {x, y, zz},
which corresponds to the set of measurements {Mx, My, Mzz}.

If we consider a fixed k and a fixed subset {M}I of the set
of observables M, we denote the sample space of outcomes
of the AK-TMS algorithm applied to the moments (yα )α∈A of
an entangled state as 	I . It contains two possible outcomes,
to which a probability can be assigned: detecting the state as
entangled (if the associated SDP is infeasible, i.e., if the state
is entangled), with probability P(E , {M}I ); or not detecting it
as entangled (if the SDP is feasible, i.e., if the state with such
moments fixed is still compatible with a separable state), with
probability P(Ē , {M}I ). To shorten the notation we may de-
note P(E , {M}I ) as p(k)

I , which entails P(Ē , {M}I ) = 1 − p(k)
I .

These probabilities can be estimated by running the TMS
algorithm for each k and each I , testing all the mk possible
sets of measurements. Note that p(k)

I always increases, in the
sense that p(k′ )

J � p(k)
I for J ⊂ I . Indeed, the probability of not

detecting entanglement with more and more measurements
decreases with the number of measurements. In other words,
fixing more moments yα reduces the probability of finding a
measure μ with such moments. Once all eight measurements
are done the state is fixed uniquely, so that for entangled
states p(8)

I = 1. To estimate the values for the probabilities
p(k)

I , we sample states from the set of symmetric two-qubit
states. We generated 5 × 104 random states drawn from the
Hilbert-Schmidt ensemble of matrices ρ = GG†

tr(GG† ) , with G a
complex matrix with independent Gaussian entries (follow-
ing [44]). Among them were 1843 separable states that we
discarded, implying the normalization condition p(8)

I = 1 for
full tomography. For each measurement set {M}I and each
entangled state in our sample the TMS algorithm was run
with the corresponding moments fixed; the results for the
probabilities p(k)

I are reported in Figs. 1 and 2.
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FIG. 1. Probabilities p(k)
I of detecting entanglement in a sym-

metric state of two qubits with measurement set I of cardinality
k, 1 � k � 4, as a function of the label i of set I (1 � i � mk). The
associated error bars represent the difference between the maximum
and the minimum of the fluctuations observed for 1000 different
samples of size 4 × 104 randomly extracted from the initial sample
considered. The set of measurements {M}I corresponding to each
label is listed in Appendix A.

FIG. 2. Probabilities p(k)
I for 5 � k � 7; same as Fig. 1.

Some probabilities appear to be equal. This is, for instance,
the case for probabilities labeled 16 and 18 for k = 3. This is a
consequence of an additional symmetry due to the linear equa-
tions that measurement results must satisfy. In the case where
k = 3, labels 16 and 18 correspond to {Mxx, Mxy, Myy} and
{Mxx, Mxz, Myy}, respectively. Since, as we have mentioned,
knowing the result of any two diagonal measurements gives
the third one because of Eq. (10), the information acquired by
measuring the observables corresponding to labels 16 and 18
is equivalent, and therefore the probabilities must be equal.

The optimal choice of measurements {M}Iopt at fixed k cor-
responds to the sets giving the highest probability of detecting
entanglement. For k = 1 the highest value of p(1)

I corresponds
to measurement 2, {Mxx}. For k = 2 it corresponds to 7,
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{Mxx, Myy}. For k = 3 the highest values correspond to two
measurements: 16, {Mxx, Mxy, Myy}, and 18, {Mxx, Mxz, Myy}.
For k = 4 it corresponds to 23, {Mxx, Mxy, Mxz, Myy}, 24,
{Mxx, Mxy, Mxz, Myz}, and 25, {Mxx, Mxz, Myy, Myz}. Again,
the degeneracy of the optimal set reflects the equivalence
of the corresponding sets once (10) is taken into account.
For k � 2, the sets {M}Iopt in fact correspond to cases where
measuring two observables fixes three moments.

D. Quantumness

For a fixed set of measurements MI one can ask whether
the rate of detected entangled states depends on how quantum
a state is. For an arbitrary state ρ, quantumness may be defined
in several different ways; we follow here the definition given
in [45], based on spin-coherent states. These are a general-
ization of the usual coherent states of the harmonic oscillator
used in quantum optics to spins; they correspond to spin states
which minimize a particular uncertainty relation, and they
move as classical phase space points under a Hamiltonian
linear in the angular momentum operators [46,47]. As any
spin-1/2 pure state |φ〉 has this property, an arbitrary N-qubit
spin-coherent state can be defined as |φ〉⊗N with |φ〉 a one-
qubit state.

Quantumness is then defined as the Hilbert-Schmidt dis-
tance to the convex set C of classical spin states [48], that is,
the ensemble of all density matrices which can be expressed
as a mixture of spin-coherent states with positive weights (or
in other words the set C is the convex hull of spin-coherent
states). Namely, the quantumness Q(ρ) is given by

Q(ρ) = min
ρc∈C

‖ρ − ρc‖, (11)

where ‖O‖ =
√

Tr(O†O) is the Hilbert-Schmidt norm. For all
ρ the property Q(ρ) � 0 holds, with equality for classical
states ρ ∈ C. Results are reported in Fig. 3, up to k = 4 for
the optimal sets of measurements {M}Iopt given above. We can
observe that the rate of detected entangled states increases
with the quantumness of the states; in other words, the more
quantum a state is, the faster it is detected as entangled.

IV. ORDERED MEASUREMENTS

A. The setting

In the previous section we assumed that k observables are
measured among the eight possible ones and that the TMS
algorithm is subsequently run. Of course, we can imagine a
different experimental protocol where we would perform a
measurement, run the TMS algorithm with a single moment
fixed, and then, only in the case where the state is not detected
as entangled, perform a second measurement and run the TMS
algorithm again with two moments fixed, and so on, until
entanglement is detected or full tomography is achieved. In
this setting, we need to distinguish the k! different ordered
arrangements of each k-element subset of M.

In the following, we call an ordered sequence of mea-
surements a path, and we denote itγ . To distinguish it from
a set, we denote it as a tuple with parentheses, such as
(Mx, My, Mxz ). A path of length k can be alternatively seen
as a list of k sets of increasing size given by the restriction

FIG. 3. Percentage of detected entangled states for the optimal
sets of measurements {M}I for k = 1 to 4 (solid lines from bottom
to top), as a function of the quantumness for symmetric states of two
qubits. The shaded area in the background represents the distribution
of the quantumness Q (bin width, 0.015) of the total number of states
(multiplied by a factor of 2 × 10−2); the first bin contains entangled
states with Q between 10−4 and 10−2. The distribution shows that
there are very few states for the highest values of quantumness, which
explains the large statistical errors at maximum quantumness.

of the path to the first k′ observables with 1 � k′ � k. For
instance, for k = 3 the path (Mx, Mxz, My) can be seen as the
list {Mx}, {Mx, Mxz}, {Mx, My, Mxz} (as usual we write sets
in lexicographical order since the order within a set does not
matter).

Considering all 8! paths of length 8 would require an
exceedingly long computational time. For this reason, we
slightly simplify the problem by fixing the first measurement
to perform. The most reasonable choice, looking at the results
in Fig. 1, is to fix it as a diagonal observable Mxx, Myy, or

FIG. 4. Two-dimensional sketch of the sets involved. S, separa-
ble states; E, entangled states. We consider an arbitrary state in region
E. Fixing one moment means restricting the set of compatible states
to a hyperplane (one of the three lines in the sketch). Hyperplanes
which cross the set of separable states contain both entangled and
separable states, thus measuring the observable M1 or M2 alone is
not enough to detect entanglement. Fixing both, on the other hand,
restricts the set of compatible states to a region (a point in the sketch)
outside S, i.e., observables {M1, M2} together detect a fraction of
states as entangled (E). The third line instead does not cross the
set of separable states, meaning that measuring M3 suffices to detect
entanglement (which we denote EM3 ).
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Mzz, since for k = 1 it detects the largest fraction of entangled
states. Up to relabeling of the axes, we can take Mxx as the first
element since, as before, we only keep nonequivalent paths.
To find these paths, we define a canonical representation of a
path γ of length k by considering its equivalent list of k sets
of length k′. For each of these sets we choose the first one
in lexicographical order among the ones that are obtained by
relabeling of the axes. The list of k sets obtained in this way is
the canonical representation of γ . Two paths are equivalent if
they have the same canonical representation. We report the
number m′

k of nonequivalent paths of length k in Table I,
where, e.g., for k = 2 the nonequivalent sequences will be
(Mxx, Mx ), (Mxx, My), (Mxx, Mxy), (Mxx, Myy), and (Mxx, Myz ).

B. Path probabilities

We now show how to retrieve the results for this more
general case from the p(k)

I obtained in the previous sec-
tion. The probability of detecting a state as entangled af-
ter the first measurement, say M1, is P(E , {M1}), given in
the previous section. The probability of detecting a state as
entangled after the second measurement, say M2, is then
P(E , {M1, M2}|Ē , {M1}), which is the probability of detecting
entanglement with the second measurement given that it was
not detected with the first one. This quantity now depends on
which measurement is performed first. This is illustrated in
Fig. 4. Using the theorem of total probability, we have

P(E , {M1, M2}) = P(E , {M1})P(E , {M1, M2}|E , {M1})

+ P(Ē , {M1})P(E , {M1, M2}|Ē , {M1}).

(12)

Since P(Ē , {M1}) = 1 − P(E , {M1}) and P(E , {M1, M2}|
E , M1) = 1 we get

P(E , {M1, M2}|Ē , {M1}) = P(E , {M1, M2}) − P(E , {M1})

1 − P(E , {M1})
.

(13)

Thus, the conditional probability we are looking for can be
expressed solely in terms of the p(k)

I from the previous section.
Then let γ = (M1, . . . , M8) be a path of length k = 8. We

define

q(k)(γ ) = P(E , {M1, . . . , Mk}|Ē , {M1, . . . , Mk−1}) (14)

as the probability of detecting entanglement at step k in γ

given that no entanglement was detected up to step k − 1.
By a reasoning similar to the one leading to Eq. (13), we can
express q(k)(γ ) in terms of the p(k)(γ ) ≡ P(E , {M1, . . . , Mk}),
as

q(k)(γ ) = p(k)(γ ) − p(k−1)(γ )

1 − p(k−1)(γ )
. (15)

In particular, since p(0) = 0 (as nothing is measured, and
hence detected as entangled, at level 0), we have q(1) = p(1).
Inverting (15) one obtains p(k)(γ ) in terms of q(k)(γ ) as
p(k)(γ ) = ∑k

j=1 q( j)(γ )
∏k

n= j+1 (1 − q(n)(γ )).
A third natural probability to consider is related to our

measurement algorithm, where we perform TMS calcula-
tions at step k only if the state was compatible with a

FIG. 5. Distribution (with bin width 0.07) of lengths d (γ ) of
measurement sequences γ of symmetric states of two qubits resulting
in detection of entanglement between the minimum value of 3.07 and
the maximum one of 5.61.

separable state. We define r (k)(γ ) as the probability of
stopping exactly at the kth level when measurements are
taken along path γ . It can be written as the joint prob-
ability P(E , {M1, . . . , Mk} ∩ Ē , {M1, . . . , Mk−1}). Using the
identity P(A ∩ B) = P(A|B)P(B), r (k)(γ ) can be expressed as
q(k)(γ )(1 − p(k−1)(γ )). It can be rewritten in terms of q(k)(γ )
or p(k)(γ ) as

r (k)(γ ) = q(k)(γ )
k−1∏
j=1

(1 − q( j)(γ )) = p(k)(γ ) − p(k−1)(γ ).

(16)

C. The best path

Using (15) and (16) and the numerical results in the
previous section, we can obtain a numerical estimate of the
q(k)(γ ) and the r (k)(γ ) for all possible paths. The optimal
path γbest is the one that detects as quickly as possible (on
average) whether the state is entangled. To identify γbest

among all possible ones we define the average depth at which
our algorithm stops as

d (γ ) =
8∑

k=1

kr (k)(γ ) . (17)

Expressing Eq. (17) in words, d (γ ) gives the number of
measurements that one needs to perform, on average, to detect
a state as entangled, following the path γ . Each path will be
characterized by this number, and in particular, the shortest
path will be given by

γbest = arg min
γ∈S

d (γ ) . (18)

The distribution of d (γ ) over all 3228 paths of length 8
for symmetric states of two qubits is reported in Fig. 5.
The minimum value found for d (γ ) is d = 3.07, while the
maximum value is 5.61. The minimum value is degener-
ate and corresponds to three optimal paths. Although these
three paths do not have the same canonical representation
they lead to the same value because of condition (10).
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FIG. 6. Probabilities p(k)(γbest ) (blue diamonds), q(k)(γbest ) (or-
ange triangles), and r (k)(γbest ) (green circles). Error bars represent
the statistical errors derived from those of the p(k)

I ; see Fig. 1.

If one considered that knowing two diagonal moments is
equivalent to knowing them all and included in the sym-
metrization the third diagonal moment once the first two
are measured, there would be a unique optimal path. We
report here one of the three equivalent optimal paths, γbest =
(Mxx, Myy, Mxz, Myz, Mxy, Mx, My, Mz ); choosing this path,
one only needs to perform (on average) three measurements
to detect a state as entangled. These three measurements give
access to the two diagonal moments [and thus all of them
via (10)] and one of the off-diagonal ones. The probabilities
relative to this best path are shown in Fig. 6.

Rewriting d (γ ) in terms of p(k)(γ ) we get

d (γ ) = 8p(8)(γ ) − p(7)(γ ) − p(6)(γ ) − . . . − p(1)(γ ). (19)

It turns out that choosing measurements according to γbest

coincides (within the error bars) with choosing for each
k, 1 � k � 8, the best set of measurements, i.e., the one with
the highest probability of detecting entanglement at a given
level (highest p(k)

I among the mk possibilities for each k).
This is not obvious, and it is not always the case: a counter-
example is given by a binary tree of depth 4 in which the
random probabilities satisfy the same constraint as in our case,
i.e., p(k−1)(γ ) � p(k)(γ ), and the four paths have probabil-
ities (0.57, 0.62, 0.76), (0.57, 0.62, 0.95), (0.57, 0.68, 0.77),
(0.57, 0.68, 0.78). It is easily verified that the best path,
with d (γ ) = 1.8, is the second one, which at depth 2 does
not have the highest p(2)(γ ), so the minimal d (γ ) does not
always correspond to the path with the highest p(k)(γ ) at
each step.

In practice, joint measurements such as Mxx might be more
challenging to implement than two single measurements Mx,
as qubits need first a unitary operation to entangle them and
then two local measurements. In such a case, one might
modify (17) with another factor for each path that takes such
additional costs into account. Also, we base our analysis
on average values of measurement outcomes which we took
as known with arbitrary precision. This is, of course, an
idealization. In practice, only a finite number of measurements
can be performed, leading to statistical error bars for each
moment. These can, in principle, be taken into account in

TABLE II. Number mk of nonequivalent unordered sets of mea-
surements of two qubits for 1 � k � 15.

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
mk 3 10 30 69 132 205 254 254 205 132 69 30 10 3 1

the TMS algorithm, but they increase the computational time.
Both of these points are beyond the scope of the present paper.

V. NONSYMMETRIC CASE

So far we have restricted ourselves to symmetric states
of two qubits. Let us now consider the generic case of ar-
bitrary two-qubit nonsymmetric states. In this case we can
still exploit the TMS algorithm, with the following differences
[36]. The bipartite state acts on the tensor product H1 ⊗ H2

of Hilbert spaces and each of them now has its own set of
variables x, y, and z; we label these variables (xi, yi, zi), with
i = 1, 2. The compact set K is now the product of two Bloch
spheres. The set M of possible measurements is

M = {
Mx1 , My1 , Mz1 , Mx2 , Mx1x2 , My1x2 , Mz1x2 , My2 ,

Mx1y2 , My1y2 , Mz1y2 , Mz2 , Mx1z2 , My1z2 , Mz1z2

}
. (20)

For example, Mx1 is the measurement of σx ⊗ 1 and Mx1x2 is
the measurement of the joint operator σx ⊗ σx. Up to relabel-
ing the variables for each qubit, some sets of measurement
operators are equivalent. The number mk of nonequivalent
sets of measurements is obtained by applying the 36 possible
permutations on the (xi, yi, zi). This number is reported in
Table II for 1 � k � 15.

The number mk increases rapidly with k, and so does
the size of the moment matrices considered in the TMS
algorithm: indeed, because of condition (7), the algorithm
always searches at least for the first extension; in both cases
(symmetric and nonsymmetric) the smallest extension
corresponds to the moment matrix of order 2. In the
symmetric case it is a 10 × 10 matrix, while in the
nonsymmetric case it already becomes a 28 × 28 matrix
which contains all the monomials up to degree 4 for the set
of six variables xi, yi, zi, with i = 1, 2, i.e., 210 moments,
versus 35 in the symmetric case. For the previous reasons
computational times become an issue in the nonsymmetric
case. Nevertheless, we could estimate probabilities up to
k = 5, running the TMS algorithm over a database of 50 000
nonsymmetric two-qubit random states. What we observe
is that no state is detected as entangled with only one
measurement, a tiny fraction(∼1%) is detected as entangled
by the combination of two measurements {Mx1x2 , My1y2},
and the largest fraction of states detected as entangled for
3 � k � 5 is given, respectively, by the set of measurements
{Mx1x2 , My1y2 , Mz1z2} (∼10%), {Mx1x2 , Mx1y2 , My1x2 , Mz1z2}
(∼12%), {Mx1x2 , Mx1y2 , My1x2 , My1y2 , Mz1z2} (∼23%). This is a
big difference compared to the symmetric case, in which we
could detect ∼15% of the states as entangled with a single
measurement, ∼40% already with two measurements, and
almost all states with five measurements.
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VI. HIGHER SPIN- j

Going back to the case of symmetric states, we can also
get an idea of how complexity changes for higher spin sizes;
indeed, the size of the set M in the symmetric case cor-
responds to the sum of the number of monomials in three
variables up to degree d = 2 j + 1, where j is the spin size.
These numbers form the sequence of triangular numbers Tn =∑n

i=1 i = n(n+1)
2 ; we can then write that mk for any spin- j is

mk =
(∑2 j+1

n=1 Tn − 1

k

)
, (21)

where we subtract 1 since the first element of M is always
the identity. However, in this case, we can still have some
information looking at the expression for the tensor repre-
sentation of a separable state in (4). Indeed, for an even
number of qubits (integer spins) we can look at the diagonal
tensor entries, which are defined as the entries of the form
Xμ1...μ jμ1...μ j with 0 � μi � 3. These correspond to terms of
the form

∑
j ω j (nμ1 ...nμ j )

2 j ; it follows that for a separable
state these entries are positive, since the nμi are real and
ω j � 0. Therefore measuring a negative value for any of
the corresponding measurement operators means detecting
entanglement; we indicate the operators corresponding to the
diagonal entries of the tensor Xμ1μ2...μN with {D}I . We can
then restrict our investigation for an integer spin- j to these
4 j observables, which are further reduced by symmetry to
( j + 3

3 ). We report in Fig. 7 the number of entangled states
that are not detected by any of the observables {D}I for spin
size 1 � j � 5 (for each j we used a sample of 106 random
states from which we again removed the separable ones). The
number of undetected entangled states decreases with the spin
size j and already at j = 4 all the states in the sample are
detected; we can also observe that restricting the analysis
to these observables already gives significant information
for spin-1 and spin-2 and almost-complete information for
spin-3. Moreover, we can also compare these observables to
see which is the most efficient measurement to perform as
we did for the spin-1 case; to estimate the corresponding
p(1)

I , we again only consider sets which are nonequivalent
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FIG. 7. Percentage of entangled states not detected by any of the
negative outcomes of the measurements {D}I corresponding to the
diagonal entries of the tensor Xμ1μ2 ...μN as a function of the spin
size j.

FIG. 8. Comparison of the nonequivalent diagonal observables
{D}I for spin- j, 2 � j � 5: probabilities p(1)

I as a function of the
label i of set I . The highest values are reached, respectively, for Dxxyy,
Dxxyyzz, Dxxxxxxyy, and Dxxxxyyyy (where the last term corresponds to the
measurement of 1×2 ⊗ σ⊗4

x ⊗ σ⊗4
y ; see Appendix B for the full list).

under permutation of the axes, performing the transformations
{Pxy, Pxz, Pyz, Pyzx, Pzxy} described in Sec. III B. The results
are shown in Fig. 8. The question arises whether similarly
efficient measurements can be found for half-integer spin- j. It
was recently shown in [49] how the positive-partial-transpose
separability criterion for symmetric states of multiqubit sys-
tems can be formulated in terms of matrix inequalities based
on the tensor representation in Eq. (2). It is possible to
construct a matrix T from the tensor representation of the
state and show that it is similar to the partial transpose of the
density matrix written in the computational basis. In the case
of spin-3/2 this matrix is an 8 × 8 Hermitian matrix given
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FIG. 9. Entanglement detection probabilities based on the
negativity of the

(6
k

)
subsets of the set {X011 − X113, X011 +

X113, X022 − X223, X022 + X223, X033 − X333, X033 + X333} for k =
1, . . . , 6, where the tensor Xμ1μ2μ3 represents a spin-3/2.
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by Tμi,νi′ = ∑3
τ=0 Xτμνσ

τ
i,i′ , where σ τ

i,i′ are the Pauli-matrix
components, and its positivity is a necessary and sufficient
classicality criterion; as a consequence, the positivity of the
diagonal entries is a necessary condition for a separable state.
We can again restrict our investigation to the corresponding
observables {D}I , but this time it implies the measurement of
sets of two observables. Indeed, in terms of the tensor entries
Xμ1μ2μ3 , the diagonal entries in T are X000 ± X003, X011 ±
X113, X022 ± X223, X033 ± X333, so we need to compare pairs
of outcomes. Recalling that X000 = 1, we can neglect the first
entry, since the condition −1 � X003 � 1 is always satisfied.
The results of such investigation for the other six pairs and
for their combinations [all the (6

k) sets, with 2 � k � 6] are
reported in Fig. 9. As before, we can gain already relevant
information from this restricted analysis.

VII. CONCLUSIONS

In summary, we have studied the statistics of lengths of
measurement sequences for multiqubit systems that allow one
to detect entanglement without any prior information about
the state, for both unordered sets of measurements and ordered
ones (i.e., measurement paths). For symmetric states of two
qubits, we have identified the best measurement path that re-
sults, on average over all randomly chosen entangled states, in
a proof of entanglement with 3.07 measurements (compared
to the 8 measurements needed for full tomography in this
case). For larger numbers N of qubits in symmetric states,
we found that measurements based on the diagonal matrix
elements of the moment matrix of the state become very
efficient in detecting entanglement. Their number increases
like N3, and already at N = 8 qubits the number of states not
detected as entangled has decreased to about 10−6 or smaller.
For nonsymmetric states, substantially larger numbers of mea-
surements are needed to detect entanglement with certainty:
at least two measurements are needed for two-qubit states,
resulting in only about a 1% detection probability, however.
With five measurements the probability increases to about
23%. The work is based on the truncated moment sequence
algorithm that naturally allows one to deal with missing data.
It is very flexible and can be easily adapted to experimentally
relevant ensembles of states and other side conditions, such
as sets of measurements that can be implemented or more
elaborate cost functions.
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APPENDIX A: UNORDERED MEASUREMENT SETS

We list here all the mk unique sets of k measurements for
1 � k � 8.

k = 1

1 Mx

2 Mxx

3 Mxy

(Continued).

k = 1

k = 2
1 {Mx, My}
2 {Mx, Mxx}
3 {Mx, Mxy}
4 {Mx, Myy}
5 {Mx, Myz}
6 {Mxx, Mxy}
7 {Mxx, Myy}
8 {Mxx, Myz}
9 {Mxy, Mxz}
k = 3
1 {Mx, My, Mz}
2 {Mx, My, Mxx}
3 {Mx, My, Mxy}
4 {Mx, My, Mxz}
5 {Mx, Mz, Myy}
6 {Mx, Mxx, Mxy}
7 {Mx, Mxx, Myy}
8 {Mx, Mxx, Myz}
9 {Mx, Mxy, Mxz}
10 {Mx, Mxy, Myy}
11 {Mx, Mxy, Myz}
12 {Mx, Mxz, Myy}
13 {Mx, Myy, Myz}
14 {Mz, Mxx, Myy}
15 {Mxx, Mxy, Mxz}
16 {Mxx, Mxy, Myy}
17 {Mxx, Mxy, Myz}
18 {Mxx, Mxz, Myy}
19 {Mxy, Mxz, Myz}
k = 4
1 {Mx, My, Mz, Mxx}
2 {Mx, My, Mz, Mxy}
3 {Mx, My, Mxx, Mxy}
4 {Mx, My, Mxx, Mxz}
5 {Mx, My, Mxx, Myy}
6 {Mx, My, Mxx, Myz}
7 {Mx, Mz, Mxx, Myy}
8 {Mx, My, Mxy, Mxz}
9 {Mx, Mz, Mxz, Myy}
10 {Mx, My, Mxz, Myz}
11 {Mx, Mz, Mxy, Myy}
12 {Mx, Mxx, Mxy, Mxz}
13 {Mx, Mxx, Mxy, Myy}
14 {Mx, Mxx, Mxy, Myz}
15 {Mx, Mxx, Mxz, Myy}
16 {Mx, Mxx, Myy, Myz}
17 {Mx, Mxy, Mxz, Myy}
18 {Mx, Mxy, Mxz, Myz}
19 {Mx, Mxy, Myy, Myz}
20 {Mz, Mxx, Myy, Myz}
21 {Mx, Mxz, Myy, Myz}
22 {Mz, Mxx, Mxz, Myy}
23 {Mxx, Mxy, Mxz, Myy}
24 {Mxx, Mxy, Mxz, Myz}
25 {Mxx, Mxz, Myy, Myz}
k = 5
1 {Mx, My, Mz, Mxx, Mxy}
2 {Mx, My, Mz, Mxx, Myy}
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(Continued).

k = 5

3 {Mx, My, Mz, Mxx, Myz}
4 {Mx, My, Mz, Mxy, Mxz}
5 {Mx, My, Mxx, Mxy, Mxz}
6 {Mx, My, Mxx, Mxy, Myy}
7 {Mx, My, Mxx, Mxy, Myz}
8 {Mx, Mz, Mxx, Mxz, Myy}
9 {Mx, My, Mxx, Mxz, Myy}
10 {Mx, My, Mxx, Mxz, Myz}
11 {Mx, Mz, Mxx, Mxy, Myy}
12 {Mx, Mz, Mxx, Myy, Myz}
13 {Mx, My, Mxy, Mxz, Myz}
14 {Mx, Mz, Mxy, Mxz, Myy}
15 {Mx, Mz, Mxy, Myy, Myz}
16 {Mx, Mxx, Mxy, Mxz, Myy}
17 {Mx, Mxx, Mxy, Mxz, Myz}
18 {Mx, Mxx, Mxy, Myy, Myz}
19 {Mx, Mxx, Mxz, Myy, Myz}
20 {Mx, Mxy, Mxz, Myy, Myz}
21 {Mz, Mxx, Mxz, Myy, Myz}
22 {Mz, Mxx, Mxy, Myy, Myz}
23 {Mxx, Mxy, Mxz, Myy, Myz}
k = 6
1 {Mx, My, Mz, Mxx, Mxy, Mxz}
2 {Mx, My, Mz, Mxx, Mxy, Myy}
3 {Mx, My, Mz, Mxx, Mxy, Myz}
4 {Mx, My, Mz, Mxx, Mxz, Myy}
5 {Mx, My, Mz, Mxy, Mxz, Myz}
6 {Mx, My, Mxx, Mxy, Mxz, Myy}
7 {Mx, My, Mxx, Mxy, Mxz, Myz}
8 {Mx, Mz, Mxx, Mxy, Mxz, Myy}
9 {Mx, Mz, Mxx, Mxz, Myy, Myz}
10 {Mx, My, Mxx, Mxz, Myy, Myz}
11 {Mx, Mz, Mxx, Mxy, Myy, Myz}
12 {Mx, Mz, Mxy, Mxz, Myy, Myz}
13 {Mx, Mxx, Mxy, Mxz, Myy, Myz}
14 {Mz, Mxx, Mxy, Mxz, Myy, Myz}
k = 7
1 {Mx, My, Mz, Mxx, Mxy, Mxz, Myy}
2 {Mx, My, Mz, Mxx, Mxy, Mxz, Myz}
3 {Mx, My, Mz, Mxx, Mxz, Myy, Myz}
4 {Mx, My, Mxx, Mxy, Mxz, Myy, Myz}
5 {Mx, Mz, Mxx, Mxy, Mxz, Myy, Myz}
k = 8
1 {Mx, My, Mz, Mxx, Mxy, Mxz, Myy, Myz}

APPENDIX B: NONEQUIVALENT DIAGONAL
OBSERVABLES

We list here all the nonequivalent observables DI for spin-
j, 2 � j � 5.

j = 2

1 Dxx

2 Dxxxx

3 Dxxyy

j = 3
1 Dxx

2 Dxxxx

3 Dxxyy

4 Dxxxxxx

5 Dxxxxyy

6 Dxxyyzz

j = 4
1 Dxx

2 Dxxxx

3 Dxxyy

4 Dxxxxxx

5 Dxxxxyy

6 Dxxyyzz

7 Dxxxxxxxx

8 Dxxxxxxyy

9 Dxxxxyyyy

10 Dxxxxyyzz

j = 5
1 Dxx

2 Dxxxx

3 Dxxyy

4 Dxxxxxx

5 Dxxxxyy

6 Dxxyyzz

7 Dxxxxxxxx

8 Dxxxxxxyy

9 Dxxxxyyyy

10 Dxxxxyyzz

11 Dxxxxxxxxxx

12 Dxxxxxxxxyy

13 Dxxxxxxyyyy

14 Dxxxxxxyyzz

15 Dxxxxyyyyzz
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