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Four-spin cross relaxation in a hybrid quantum device
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Understanding the spin relaxation in superconducting quantum circuit and solid-state spin hybrid systems is
of great importance especially for quantum storage purposes. We have studied the longitudinal relaxation for
electron spins of substitutional nitrogen (P1) centers in a hybrid quantum device containing a diamond and a
superconducting coplanar waveguide resonator. From a series of pump-probe experiments we conclude that the
dominated spin relaxation mechanism is a cross-relaxation process induced by a four-spin interaction (four-spin
cross relaxation) among different hyperfine split spin transitions. Some features of the four-spin process are
discussed based on a set of rate equations. This work provides interesting perspectives in understanding the
coherence properties of the hyperfine split spin ensembles in a hybrid quantum system.
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I. INTRODUCTION

The physical realization of a quantum computer currently
includes a few different experimental systems like supercon-
ducting circuits, trapped ions, and solid-state spins [1–3].
A lot of remarkable progresses have been made in recent
years. But for each system there are still clear obstacles
that have originated from their inherent limitations. Another
important road map is using a hybrid architecture that com-
prises different physical systems with complementary func-
tionalities [4,5]. For example, superconducting circuits have
fast information-processing speed but suffer from notable
decoherence. On the other hand, solid-state spins are known
to have very long coherence times but are relatively hard to
manipulate. With a coherent interface between the two sys-
tems, one could use superconducting circuits for information
processing and spins for quantum storage [6–8].

Such a coherent interface can be realized by coupling a
large ensemble of spins to a superconducting resonator. A spin
ensemble is required since the coupling strength g between
a single electron spin and a coplanar waveguide (CPW) res-
onator is on the order of 1–10 Hz, which is too small to reach
the strong-coupling regime [9,10]. For an ensemble of N spins
the collective coupling strength can be as large as gens = g

√
N

[7]. When N is large enough, gens can surpass the decoherence
rate of the composing systems and the strong-coupling regime
can be achieved. In recent years, many kinds of electron
spins, like donor atoms in silicon, nitrogen-vacancy (NV)
centers, or substitutional nitrogen (P1) centers in diamond,
have successfully realized strong coupling to CPW resonators
[9–15]. Quantum storage of microwave photons has also been
demonstrated with those hybrid devices [16–18].
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Such a hybrid device also allows for the fundamental study
of the composing systems. For solid-state spins, understand-
ing and manipulating the longitudinal spin relaxation is essen-
tial in the fields of quantum information, magnetic resonance
spectroscopy, and spintronics [19,20]. In superconducting res-
onator and solid-state spin coupled devices researchers have
observed many interesting phenomenon related to the spin
relaxation process. The Purcell effect in a microwave regime
has been reported when placing bismuth spins in silicon
in a carefully designed superconducting resonator [20]. For
nitrogen-vacancy centers in diamond, a collective coherent
spin relaxation process and vacuum phonon states limiting
spin relaxation have also been reported [21,22].

In this work we study the electron spin relaxation process
of P1 centers in diamond. We have observed a fast longi-
tudinal spin relaxation process with a typical longitudinal
relaxation time (T 1) on the order of 1 ms. We attribute this fast
relaxation to a four-spin flip-flop-based cross-relaxation pro-
cess. Some characteristics of this process are also discussed.

II. EXPERIMENT

The sample is a type Ib diamond with a nominal ni-
trogen impurity concentration of about 200 ppm, which is
pressed on top of a CPW resonator. The CPW resonator
has a fundamental resonance at ωc/2π = 4.345 GHz with
a quality factor of Q = 400. The sample is loaded into a
dilution refrigerator equipped with a magnetic coil for mi-
crowave transmission measurements. All measurements are
carried out at a base temperature of 16 mK. More information
about the sample and experimental setup can be found in
Appendix A. We couple the electron spin transitions of P1
centers to the CPW fundamental resonance. Each P1 center
has an unpaired electron spin that has strong hypefine inter-
action with the nuclear spin. The Hamiltonian is given by
H = −m0 �B · �S + h�S · A · �I , with �S being the electron spin-1/2
operator, �I being the electron spin-1 operator for the nitrogen
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FIG. 1. (a) Illustration of the hybrid device. The magnetic field
is applied along the diamond’s 〈001〉 direction to achieve the same
Zeeman splitting for all the spin transitions along the 〈111〉 direc-
tion. (b) Energy levels of electron spins of P1 centers considering
Zeeman splitting and hyperfine splitting. (c) Intensity plot of the S21

spectra under varied magnetic fields. Three clear avoided crossings
ambiguously manifest the strong coupling between the three electron
spin transitions and the resonator mode. The white markers and
lines give the fitted peak positions in each of the vertical cuts. The
inset in panel (c) is a vertical cut of panel (c) at B‖ = 154.4 mT
[indicated by the white dashed line in panel (c)]. It shows the vacuum
Rabi split transmission peaks with a splitting value of 2gens/2π =
70.7 MHz.

nucleus, m0/h = 28 MHz/mT, h is Planck’s constant, and
A = diag(81.33, 81.33, 114.03) MHz is the hyperfine inter-
action tensor. The direction ẑ corresponds to the diamond’s
〈111〉 axis. If we apply the magnetic field B‖ along the
diamond’s 〈100〉 direction all the electron spins have the same
angle as B‖. Therefore the spins have the same hyperfine
interaction, which leads to three hyperfine-split electron spin
transitions separated by about 94 MHz. As shown in Fig. 1(b),
they correspond to mI = 1, 0 and −1, respectively. Below we
label them as I1, I0, and I−1

To characterize the coupling effect between the resonator
and the electron spins of P1 centers, we measure the transmis-
sion spectra when tuning the spin transitions across the CPW
resonance by sweeping B‖. The result is shown in Fig. 1(c).
Three anticrossings are observed at the resonant points of the
CPW resonance and the three spin transitions. This clearly in-
dicates that a strong coupling regime is achieved between the
resonator mode and the spin transitions. As shown in the inset
of Fig. 1(c), the transmission spectrum shows vacuum Rabi
splitting with a split-peak distance of 2gens/2π = 70.7 MHz,
where gens is the coupling strength between the spin ensemble
and the resonator. It is known that gens = g

√
δN , where g is

the coupling strength of a single spin to the CPW resonator,
and δN is the difference between the number of spins in
the ground state and the excited state. The magnetic-field-
induced Zeeman splitting corresponds to a temperature of
about 208 mK, which means that the spins can be thermally

FIG. 2. (a) Fast longitudinal relaxation process for I1 spins.
Panel (a) shows the evolution of the ground-state population after
pumping the I1 spins. (b) Spin cross relaxation from I = 1 to I = 0.
After pumping the I1 spins, the GS population for I0 spins shows
a fast decay, which indicates an excitation happens to the I0 spins
after the pump pulse. The error bar gives a standard deviation of the
measured data. The red (gray) arrows label the calculation results
based on the four-spin model. The red (gray) line is an exponential
fitting of the data points. The insets in panels (a) and (b) show
illustrations of the corresponding pump-probe schemes.

polarized to the ms = −1/2 ground state with a fidelity of
more than 99%. From simulation we know that g is on the
order of 10 Hz. Therefore we have the total number of spins
N on the order of 1.2 × 1013, which is consistent with the
estimation based on the CPW mode volume and the density
of P1 centers.

In this work we use the Rabi split peaks to monitor the
ground-state (GS) population for a certain spin transition.
To this end we tune B‖ to bring the coupled system to
the anticrossing point corresponding to the investigated spin
transition. According to the expression of gens, any change
of the GS spin population will shift the split peaks. In the
experiments we can monitor the change in the transmission
intensity to deduce the peak-shift value based on adequate
calibrations. The peak shift is then translated to the GS spin
population. Details about this procedure can be found in
Appendix A.

We use a pump-probe method to investigate the spin relax-
ation process. First a strong pump pulse is applied to bring
some spins out of thermal equilibrium. The spins get relaxed
and then weak probe tones are applied to monitor the GS
population at varied pump-probe delay τ values to charac-
terize the spin relaxation process. Figure 2(a) shows such a
measurement result for the I1 spin transition. About 9% of the
spins are excited from the GS by the pump pulse. After pump-
ing the spins relax and the GS population starts increasing to
a steady-state value of about 94.5% within 3 ms. I0 and I−1

spin transitions show similar relaxation behaviors. As shown
in Fig. 2(a), there are still about 5.5% out-of-equilibrium spins
at the steady state. They will slowly relax with a typical time
constant of tens or even hundreds of seconds depending on
the excitation conditions. This is commonly known as a spin
diffusion process (see Appendix B).

The observed phenomenon is much faster than previously
reported phonon or photon-assisted NV electron spin relax-
ation in diamond (see Appendix B and Ref. [19]). Different
from NV spins, the large hyperfine splitting of P1 spins yields
three well-distinguished transitions. The spin flip-flops among
the three spin transitions may be the main contribution to the
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FIG. 3. The evolution of the GS population of I1 spins after
pumping at I0 spins (a) or I−1 spins (b). The red (gray) arrows label
the calculation results based on the four-spin model. The insets in
panels (a) and (b) give illustrations of the corresponding pump-probe
schemes.

observed relaxation process via spin-spin interaction [23]. To
verify this assumption we keep pumping at I1 spins but probe
I0 spin dynamics. The result is shown in Fig. 2(b). It can
be seen that more than 99% of I0 spins stay at the ground
state right after the pump pulse at I1 spins. An interesting
phenomenon happens when the I1 pump pulse is turned off. I0

spins are gradually excited and the GS population decreases
to a steady-state value of about 96%. Compared with Fig. 2(a)
it is clear that the relaxation of I1 spins is accompanied by
the excitation of I0 spins. The two processes have similar time
constants and comparable changes of the GS population. This
indicates that the observed fast longitudinal spin relaxation
of I1 spins originates from a cross-relaxation process, or spin
flip-flops between the two spin transitions. A similar obser-
vation has been reported by Ranjan et al. from a steady-state
measurement [10]. They observed that saturated excitation at
I0 spins caused considerable excitation transfer to I1 and I−1

transitions.
To have a better understanding of the cross-relaxation

process, we turn to pump I0 or I−1 spins to see how their
relaxations influence I1 spins. The result is shown in Figs. 3(a)
and 3(b). It can be seen that the relaxation of I0 spins leads
to a clear excitation effect on I1 spins, similar to the case
in Fig. 2(b). On the other hand, the relaxation of I−1 spins
has no observable excitation effect on I1 spins. This means
that the cross relaxation does not directly occur between I1

and I−1 spins. It excludes the direct spin flip-flop mechanism
for the cross-relaxation process. In fact, considering that the
energy differences between the spin transitions are much
larger than the spin linewidth (about 20 MHz), direct spin flip-
flop between different spin transitions may contribute little to
the cross relaxation. A high-order process, like the four-spin
process that conserves the Zeeman energy, may have a greater
probability to happen and become the main mechanism for
spin relaxation.

As illustrated in Fig. 1(b), a four-spin flip-flop process
means a flop of one I1 spin and one I−1 spin accompanied
by the flip of two I0 spins [23]. Zeeman energy is conserved
during such a process. It is clear that for the four-spin process
the relaxation of I1 spins would help to polarize I−1 spins. In
order to observe such an effect we slightly modify the pump
method in Fig. 3(b). Before pumping I−1 spins we make a
prepump on I1 spins and wait until the steady state. This
introduces some excitation on I1 spins before the following

FIG. 4. Four-spin-process-mediated spin-relaxation process. A
pumping pulse is firstly applied at I1 spins. After 100 ms waiting,
the system reaches a steady state and there is about 14% of spin
excitation left in I1 spins. Then we pump I−1 spins and probe the GS
population of I1 spins as a function of the pump-probe delay. It can
be seen that the I1 spins start relaxing to the ground state mediated by
the relaxation of I−1 spins, which is consistent with the description
of the four-spin relaxation process. The red (gray) arrows label the
calculation results based on the four-spin model. The inset gives an
illustration of the pump-probe scheme.

pump-probe process. As shown in Fig. 4, right after the pump
pulse at I−1 spins, I1 spins have a GS population of about 86%
percent because of the prepump. During the relaxation of I−1

spins we do see a fast corelaxation of I1 spins and the GS
population of I1 spins increases to a steady state of about 93%.
This unambiguously demonstrates that the four-spin process
dominates the spin relaxation.

III. DISCUSSION

We employ a theoretical model to understand the four-
spin process. The four-spin process has been investigated via
a quantum statistical method as shown in Ref. [24]. Here
we directly present the deduced rate equation to describe
such a process. Details about the derivation can be found in
Appendix C and Ref. [24]. We introduce βi = 1

h̄ωi
ln Ni (−)

Ni (+) ,
(i = 1, 0, and −1) to quantify the spin excitation of the mI = i
transition, where Ni(−) and Ni(+) represent spin numbers
at the ground and excited states, respectively, and ωi is the
transition frequency for mI = i spins. The dynamics of spin
relaxation can be written as

dβ0

dt
= −W ρ,

dβ1

dt
= ω0

2ω1
W ρ,

dβ−1

dt
= ω0

2ω−1
W ρ,

(1)

where ρ = β0 − ω1
2ω0

β1 − ω−1

2ω0
β−1, and W = π

64 N−3(
√

2
�

)4

f ( μ0μ
2
B

4π
1
4 n ln N )6 is a constant determined by the spin-spin

interaction. In the expression of W , N is the total number of
spins, � is the frequency difference between the center (I0)
and the satellite (I1 and I−1) spins, n is the density of the spins,
and f is Fourier image of the spin correlation function. Details
about the derivation and discussion about W can be found in
Appendix C.
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To get the steady-state solution we may take ρ = 0. Then
we have

β0 =
(

β0
0 + ω1

ω0
β0

1 + ω−1

ω0
β0

0

)/
3,

β1 =
(

ω0

ω1
β0

0 + 5

2
β0

1 − 1

2

ω−1

ω1
β0

−1

)/
3,

β−1 =
(

ω0

ω−1
β0

0 − 1

2

ω1

ω−1
β0

1 + 5

2
β0

−1

)/
3,

(2)

where β0
i (i = −1, 0, and 1) is the initial value of βi or the

spin excitation of the mI = i transition at t = 0. We could
calculate the steady-state GS population for a given initial
condition with the above equations. As for our experiments,
we take the τ ∼ 0 data based on the measured GS population
as the initial conditions. For the spin transitions that are not
directly pumped, the initial GS populations range from 98% to
99%, which are slightly smaller than the thermal equilibrium
value due to the nonresonant excitation effect. The calculation
results are presented in Figs. 2, 3, and 4 with red (gray) arrows.

It can be seen that the calculation results are in line with
the measured steady-state GS populations. In other words,
the four-spin model can correctly predict the excitation redis-
tribution with a given initial spin excitation. The deviations
between the experimental and the calculated results could
be understood considering that the initial GS populations we
used in the calculation are slightly different than the real
situations. We may underestimate the initial spin excitation
because of two reasons. On the one hand, the pump pulses
in the experiments are relatively long compared with the
relaxation dynamics. The real initial GS population could be
smaller than the τ ∼ 0 data. On the other hand, the nonreso-
nant pump effect is not taken into account.

An interesting phenomenon related to the four-spin process
is the accelerated relaxation of I1 spins by applying a pump
at I−1 spins and vice versa, as shown in Fig. 4. The four-
spin cross relaxation is essentially the excitation redistribution
among different spin transitions. But if we are only concerned
about I1 spins, other spin transitions can be viewed as ancillas.
The phenomenon mentioned above can be considered as an
ancilla-assisted spin cooling effect, which can be used for an
efficient spin reset. This could be helpful considering the fact
that the time used for spin relaxation can be up to tens of
minutes, especially at cryogenic temperatures.

Next we briefly discuss the dynamics of the four-spin
process. Equation (2) can be reorganized as

d

dt
(−β0 + β−1/2 + β1/2) = −3

2
W (−β0 + β−1/2 + β1/2).

(3)

From the above equation one can see that the time constant for
a four-spin process is proportional to 1/W . More specifically,
based on the expression of W the dynamic of four-spin cross
relaxation is mainly determined by the total number of spins
N , the spin density n, and the energy difference between
different transitions �. The initial spin excitation influences
the cross relaxation dynamic via the Fourier image of the
correlation function f . The exact value of f is difficult to
calculate. From our experimental results f is estimated to be

on the order of 1 ms. The abovementioned theoretical model
and discussion can be immediately used in other spin systems
and hybrid quantum devices [25].

The dynamics of the observed four-spin relaxation could
have a crucial impact on other spins in diamond, e.g., electron
spins of NV centers, especially considering the emerging
applications of quantum sensing which prefers using a large
ensemble of NV centers with a considerable amount of P1
centers [26]. It has been reported that the dynamic of the
spin bath is an important source of NV electron spin decoher-
ence [27]. The four-spin cross relaxation reported here may
strongly complicate the dynamic of the spin bath, which may
reduce the coherence of NV spins. Therefore it is important to
suppress the cross-relaxation process to have better coherence
of NV spins.

IV. CONCLUSION

In conclusion, a fast longitudinal relaxation of P1 electron
spins with a time constant on the order of 1 ms is observed in
a diamond-CPW resonator hybrid quantum device. The fast
relaxation is accompanied by an excitation or relaxation of
other spin transitions. This phenomenon is understood in the
frame of a four-spin cross-relaxation process. A set of rate
equations is applied to describe the four-spin process, which
successfully reproduces the experimental data. The dynamic
of the four-spin process and its possible influence on the
coherence properties of NV electron spins in diamond are
also discussed. We propose that for some circumstances the
four-spin process can be used for efficient spin reset.
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APPENDIX A: SAMPLE, MEASUREMENTS,
AND DATA PROCESSING

The λ/2 coplanar waveguide (CPW) resonator was pat-
terned in 100-nm-thick sputtered niobium film on a 500-μm-
thick high-resist silicon substrate. The resonator has a funda-
mental resonance at ωc/2π = 4.345 GHz with a quality factor
of Q = 400. The diamond sample is a commercially avail-
able type Ib high-temperature high-pressure diamond with a
polished (100) surface. It is specified to contain a nitrogen
impurity concentration of about 200 ppm. Before the diamond
was pressed onto the resonator, the diamond was processed
with the oxygen-based inductively coupled plasma (ICP) to
remove the surface conductive layer, which may act as a loss
channel for the resonator. We found that after removing the
surface conductive layer the internal quality factor Qi of the
CPW resonator had risen from 1500 to about 59 000.

The sample was loaded into a dilution refrigerator
equipped with a magnetic coil and cooled down to a base
temperature of about 16 mK. We applied a magnetic field of
about 150 mT along the diamond’s 〈100〉 direction to bring the
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FIG. 5. Calibration of the measured transmission intensity to the
frequency shift of the VRS. Panel (a) shows one of the VRS peaks at
different pump powers. The pump tone diminished the ground-state
spin population and the VRS peaks shift correspondingly. As shown
in panel (b), for a given frequency of f = 4.401 GHz [indicated by
a red dashed line in panel (a)] we could calibrate the strength of
the transmission signal to the frequency shift. The error bars give
standard deviations of the measured data points.

spin transitions on resonance to the λ/2 mode of the resonator.
The magnetic-field-induced Zeeman splitting corresponds to
a temperature of about 208 mK. This means that the spins
can be thermally polarized to the ms = 1/2 ground state with
a fidelity of more than 99%. The time resolved transmis-
sion spectra of the device were measured with a homodyne
method. The square pulses for pump or probe purposes were
generated by the gated outputs from microwave generators.
The typical length of the pump and probe pulses was 500 μs.
Then they were attenuated by 50 dB in the fridge and sent to
the sample. A fast microwave switch was used to send only the
probe pulses to the amplifiers to prevent any possible overload
or even damage to the amplifiers by the strong pump pulses.
After amplifications, the probe signal was mixed down to
DCdc with an IQ mixer and recorded by a fast analog to digital
converter with a 1 GHz sampling rate. More than 40 min of
waiting time was used between the adjacent trails to guarantee
a complete spin relaxation.

We used a calibration method to map the measured trans-
mission intensity to the ground state (GS) population for a
given spin transition. In the strong-coupling regime, when the
spin transition frequency is aligned to the resonator frequency,
the transmission spectra of the coupled system is character-
ized by vacuum Rabi splitting (VRS), as shown in the inset
of Fig. 1(c). The splitting value gens = g

√
δN is determined

by the difference between the number of spins in the ground
state and the excited state δN . A small change of δN that
keeps the system in the strong-coupling regime will shift the
VRS peaks. Therefore we can tell the GS spin population
by measuring the VRS peak shift. As shown in Fig. 5, the
VRS peak shift can be measured by monitoring the change of
transmission intensity at a certain frequency around the split
peaks. With such a calibration process, we can get the GS spin
population by measuring the transmission intensity at a certain
frequency.

APPENDIX B: SPIN DIFFUSION AND THE
PURCELL EFFECT

The spatial inhomogeneity of the electromagnetic field is
an intrinsic character of CPW structures. As a consequence,
spin excitation through the CPW structures also suffers from

FIG. 6. The slow spin diffusion process. The residual spin exci-
tation after the four-spin relaxation process will be slowly relaxed
with a time constant of about hundreds of seconds. Such a process is
commonly known as spin diffusion out of the resonator mode region.
The error bars give the standard deviations of the data points.

spatial inhomogeneity. Such an inhomogeneous excitation
will get relaxed via the spin diffusion process. In Figs. 2 to 4,
we find that for steady states of the four-spin cross-relaxation
processes there is still a part of spins not relaxed to the ground
state. The relaxation for this part of spins will mainly take
the form of spin diffusion with a time constant ranging from
tens of seconds to hundreds of seconds. An example of the
spin-diffusion-assisted relaxation can be found in Fig. 6.

We would like to argue that the Purcell effect could be
negligible in our case. We could make a simple estimation
based on the Purcell-effect-dominated spontaneous emission
rate 
 = κ

g2

κ.2/4+δ2 , where κ is the resonator damping rate, g
is the single spin-resonator coupling strength, and δ is the
spin-resonator detuning. The resonator used in the experiment
has a loaded Q value of about 400; therefore κ/2π = f /Q is
on the order of 10 MHz, where f is the resonator frequency.
As mentioned previously, g is on the order of 10 Hz. When the
spins and the resonator are on resonance the estimated Purcell
rate is on the order of 10−4 Hz, which is much slower than the
time scale covered in the main text.

APPENDIX C: THEORETICAL DESCRIPTION
OF THE FOUR-SPIN PROCESS

The Hamiltonian of the P1 electron spins can be written as
[24]

H = H0 + H0i + Hi, H0 =
∑

n

ωn

∑
i

Sz
ni,

H0i = 1

2

∑
i j,n,n′

vzz
i j S

z
niS

z
n′ j +

∑
i j,n

v±
i j S

+
niS

−
n j,

Hi = 1

2

∑
i j

v±
i j (S

+
1iS

−
0 j + S−

1iS
+
0 j )

+ 1

2

∑
ik

v±
ik (S+

1iS
−
−1k + S−

1iS
+
−1k )

+ 1

2

∑
jk

v±
i j (S

+
−1kS−

0 j + S−
−1kS+

0 j ). (C1)
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Here H0 is the Zeeman energy of the spin ensemble, H0i

represents the z-z coupling among spins in the subsystem
mI = i, and spin flip-flop in any subsystem fulfills the energy
conservation. The last term Hi indicates a possible flip-flop
process between subsystems. Sz

ni(S
±
ni ) represents the z operator

(ladder operator) of the ith spin in subsystems n = −1, 0, and
1. vzz

i j (v±
i j ) represents the strength of dipole-dipole interaction

between two spins i and j in different components.
In order to meet the requirement of energy conservation,

this kind of process shall include at least four spins: one spin
in mI = −1, one in mI = 1, and two spins in mI = 0. Other
possible processes shall contain more spins in order to fulfill
energy conservation, which will be a higher-order process and
have lower rates.

With the method of the nonequilibrium statistical operator
of Zubarev [24,28], we can get the rate equations in the main
text by using two conditions. First, the energy differences
between the hyperfine split structures of P1 centers are about
95 MHz, or a characteristic temperature of about Tc = 5 mK.
The base temperature of our fridge is about 16 mK 	 Tc,
which would not lead to an obvious initial nuclear spin
polarization; therefore we can take N−1 = N1 = N0. Second,
we suppose ω−1 + ω1 = 2ω0; if this condition is not satis-
fied, lattice temperature has to be taken into consideration to
guarantee the conservation of the energy. Details about the
derivation can be found in Ref. [24].

As discussed in the main text, the dynamic of the four-
spin flip-flop process is mainly determined by W . From the
abovementioned derivation, W is defined as

W = π

64

1

N1

N0N0N1N−1∑
i,i′, j,k

∣∣∣∣∣
v±

i j v
±
i′ j

ω0 − ω1
+ v±

ikv
±
i′k

ω0 − ω−1

∣∣∣∣∣
2

×
∣∣∣∣∣

v±
jk

ω−1 − ω1

∣∣∣∣∣
2

[F1(δ) + F2(δ)]. (C2)

Here F1(δ) and F2(δ) are Fourier images of two spin correla-
tion functions,

f1(t ) = 〈S−
0iS

−
0i′S

+
1 jS

+
−1kS+

0i (t )S+
0i′ (t )S−

1 j (t )S−
−1k (t )〉

〈S−
0iS

−
0i′S

+
1 jS

+
−1kS+

0iS
+
0i′S

−
1 jS

−
−1k〉

,

f2(t ) = 〈S+
0iS

+
0i′S

−
1 jS

−
−1kS−

0i (t )S−
0i′ (t )S+

1 j (t )S+
−1k (t )〉

〈S+
0iS

+
0i′S

−
1 jS

−
−1kS−

0iS
−
0i′S

+
1 jS

+
−1k〉

,

(C3)

and δ = ω−1 + ω1 − 2ω0 is the energy change of a four-spin
flip-flop event. In our case here δ = 0. We take some approx-
imation to simplify the expression of W . It is reasonable to
use the averaged interaction strength among spins in different
subsystems, we can take v = v±

i j = v±
i′ j = v±

jk = v±
ik = v±

i′k . To
rewrite the expression of W we take f = [F1(δ) + F2(δ)] and
� = ω1 − ω0 = ω0 − ω−1; therefore we have

W = π

64
N3

(
2

�

)2( 1

�

)2

f v6. (C4)

In previous discussion, we have neglected the inhomo-
geneous broadening of the spin linewidth. Here we make
a simple discussion on the influence of the inhomogeneity

and argue that it has a minor effect on our theoretical
model. As mentioned in the main text we use the constant
W to represent the rate of the spin cross relaxation. From
Eq. (C4) we know that W is proportional to the energy
difference � to the power of −4. Suppose the inhomo-
geneously broadened spin profile has a Gaussian distribu-

tion of P(Ei|E0
i , σ ) = 1√

2πσ 2
exp− (Ei−E0

i )2

2σ2 , where σ is the spin

linewidth, and E0
i is the center frequency of mI = −1, 0,

and 1 spins. Then in the expression of W we have 〈 1
�4 〉 =∫ Ei+4σ

Ei−4σ
dEi

∫ Ej+4σ

Ej−4σ
dEjP(Ei )P(Ej )(Ei − Ej )−4. There is a cut-

off for the reciprocal integration. In our experiment the
spin linewidth is about 20 MHz. It yields σ = 20/2.335 =
8.6 MHz, leading to a result of 〈 1

�4 〉 = 1.47 × 10−8. When
not considering the inhomogeneous broadening, we have
the mean energy difference � = 95 MHz, leading to 1

�4 =
1.22 × 10−8. Comparing the value of 〈 1

�4 〉 and 1
�4 , we know

that the spin diffusion process should be faster considering
the inhomogeneous broadening. Also because of the minor
difference between these two results, we can safely neglect the
inhomogeneity of the spin profile in the following discussion
for simplicity.

We could further derive the expression of v. Considering
two spins separated with a distance r and an angle θ , the
interaction strength v can be written as

v = μ0μ
2
B

4π

1

4

1

r3
(1 − 3 cos2 θ ). (C5)

For simplification we abort the polar angle θ but, using an
average spin-spin distance, then we have

v = μ0μ
2
B

4π

1

4

〈
1

r3

〉
. (C6)

Considering the three-dimensional distribution of the
spins, 〈 1

r3 〉 can be written as

〈
1

r3

〉
= 1

N

∑ 1

r
=

∫ R

r0

N

4πR3/3
4πr2dr

1

r3

= 3

R3

∫ R

r0

dr

r
= 3

R3
ln

R

R/N1/3

= 1

R3
ln N = ln N

N/n
, (C7)

where N is total number of spins and n is the
spin density. Therefore we could write W as W =
π
64 N−3(

√
2

�
)4 f ( μ0μ

2
B

4π
1
4 n ln N )6, which is the expression in

the main text.
Equations (1) in the main text are in the form of a first-order

ordinary differential equation ẋ(t ) = Ax(t ), where the matrix
A has two eigenvalues equal to 0 and one nonzero eigenvalue.
This implies that there should be two invariants and one
dynamical process. By taking ρ = 0, the steady-state result
can be obtained.
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