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We introduce photonic architectures for universal quantum computation. The first step is to produce a resource
state which is a superposition of the first four Fock states with a probability greater than or equal to 10−2, an
increase by a factor of 104 over standard sequential photon-subtraction techniques. The resource state is produced
with near-perfect fidelity from a quantum gadget that uses displaced squeezed vacuum states, interferometers,
and photon-number-resolving detectors. The parameters of this gadget are trained using machine learning
algorithms for variational circuits. We discuss in detail various aspects of the non-Gaussian state preparation
resulting from the numerical experiments. We then propose a notion of resource farms where these gadgets are
stacked in parallel, to increase the success probability further. We find a trade-off between the success probability
of the farm, the error tolerance, and the number of gadgets. Using the resource states in conventional gate
teleportation techniques, we can then implement weak tunable cubic phase gates. The numerical tools that have
been developed could potentially be useful for other applications in photonics as well.

DOI: 10.1103/PhysRevA.100.012326

I. INTRODUCTION

Continuous-variable systems are one of the leading candi-
dates for realizing universal quantum computation. In particu-
lar, there has been considerable recent progress in theory and
experiments, such as computation using temporally encoded
modes [1–3] and frequency encoded domains [4], loop-based
architectures [5–7], and bosonic-codes-based qubit or qumode
encoding [8–13], and promising applications in quantum key
distribution [14–16] and sensing [17,18].

Universal quantum computation in continuous-variable
systems requires non-Gaussian gates generated by Hamilto-
nians that are beyond quadratic in the quadrature operators
[19,20]. In this context the quadrature phase gates which are
of the form Θ(γ ) = exp(iγ x̂n/h̄) have played a very important
role, especially the cubic phase gate corresponding to n = 3,
which has the lowest-order non-Gaussian gate Hamiltonian
among phase gates required for universal computation. Cur-
rent methods to implement this gate are via gate teleportation
where a resource state is prepared and used in a teleportation
(measurement-based) circuit [21–28]. However, the methods
of preparation of the resource state either require very high
photon counting [21,29] or have a very low probability of suc-
cess due to repeated photon subtractions, though some meth-
ods to improve the latter have been proposed recently [30–32].

We address this aspect of the resource state preparation
wherein we constrain the resources to the simplest possible
ones, namely, preparation of Gaussian multimode pure states
followed by conditional photon detection measurements. For
our purpose it suffices to consider only two-mode and three-
mode architectures. We delegate the tuning of this multipa-
rameter constrained variational circuit to a machine learning
algorithm that trains the circuit to learn the required state
preparation, inspired by recent works [33–38]. It turns out
that we can prepare a learned state with near-perfect fidelity
to the target state and with comparatively high probability,
leading to a preparation efficiency greater than 1%, whereas

sequential photon-subtraction techniques have an efficiency
of ∼10−4% (see Appendix A). We then estimate the resources
required to build quantum resource farms as a possible route
to near-deterministic state generation, depending on an error
threshold, for implementing cubic phase gates.

The rest of the paper is structured as follows. In Sec. II
we introduce the basic theory behind the gate teleportation
method for implementing a weak cubic phase gate using the
requisite resource state. In Sec. III we introduce architectures
for quantum gadgets whose parameters are trained to generate
the resource states using machine learning algorithms. We
also provide in detail the physical interpretation of the numer-
ical results. We then obtain in Sec. IV a trade-off between the
number of these quantum gadgets in what we term a quantum
resource farm and the total success probability of producing
the state. We then analyze the effects of photon loss in the
quantum gadgets on the output states in Sec. V. We summarize
in Sec. VI. Explicit details of the numerical techniques are
relegated to Appendix B.

II. GOTTESMAN-KITAEV-PRESKILL
GATE TELEPORTATION

We now focus on the optical implementation of the lowest-
order quadrature phase gate, namely, the cubic phase gate
that we denote by V(γ ) = exp(iγ x̂3/h̄), where γ is the gate
strength. All known methods to implement the cubic phase
gate involve preparing a suitable resource state and using
measurement-based techniques (see, for example, Table II of
[22]). We use the teleportation technique of Gottesman et al.
[21], but this can be translated into an adaptive gate telepor-
tation presented using different gates and additional auxiliary
squeezed states [26]. We take h̄ = 2 for the rest of the article.

For the cubic phase gate the resource state is the cubic
phase state defined as V(γ )|0〉p, which is nonphysical due to
the zero-momentum ket |0〉p. Therefore, as an approximation,
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FIG. 1. The GKP teleportation for implementation of a cubic
phase gate [21]. Here a state |ψ〉 is input to one mode along with a
resource state |φ〉 in the other. In addition, S(r)† denotes the squeez-
ing operator, Cx the controlled-X gate given by exp(−ix̂1 p̂2/2), �x

the x-homodyne measurement with outcome labeled m, GFF the
Gaussian feed-forward correction operator that needs to be applied,
Nm,r the noise operator, and V(γ ) the final cubic phase gate that is
applied to the input state as shown in Eq. (4).

we consider V(γ )S(r)†|0〉, where S(r) is the standard single-
mode squeezing gate given by S(r) = exp[r(â2 − â†2

)/2].
For large squeezing, this state has a large Fock support and
hence would be difficult to synthesize directly. To get around
this we commute the squeeze operator across the cubic phase
gate to obtain S(r)†V(γ ′)|0〉. Let us further assume that γ ′ �
1; then we can expand the cubic phase gate to first order
in gate strength to obtain S(r)†[1 + iγ ′x̂3/2]|0〉. Assuming
that we can apply the on-line squeezing gate using methods
such as measurement-based squeezing [39–41], we call the
remaining terms the resource state [27,28] and it can be
expanded in the Fock basis as

|φ〉 = 1√
1 + 5|a|2/2

[
|0〉 + ia

√
3

2
|1〉 + ia|3〉

]
, (1)

where a ∈ R.
We now use this resource state in a Gottesman-Kitaev-

Preskill (GKP) teleportation scheme as depicted in Fig. 1. The
wave function of the squeezed resource state is

φ̃(x) = 〈x|S(r)†|φ〉 =
∫

dx′φ(x′)〈x|S(r)†|x′〉. (2)

We note that 〈x|S(r)†|x′〉 = er/2〈x|erx′〉. So we have that
φ̃(x) = e−r

∫
dy φ(e−ry)er/2δ(x − y) = e−r/2φ(e−rx). Then the

output state can be derived [similar to Eq. (8) of Ref. [22]] as

|ψout〉 = N ′ exp

[
− (x̂ + m)2

4e2r

][
1 + i

γ

2
(x̂ + m)3

]
|ψin〉,

γ = 2ae−3r/
√

6, (3)

where N ′ is the normalization factor, m is the homodyne
measurement outcome, and Cx = exp(−ix̂1 p̂2/2) is an
entangling gate that can be implemented [2,41–44]. We now
assume that γ � 1, allowing us to approximate the terms in
the second set of square brackets as a first-order expansion in
the gate strength of a cubic phase gate, resulting in

|ψout〉 = N ′ exp

[
− (x̂ + m)2

4e2r

]
exp

[
iγ (x̂ + m)3

2

]
|ψin〉.

Expanding the terms in the second operator and applying a
Gaussian feed-forward GFF(m) = exp[−iγ (3mx̂2 + 3m2x̂ +
m3)/2], we obtain the final action on the input state to be

|ψout〉 = N ′N(m, r)V(γ )|ψin〉, (4)

where N(m, r) = exp[−(x̂ + m)2/4e2r] is the Gaussian
damping noise operator that depends on the homodyne
measurement outcome m.

So using the resource state |φ〉, we can effect a transforma-
tion which is a weak cubic phase gate along with an unavoid-
able Gaussian noise factor. Note that the initial squeezing gate
S(r)† not only reduces the strength of the final cubic phase
gate but also negates the effect of the Gaussian noise operator
as seen from Eq. (3).

III. MACHINE LEARNING FOR STATE PREPARATION

The resource state |φ〉 can be prepared in the labora-
tory using standard sequential photon-subtraction and photon-
addition techniques [45–49]. However, such a method is not
scalable since the successful probability of three successive
photon additions or subtractions is extremely low, due to
the use of very-high-transmission beam splitters [45,50], as
discussed in Appendix A.

To bypass this difficulty, we introduce very different archi-
tectures that use Gaussian states conditioned on non-Gaussian
postselected photon-number-resolving (PNR) detectors, akin
to Gaussian boson sampling circuits [51,52]. Early works
considered conditional measurements on the outputs of beam
splitters for state preparation [53–59].

Algorithm 1 StatePrep_3mode

function loss (x, para, handle):
# x = {xs, xd , xθ } parameters for squeezing,
# displacement and beam splitter array
para = {a, m1, m2, cutoff_dim}
|ψin〉 ← S(xs )D(xd )|0〉
|ψout〉 ← U(xθ )|ψin〉
normIn, normOut ← |〈ψin|ψin〉|, |〈ψout|ψout〉|
penalty = 100 × |1-normIn| + 100 × |1-normOut|
|ψ〉 ← 〈m1, m2|ψout〉
prob ← 〈ψ |ψ〉
|ψ〉L ← |ψ〉/prob
fid = |〈ψL|φT 〉|2
if handle == ‘fid’ then

return -fid + penalty
else if handle == ‘fid_prob’ then

return -fid + prob + penalty
end if

end function
procedure optimization (para, niter):

# global exploration to optimize fidelity
# basinhopping is a global search algorithm
# further optimize the probability by local search
initialize x0 # randomly chosen with proper range
x1 ←basinhopping(x0, loss, args=(para, ‘fid’),niter)
x2 ←local_search(loss, x1, args= (para, ‘fid_prob’))
save x2

end procedure

Our circuits are depicted in Fig. 2 for both the two-mode
and three-mode architectures. We then use machine learning
algorithms and the STRAWBERRY FIELDS quantum simulator
[60] to train these circuits against the target state given in
Eq. (1), as presented in Algorithm 1, where |φT 〉 denotes the
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(a)

(b)

FIG. 2. Quantum gadgets of (a) two and (b) three modes. Here
{zi, αi} ∈ C denotes the input squeezing S(z) and displacement
D(α) gates applied to the vacuum states. In addition, B(θ, φ) =
exp(eiφa1a†

2 − e−iφa†
1a2) denotes a beam splitter and Πn a photon-

number-resolving detector postselected to value n. Further, |φL〉 is
the output after training the circuit parameters.

target state and |ψL〉 denotes the learned or trained state. The
algorithm executes a two-step optimization, where the circuit
parameters are first trained to maximize the fidelity with the
target state using basinhopping, which is a global search
heuristic. The second step is then to perform a local_search
starting from the global optimum found by basinhopping, to
further increase the probability of producing the trained state.
We choose the cutoff dimension of each mode in Fig. 2 to
be 15 such that there is a large enough Hilbert space to be
explored but without too much overhead. The PNR detectors
in the two-mode case are set to m = 2 and in the three-mode
case to (m1, m2) = (1, 2), as argued in the following section.
The details of all the numerical techniques that we use are
explained in Appendix B.

A. Postselection of the PNR detectors

We provide numerical reasons for our choice of postselec-
tion of the PNR detectors. For the two-mode example we plot
the fidelity and probability as a function of the postselected
PNR measurement in Fig. 3(a) for a fixed value of a = 0.3.
We find that while the fidelity is increasing with higher photon
measurement, the probability drops rapidly. As a reasonable
trade-off we pick m = 2, which gives an increase with respect
to the fidelity with a slight cost to the probability of producing
the state.

In Fig. 3(b) we compare the fidelity with respect to the
target state parameter a for three settings, namely, (i) two-
mode architecture with m = 2, (ii) three-mode architecture
with (m1, m2) = (1, 1), and (iii) three-mode architecture with
(m1, m2) = (1, 2). There are two important findings that we
wish to highlight. The first is that we achieve near-perfect
fidelity for the three-mode circuit for all values of a ∈ [0.3, 1]
when the PNR detectors are postselected to values (m1, m2) =
(1, 2). The second interesting numerical observation is that
the performance of the two-mode architecture with m = 2 is
extremely close to the three-mode circuit with (m1, m2) =
(1, 1). In both cases a common feature is that the sums of
the values of postselected PNR detectors are the same. We
anticipate that a deeper understanding is possible if we explore
these aspects from the perspective of the resource theory of
non-Gaussianity [61–65].
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FIG. 3. (a) Fidelity (rising red line) of the trained state to the
target state and probability (falling blue line) of preparing the
trained state as a function of postselection of the PNR detectors in
the two-mode circuit of Fig. 2. Here we use basinhopping with
niter = 20 (see Appendix B) without further optimizing the proba-
bility. We make the choice of m = 2, which has a reasonable trade-off
between fidelity and probability, both of which we would require
to be high. (b) Comparison of the optimal fidelities for m = (1, 1)
(bottom, upper orange line) and for m = (1, 2) (top, red line) for
the output state of the three-mode circuit, benchmarked with the
two-mode circuit with measurement m = 2 (bottom, lower blue
line), for various values of the target state parameter a. The two
bottom curves corresponding to the two-mode case with m = 2 and
the three-mode case with m = (1, 1) differ only slightly and for
a = 0.77. We find that the measurement setting of m = (1, 1) has a
very poor performance compared to the one with m = (1, 2). For the
three-mode case with m = (1, 2) and m = (1, 1), we use niter = 40
and niter = 80, respectively.

B. Trained parameters for two-mode and three-mode circuits

The final optimization values for the two-mode circuit
parameters and the three-mode circuit parameters are listed
in Tables I and II, respectively. We find that the required
squeezing values r are all less than or equal to 5.1 dB for
the two-mode case and less than or equal to 6.7 dB for the
three-mode case, which is a very experimentally accessible
value. Further, unlike the two-mode case, it turns out that
taking the displacements to be real provided better fidelity
results for the three-mode case. We wish to highlight that the
number of steps for which we run the optimization algorithms
is fixed for all values of state parameter a for the sake of
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TABLE I. Optimal circuit parameters for the two-mode architecture with PNR m = 2 [Fig. 2(a)]. The state parameter a of Eq. (1) is varied
in equal steps in the range [0.3,1]. Here {ri, φ

r
i } ({di, φ

d
i }) are the magnitude and phase for squeezing (displacement) applied to the ith vacuum

mode; {θ, φ} are the parameters for the beam splitter.

a r1 r2 φr
1 φr

2 d1 d2 φd
1 φd

2 θ ψ

0.3 0.37 −0.37 −3.08 0.59 −0.25 0.35 0.77 −0.98 −0.64 2.26
0.38 −0.43 −0.43 −1.72 −1.64 −0.36 −0.3 −2.05 −3.25 2.25 −1.93
0.46 −0.48 −0.48 −1.34 0.59 0.34 −0.39 −0.14 −0.93 2.49 2.85
0.53 −0.5 0.46 1.73 0.37 0.4 −0.29 −0.64 −1.2 0.97 −0.77
0.61 −0.54 −0.58 0.55 0.65 0.39 −0.41 0.75 2.28 −0.68 −1.26
0.67 −0.34 −0.48 3.1 0 −0.14 0.39 1.55 −1.57 0.61 −3.12
0.77 0.35 −0.51 0.85 0.01 0.14 −0.4 −1.14 1.57 0.63 2.72
0.84 0.28 −0.46 −0.57 0 0.07 0.38 4.42 −1.57 0.62 −2.86
0.92 −0.53 0.34 −1.84 0.02 −0.4 0.12 −2.49 7.9 −0.93 0.93
1 −0.23 0.43 −0.97 3.14 0.01 −0.38 −0.47 −1.57 3.76 −1.09

reproducibility of the numerical results. For certain values of
a an improvement in probability cannot be ruled out.

C. Physical comparison of the two-mode and three-mode cases

The trained and target states are both pure and we have that
the fidelity is equivalent to the Wigner overlap [66], i.e.,

F (φ1, φ2) = |〈φ1|φ2〉|2 =
∫

dx d pW (x, p; φ1)W (x, p; φ2).

Since the negativities of the Wigner function are crucial, we
define by W− the overlap of the negative region of the Wigner
functions of the output and target state, each negative region
being renormalized to 1. For the parameter a ∈ [0.3, 1] we
have that the gate strength γ ∈ [0.0122, 0.0407] [by Eq. (3)]
if the initial squeezing gate in Fig. 1 has r = 1.

We now use the optimization values of the two-mode and
three-mode cases in Tables I and II to plot the fidelity, the
overlap of the negative region of the Wigner function between
the trained state |φL〉 and the target state |φ〉, and the probabil-
ity of producing the trained state in Fig. 4. We find that using
the three-mode architecture, the trained state is extremely
close to the target state, and so is the overlap of the negative
region of the Wigner function [Fig. 4(b)]. On the other hand,
the two-mode circuit performs better than the three-mode

circuit in terms of the probability of producing the trained
state, but there is a substantial drop in the corresponding W−.

To provide a visual comparison of the two-mode and three-
mode performances, we plot the Wigner functions for the
trained states for specific values of the target state parameter a
in Fig. 5. In each plot, the insets at the top right corner are
contour plots of the Wigner function of the target state. In
Fig. 5(a) we consider the three-mode gadget with a = 0.3. We
find a very good match between the trained state and the target
state. In Figs. 5(b) and 5(c) we consider a = 0.61, where
Fig. 5(b) corresponds to the two-mode gadget and Fig. 5(c) to
the three-mode gadget. We find an important difference that
while the three-mode gadget produces a trained state that is
close to the target state, the two-mode gadget produces a state
with one of the Wigner negative dips missing. This leads to a
reduced target state fidelity, as already mentioned in Fig. 4.

D. Generating random states

As a final numerical experiment we try to target a random
state for each value of Fock state cutoff as outputs of the
three-mode architecture with the same postselected PNR de-
tectors (m1, m2) = (1, 2). The target state is now of the form
|φT 〉 = ∑nc

n=0 cn|n〉, where nc is the maximum Fock support or
cutoff and the {cn} are randomly chosen coefficients that are
normalized to unity. In Fig. 6 we plot the average fidelity of

TABLE II. Optimal circuit parameters for the three-mode architecture with PNR (m1 = 1, m2 = 2) in Fig. 2(b). Here {ri, φ
r
i } are the

magnitude and phase for squeezing applied to the ith vacuum mode; di are the real displacements applied to the ith vacuum mode. It turns out
that taking the displacements to be real gives rise to more stable solutions. In addition, {θi, φi} correspond to the parameters for the ith beam
splitter.

a r1 r2 r3 φr
1 φr

2 φr
3 d1 d2 d3 θ1 θ2 θ3 φ1 φ2 φ3

0.3 −0.27 0.65 0.66 −4.14 0.53 −1.94 0.38 −0.19 −0.47 2.29 −4.19 3.5 2.77 0.59 −0.2
0.38 −0.53 −0.75 −0.55 7.19 10.16 10.73 0.51 −0.03 0.53 2.3 −2.04 −4.11 −0.29 −1.99 −0.89
0.46 −0.75 −0.54 0.27 1.23 −5.31 1.53 −0.04 0.38 0.63 0.7 1.97 −0.88 −1.62 0.72 −1.79
0.53 0.71 0.67 −0.42 −2.07 0.06 −3.79 −0.02 0.34 0.02 −1.57 0.68 2.5 0.53 −4.51 0.72
0.61 0.72 0.65 −0.45 0.23 0.49 −3.81 0 −0.33 −0.01 −1.57 −2.46 0.63 −1.81 −0.22 6.42
0.67 0.52 0.56 0.74 0.09 3.35 −3.26 0.64 −0.33 0.02 −3.31 2.29 2.63 −3.33 1.41 −6.29
0.77 −0.55 0.73 0.03 1.14 0.98 −3.03 0.34 0.11 0.51 −2.3 −1.96 0.69 −3.22 4.32 −4.07
0.84 0.74 0.54 −0.48 0.5 −5.29 2.73 −0.01 −0.36 0.01 −1.52 0.7 −3.8 −0.95 −1.06 −1.24
0.92 −0.54 0.49 0.72 −0.44 2.36 3.14 0.15 −0.48 0.25 −1.3 2.27 0.67 −2.13 3.94 1.99
1 0.66 −0.38 −0.76 3.36 −0.73 0.4 −0.05 −0.82 0 1.56 −2.32 0.61 −3.67 −0.97 −0.71
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FIG. 4. (a) Optimal fidelity F of the machine learned state |φL〉 in three-mode (top blue line) and two-mode (middle red line) architectures
and the closest Gaussian state (bottom black line) with respect to the target state |φ〉 in Eq. (1). (b) Overlap of the negative region of the
Wigner function W− between |φL〉 and |φ〉 for the three-mode (top blue line) and the two-mode (bottom orange line) cases. (c) Probability
P of the optimal output state for the two-mode (top orange line) and three-mode (middle blue line) architectures compared with three
consecutive photon-additions or subtractions (PA/PS) with a probability ∼10−6 (bottom dashed line). We see that for fidelity and Wigner
negativity, the three-mode case performs best with near-perfect fidelity at the cost of a drop in probability when compared with the two-mode
case.

the trained state to the target random state for various values
of the cutoff dimension of the random state. As expected, the
average fidelity is monotonically decreasing with an increase
in the output cutoff dimension of the target state. However,
for the cutoff Fock state value n = 3 we find that the average
fidelity is extremely close to 1.

IV. QUANTUM RESOURCE FARMS TO IMPROVE
SUCCESS PROBABILITY

The resource state preparation is probabilistic since it is
conditioned on a particular postselected measurement out-
come as shown in Fig. 2. To improve the success probability

of the resource state preparation, we propose an optical setup
which we call a quantum resource farm. We line up identical
copies of the state preparation gadget in parallel and connect
all outputs to a single wire or sink as shown in Fig. 7. We
then find a trade-off between the success probability and the
number of gadgets in the resource farm, when allowing for a
small error.

The model of our resource farm has n parallel quantum
gadgets and let p be the probability of success of producing
the resource state from each one of them. Let ε be the error
which captures the degree of determinism of the entire farm.
The probability of producing the required resource state from
the farm is denoted by P(F ) and is given by the union of

FIG. 5. Wigner function of the trained state for three cases (a) a = 0.3 with the three-mode architecture, (b) a = 0.61 with the two-mode
circuit, and (c) a = 0.61 with the three-mode architecture. The insets are the Wigner contour plot for the target states for the corresponding
values of a. We see that the trained state using the three-mode circuit is indistinguishable from the target state. We find that for the two-mode
case (b) with a = 0.61, one Wigner negative region is missing with respect to the three-mode case (c), thereby leading to lesser fidelity to the
target state.
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FIG. 6. Plot of the average fidelity of the trained state to a target
random state |φT 〉 for various values of the Fock cutoff dimension
nc, using the three-mode gadget with (m1, m2 ) = (1, 2). We sampled
100 random states for each value of target cutoff dimension. We find
that using the three-mode gadget, any random superposition of up to
three photon Fock states can be generated with near-perfect fidelity
for this choice of postselected PNR detection pattern.

events of any of the constituent gadgets preparing this state.
Even in the case where multiple resource states are simultane-
ously prepared, we continue to count it as a useful event. Thus,
this success probability is identical to the complementary
event probability that none of the gadgets produce the required
resource state:

P(F ) = 1 − (1 − p)n. (5)

Allowing an error ε for the failure of the state preparation
from the farm, we set P(F ) � 1 − ε. Therefore, the minimum
required number of gadgets nmin is given by

nmin =
⌈

log2 ε

log2(1 − p)

⌉
, (6)

where 
y� denotes the smallest integer greater than or equal to
y. If we assume an ideal GKP teleportation using this resource
state, then the effective cubic phase gate can be implemented
at the same rate as the resource state preparation. If we use
a smaller number of gadgets than nmin, the rate at which the
cubic phase gate can be implemented will be proportionally
reduced.

FIG. 7. Quantum resource farm that consists of copies of quan-
tum gadgets G of Fig. 2 (three-mode case shown here) placed in
a parallel manner where the individual outputs are collected to one
output. There is a trade-off between the rate of production of the state
and the number of gadgets used.

Error

Probability

100 200 300 400 500
0.00

0.02
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No. of quantum gadgets

FIG. 8. Error (top red line) for a probability fixed at 0.02 and
probability (bottom blue line) for error fixed at 0.005 as a function of
the number of quantum gadgets in the resource farm. As an example,
if we consider p = 0.02 and ε = 0.005, i.e., the gadget produces the
resource state with efficiency of 2% and if we want the farm to have
a success rate of 99.5%, then we require ∼260 gadgets (dotted lines)
in the farm.

Examples

The top (red) line in Fig. 8 shows the variation of error ε as
a function of the number of quantum gadgets nmin for a fixed
probability of p = 0.02 of state preparation from a gadget.
The bottom (blue) line shows the variation of p vs nmin for
ε = 5 × 10−3. For p = 0.02 (i.e., 2% efficiency) and P(F ) =
0.995 (ε = 0.005), nmin ∼ 260 (shown by dotted lines).

So we see that there is a trade-off between the number
of gadgets used and the success probability as captured by
Eq. (5). If one requires near determinism using this method
to increase success probability, we see that the resource cost
is challenging for the example mentioned in the preceding
paragraph. However, the analysis provides us with a way
to estimate the resources required to increase the success
probability.

V. NOISE ANALYSIS IN A QUANTUM GADGET

In the ideal case the state in Eq. (1) is produced with near-
perfect fidelity and a probability greater than 1%, as shown
earlier in Fig. 4. However, in practical scenarios there are vari-
ous sources of imperfections in the optical implementation. Of
these, we focus on the state preparation stage where squeezed
vacua are produced and in the measurement stage where a
subset of modes is subjected to a photon-number-resolving
detection. We model these imperfections by a photon-loss
channel as described in the following section.

We now consider in Fig. 9 a noisy version of the three-
mode gadget used to produce weak cubic phase states. The
source and measurement losses are modeled using the pure-
loss channel denoted by L(η) with transmission coefficient
η ∈ [0, 1], a completely positive trace-preserving bosonic
Gaussian channel with well-known Kraus operators [9,67]

Ak (η) =
(

1 − η

η

)k/2 ak

√
n!

(
√

η)a†a,

L(η)[ρ] =
∞∑

k=0

Ak (η)ρAk (η)†.

(7)
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FIG. 9. Addition of source and detection losses to the three-
mode gadget presented in Fig. 2. The loss is denoted by L and is
modeled by a pure-loss bosonic channel L(η) where η ∈ [0, 1] is the
transmission coefficient.

For simplicity, we set the detection efficiency equal to 96%
and we take the noise at the source to be identical in the three
modes. We vary this noise and consider the corresponding
relation to properties of the output state.

In Fig. 10 we plot the fidelity, probability, and the mini-
mum value of the Wigner function of the output state from
the gadget. The fidelity is computed with respect to the target
state (1) as a function of source loss where loss = 1 − ηinitial,
with ηinitial the transmission at the source. For convenience,
we set the loss at the detection part of the circuit equal to 4%
and the target state parameter a to 0.3. The other parameters
of the circuit are chosen to be the optimal values from the first
row in Table II.

We find that there is a loss threshold �T beyond which
all the Wigner negativity of the output state gets washed
out. For the value of the target state parameter a = 0.3, we
find that this threshold is at �T ∼ 0.4, i.e., at ηinitial = 0.6.
Any value of loss greater than 40% produces output Wigner
functions that are positive everywhere. As expected, we find
that both the fidelity and the probability of producing that
state monotonically decrease up to the loss value �T . Beyond
this value of loss the fidelity does increase a bit, but the
dependence of the fidelity and probability is not of particular
interest in this region [68] since the Wigner negativities have
already been washed out. On the other hand, we also find that
if the state preparation fidelity is required to be high (greater
than 90%), then ηinitial needs to be greater than 0.9, i.e., the
source loss needs to be well below 0.1.

VI. CONCLUSION

We proposed a method for the production of target resource
states using machine learning techniques. We first constructed
quantum gadgets that produce very general Gaussian pure
states in two and three modes which were conditioned on
all but one of the modes on a postselected photon-number-
resolving detector. We then tuned the parameters of the gadget
to produce a trained state that is of almost perfect fidelity with
the target state. Figure 6 indicates that this three-mode gadget
and particular postselection could have a more universal prop-
erty to produce a state with any choice of superposition in the
first four Fock basis states.

We found that our architecture in Fig. 2 led to an increase
in the probability (of the order of 104) of producing the target
state compared to conventional sequential photon-addition or
-subtraction methods. As a way to increase even this success
probability, we proposed the notion of a quantum resource

FIG. 10. Effect of noise on the preparation of target states in
Eq. (1) using the optical circuit of Fig. 9. (a) Variation of the min-
imum value of the Wigner function of the output state as a function
of the circuit loss � = 1 − ηinitial. Here we set the measurement loss to
a fixed value of 4% and vary only the preparation loss parameter. We
find that for the output state parameter a = 0.3, the amount of loss
the circuit can tolerate before all the Wigner negativities are washed
out is approximately �T = 0.4. (b) Variation of fidelity (bottom blue
curve) of the output state with regard to the target state along with
the probability (top red curve) of producing the state. The values of
fidelity and probability monotonically decrease for increasing noise
value up to the threshold value.

farm that connects such quantum gadgets in parallel. We then
obtained the trade-off between the success probability and the
number of required quantum gadgets. It turns out that the
resource costs are high to achieve near determinism using
this method as a means to circumvent quantum memories.
Also, in this method, the rate of producing the resource states
is limited by the measurement rate of the photon-number-
resolving detectors.

We expect that our architecture for a quantum gadget can
be realized in the near term and we anticipate substantial im-
provements in the future through technological advancements
driven by demand. Also, the squeezing requirements for our
state preparation (1) is within reasonable bounds of less than
7 dB. Having fewer gadgets in the resource farm would lead to
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a lower production rate of these gates while not compromising
on the fidelity. Also, photon loss plays an important role in the
state preparation and needs to be accounted for as mentioned
in Sec. V.

Our proposal is only an initial step in this direction and
there is scope for improvements and optimization using tools
such as machine learning. There are two ways to obtain higher
gate strengths. One is to concatenate many weak cubic gates
considered here and the other is to consider resource states
that have a higher Fock support than those considered here.
Our methods could prove useful in both these directions. Fur-
ther, the final applied cubic phase gate using the resource state
and gate-teleportation circuit tends to be noisy and requires
additional considerations. Finally, the detailed numerical anal-
ysis also seems to suggest that the PNR detectors cannot be
replaced by threshold detectors.
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APPENDIX A: PHOTON SUBTRACTION

The standard photon-subtraction probability is obtained
from a high-transmission beam splitter where U (θ ) =
exp[θ (â†b̂ − âb̂†)], with θ � 1. In this limit we can expand
the unitary operator to the first order in gate strength to
obtain 1 + θ (â†b̂ − âb̂†). For an arbitrary state and vacuum
state incident on the beam splitter, we obtain U (θ )|ψ〉|0〉 =
N (|ψ〉|0〉 − θ â|ψ〉|1〉), where N = √

1 + θ2〈â†a〉ψ . If we
measure a single photon in the second mode, the probability of
a photon subtraction on the input state is then given by θ2N−2.
For beam splitters with around 98% transmission strength
[45,50], this results in a probability ∼10−2. Resource states
such as the one we consider require three successive photon
subtractions, which results in a net probability of 10−6. If we
use this latter probability in Eq. (6) with ε ∼ 10−3, we find
that the required number of quantum gadgets is of the order of
105, which is unfeasible.

APPENDIX B: NUMERICAL TECHNIQUES

We discuss two optimization functions that were used for
training the circuit parameters. The landscape of our loss
functions usually have several local minima, which makes it
hard for standard local optimization methods because there is
a very strong dependence on the initial conditions. The first
global search function that we used is called basinhopping,
which is described in Algorithm 2. basinhopping is a
stochastic algorithm which attempts to find the global mini-
mum of a smooth scalar function [72]. The implementation
we used in our simulation is from the SCIPY package.

Algorithm 2 basinhopping

procedure basinhopping (x0, f, args, niter, step_size=1):
xold ← local_search(loss, x0)
for i in range(iter) do

 ← random(0,1)
xjump ← xold+ step_size ×

xnew ← local_minimize( xjump, loss, args)
if accept(xnew, xold)== True then

xold ← xnew

end if
end for

end procedure

The algorithm is iterative with each cycle composed of the
following features.

(1) Initialize the variables x0.
(2) Perform local_minimize to minimize f (x, args)

starting from x0, to reach a local minimum we call xold.
(3) Randomly change the position of xold with a tunable

step_size.
(4) Perform local_minimize starting from xold to reach a

local minimum we call xnew.
(5) Perform an acceptance test accept(xnew, xold): A sim-

ple rule could be that if f (xnew, args) < f (xold, args), xold =
xnew. However, the commonly used acceptance test is stochas-
tic so as to maximize the likelihood of finding the global
minimum. In the SCIPY implementation, the acceptance test
used there is the Metropolis criterion of standard Monte
Carlo algorithms [73], where the probability of acceptance is
given by exp{−[ f (xold, args) − f (xnew, args)]/T }. Here T is
a fictitious temperate to control the degree of randomness.

(6) Go back to step 2 and repeat this process niter times.
This global minimization method has been shown to be

extremely efficient for a wide variety of problems in physics
and chemistry. For a stochastic global heuristic there is no way
to determine if the true global minimum has actually been
found. In our simulation we set niter = 40, which is tuned
to be able to have reproducible results. The step_size is set
to be the default value from the SCIPY package. The algo-
rithm for local_minimize can in principle be one of many
options. In our simulation we choose sequential least-squares
programming (SLSP) [74] which seems to be the fastest one
for our task among the local search algorithms available in
SCIPY. When there are no constraints on the variables, SLSP
reduces to the well-known Newton method [74].

Remark. In principle, the local_search function men-
tioned in Algorithm 1 can be any local minimization algorithm
and in our simulation we use the well-known BFGS algo-
rithm, which is available from the SCIPY package. In principle,
the local_search and the local_minimize algorithms can
be the same; however, we use different names due to the role
they play in our Algorithm 1.

Second optimization over probability

For our state preparation task, solely optimizing fidelity to
the target state is insufficient. To have a better architecture the
conditional probability of preparing the trained state needs to
be sufficiently high as well. One possible strategy to achieve
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both high fidelity and probability is to train the circuit to max-
imize fidelity and then use that point as a seed to further opti-
mize the probability. This is exactly what we did for the three-
mode case (see Algorithm 1), where we found that the second
optimization over probability did little harm to the fidelity.

However, this is not the case for two-mode circuit where
we found that second optimization quickly deteriorates the
pretrained high fidelity. To tackle this problem, considering
that the computation overhead for training two-mode circuit is
moderate, we did a brute-force optimization over probability.
That is, we repeat the basinhopping nbh times. We then pick
out the global optimum, trained to optimize fidelity with the
highest probability. In our simulation, we found that using
nbh = 20 and niter = 30 is enough to obtain reproducible
results. This procedure is summarized in Algorithm 3.

Algorithm 3 Optimization of probability for the two-mode architecture

procedure prob_opt (nbh):
initialize x_list, prob_list ← empty list
for e in range(nbh) do

initialize x0

x ← basinhopping(x0, loss, args, niter)
_, prob, _, _ ← objective(x)
x_list.append(x)
prob_list.append(prob)

end for
MaxIndex ← max(prob_ls)
save x_list[MaxIndex]

end procedure
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