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Continuous-variable entangled states of light carrying orbital angular momentum
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The orbital angular momentum of light, unlike spin, is an infinite-dimensional discrete variable and may
hence offer enhanced performances for encoding, transmitting, and processing quantum information. Hitherto,
this degree of freedom of light has been studied mainly in the context of quantum states with definite number
of photons. On the other hand, field-quadrature continuous-variable quantum states of light allow implementing
many important quantum protocols not accessible with photon-number states. Here, we realize a scheme based
on a q-plate device for endowing a bipartite continuous-variable Gaussian entangled state with nonzero orbital
angular momentum. We then apply a reconfigurable homodyne detector working directly with such nonzero
orbital angular momentum modes in order to retrieve experimentally their entire quantum-state covariance
matrix, thus providing a full characterization of their quantum fluctuation properties. Our work is a step towards
generating multipartite continuous-variable entanglement in a single optical beam.
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I. INTRODUCTION

Accessing high-dimensional effective Hilbert spaces is
crucial for implementing complex quantum information (QI)
tasks. The continuous-variable (CV) encoding provides a
convenient possible approach to this purpose, as it spans
an inherently infinite Hilbert space and it naturally allows
quantum communication and processing with larger alphabets
[1,2]. This approach is often investigated within quantum
optical platforms, by using optical field quadratures as the
variables.

Gaussian bipartite entanglement in optical CV QI is com-
monly generated by means of below-threshold optical para-
metric oscillators (OPOs), which exploit either spatial sepa-
ration or polarization, i.e., spin angular momentum (SAM),
as distinguishing degree of freedom (d.o.f.) [3–6]. It would
be, however, highly desirable to move towards CV multi-
partite entanglement. This goal could be possibly sought
by introducing additional discrete degrees of freedom with
which labeling CVs, that is by adopting what can be termed a
“hybrid discrete-continuous-variable” strategy to carrying out
QI. Eventually, a single degree of freedom can be exploited,
in case it is associated with multiple orthogonal modes. Mul-
tipartite CV entanglement has been for example pursued by
exploiting frequency domains in pulsed systems [7–10] or by
combining the outcome of a number of single mode squeezing
sources [11]. These approaches may also lead to other inter-
esting outcomes, such as CV hyperentanglement [12].

Another possible route for implementing such a strategy
is by using transverse modes of a single optical beam as
additional discrete d.o.f. Transverse optical modes, and in
particular those carrying orbital angular momentum (OAM),
have been the subject of much research in quantum optics,
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recently. In particular, OAM can conveniently provide a large
set of orthogonal modes within a single optical beam, as
demonstrated in a number of experiments in which high-
dimensional Hilbert spaces and entanglement have been
achieved [13]. However, this research focused mainly on “dig-
ital” photon-number quantum optics [14,15], while not much
has been done hitherto by combining CV quantum optics and
OAM.

An indirect proof of Gaussian CV entanglement between
OAM modes has been first reported by Lassen et al. [16],
specifically by showing quantum squeezing of a first-order
Hermite-Gaussian (HG) mode that corresponds to a bal-
anced superposition of two opposite-OAM (±1) Laguerre-
Gaussian (LG) modes. A similar approach, i.e., the mea-
surement of quadrature squeezing of first-order HG modes,
has been adopted by Liu et al. [17] to demonstrate exper-
imentally the first hyperentangled CV state. However, both
these works demonstrated directly only the squeezing of the
OAM-superposition HG modes. A complete characterization
of OAM-mode CV entanglement, that for Gaussian states
amounts to measuring the full covariance matrix of the two
entangled modes [18], has been hitherto missing.

In the work reported here, we endow a pair of cross-
polarized CV entangled modes with nonzero OAM, thus
realizing multi-d.o.f. CV entanglement with the two entangled
modes labeled by both SAM and OAM. Then, we use a
spatial-mode-reconfigurable homodyne detector [19] to mea-
sure directly the quadratures of various linear combinations
of the two entangled CVs, thus enabling us to reconstruct
their full covariance matrix (CM). In this way, we provide a
complete and direct characterization of such a SAM-OAM CV
entanglement. The paper also contains a detailed discussion
on the operative procedure for data analysis that allows one
checking the compatibility of the measured state with the state
one expects from the generation method and source parameter
as well as the influence of the SAM to OAM conversion.
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FIG. 1. Schematic of the experimental setup. An internally
frequency-doubled Nd:YAG pumps an OPO based on an α-cut
PPKTP type-II crystal that generates a pair of frequency-degenerate
orthogonally polarized modes. The OPO [23] oscillation threshold
is ≈ 70 mW and it is operated at ≈ 70% of the threshold value. The
yellow shadowed area (bottom-left inset) including two quarter-wave
plates (QWP1 and QWP2), a q-plate (qP), and a half-wave plate
(HWP) represents the optical setup for manipulating the SAM and
OAM d.o.f. of the entangled beam. A similar set of optical compo-
nents is placed along the LO path for effective OAM homodyning
(dark orange shadow). The bottom-right inset shows an enlarged
view of the homodyne detector.

The paper is organized as follows. In Sec. II we describe,
briefly, how the OAM carrying entangled state is obtained
starting from the entanglement source, a type-II OPO. More-
over, we discuss the main features one expects to detect in the
resulting light field. In Sec. III we illustrate the data analysis
procedure and the main experimental results. The following
Sec. IV is devoted to a discussion of the compatibility of
the measured state with the known generation and detection
parameters. Finally, in Sec. V some conclusions are drawn.

II. ENTANGLEMENT GENERATION
AND OAM MANIPULATION

Optical beams for which photons carry a definite amount
of OAM correspond to the so-called “helical modes” of
light, i.e., paraxial light beams characterized by a helical
phase factor eimϕ , where ϕ is the azimuthal angle around the
propagation axis z and m is an integer. An optical vortex
with topological charge m is then present on axis, where the
phase is undefined and the light intensity vanishes (doughnut
beams) [20,21]. In these modes, the ratio between OAM and
energy fluxes along the optical axis is m/ω, where ω is the
optical frequency. In other words, each photon within the
beam carries mh̄ of OAM along the propagation direction.
Quantum states |m〉, describing individual photons whose
spatial structure is that of a helical mode, are orthogonal and
span an infinite-dimensional Hilbert space.

In our experiment (see Fig. 1 for the setup layout and
some technical details), the initial quantum source is a

standard type-II phase-matching OPO generating Gaussian
bipartite entangled states [22]. The phase matching is ad-
justed to a degenerate condition [23], so that the two beams
have the same frequency, corresponding to a wavelength of
1064 nm. The entangled modes emerge from the OPO as two
cross-linearly polarized continuous-wave (cw) copropagating
beams, both having a Gaussian transverse profile (TEM00),
i.e., with vanishing OAM. Let us label as H (V ) the horizontal
(vertical) linear polarization of the modes generated by the
OPO.

OAM is imparted to the two modes generated by the OPO
by using a device commonly known as “q-plate” (qP) [24].
Essentially, a q-plate is a thin layer of birefringent liquid
crystal, sandwiched between containing glasses, and whose
optic axis is structured into a singular pattern with topological
charge q, the latter being an integer or half-integer number.
The total birefringent phase retardation δ can be controlled
electrically [25]. Using a quantum notation, the optical action
of a q-plate can be simply described by a unitary operator Q̂
defined as follows:

Q̂kL,mQ̂† = cos
δ

2
kL,m + i sin

δ

2
kR,m+2q,

Q̂kR,mQ̂† = cos
δ

2
kR,m + i sin

δ

2
kL,m−2q, (1)

where k is the generic electromagnetic mode operator and
(A, m) labels a mode with OAM m (in units of h̄) and polar-
ization A = L, R, with L (R) standing for left (right) circular
polarization. The radial structure of the beam is also affected
by the qP, but we omit it in our notation for brevity (all modes
having the same |m| also have the same radial structure). From
Eq. (1) it is seen that a qP couples circular polarization to
OAM: for the optimal retardation δ = π , a single circularly
polarized beam passing through the qP reverses its polariza-
tion and acquires ±2q quanta of OAM. In our experiment we
wish to use the same qP for both beams generated by the OPO,
which have orthogonal linear polarizations. Therefore, we first
transform these two linear polarizations into circular, by using
a quarter-wave plate (QWP1, in Fig. 1) whose axes are rotated

by 45◦ with respect to the H/V basis so that kV
QWP1−−→ ikR

and kH
QWP1−−→ kL (with no OAM variation). Next, the cross-

polarized pair of CV entangled beams, now having opposite
circular polarizations, pass through the qP, thus inverting
their polarization handedness and simultaneously acquiring
opposite OAM values (see the bottom-left inset in Fig. 1). In
our experiment the qP has q = 1/2, so that the acquired OAM
is m = ±1. At the output of the qP, the two entangled modes
are still copropagating and can now be distinguished both by
polarization (L/R) and OAM (±1).

Let us now discuss the quantum fluctuation and correlation
properties of these two modes. A subthreshold OPO is known
to generate a pair of modes in a Gaussian quantum state
(GS) [18]. The quantum properties of such two-mode GS
are described by the canonical field quadrature operators R =
(Xa,Ya, Xb,Yb), where the subscripts a and b label the two
modes and Xk = (âk + â†

k )/
√

2 and Yk = (âk − â†
k )/(i

√
2),

with âk (â†
k) the annihilation (creation) operator. The GS itself

is completely characterized by the vector of mean values for
Xk and Yk and, most importantly, by their CM. The CM σ

012321-2



CONTINUOUS-VARIABLE ENTANGLED STATES OF LIGHT … PHYSICAL REVIEW A 100, 012321 (2019)

of a bipartite GS is a real symmetric and positive-definite
4×4 matrix whose elements are defined as σi j = 1

2 〈{Ri,Rj}〉 −
〈Ri〉〈Rj〉, with {h, g} = hg + gh.

At the output of a type-II OPO crystal, given the sym-
metry of its Hamiltonian [26], the state we expect is a pure
two–mode squeezed state characterized by a single squeezing
parameter r. In principle, if a photon is born in one mode, its
twin populates the other mode of the pair. This implies that the
total energy of the state is symmetrically distributed between
the two entangled modes. The CM relative to such twin-beam
state, in the basis (Xa,Ya, Xb,Yb), is in the so-called standard
form

σS =

⎛
⎜⎝

m 0 c1 0
0 m 0 c2

c1 0 n 0
0 c2 0 n

⎞
⎟⎠, (2)

with c1 = −c2 = sinh(2r) and n = m = cosh(2r), due to the
symmetry of the Hamiltonian, and �σ = 1 (pure-state con-
dition). All the relevant criteria for classifying the bipartite-
state quantum properties can be written in terms of the CM
elements [27], so that its knowledge allows for deducing
information about the separability or entanglement of the
state.

The knowledge of the physical process that gives rise to
the measured quantum state allows one to make certain a
priori assumptions, to be verified once data are analyzed.
The two OPO modes travel together, in a single beam, and
all subsequent optical elements are not expected to affect
their symmetry significantly. Therefore, any residual state
asymmetry in the measurement outcome can be ascribed
to experimental imperfections and statistical fluctuations of
the working condition during the acquisition time. To be
compatible with our generation and detection scheme, the
measured matrix should hence descend from a pure symmetric
twin-beam state which has undergone symmetric losses. As
a consequence, we expect, at the end of the data analysis, a
matrix compatible with the form of Eq. (2), representing a
bipartite entangled state whose losses are compatible with the
level of optical losses estimated off-line for our setup.

Let us now label the pair of modes at the OPO output as
(a, b) [6]. The initial two-mode quantum state is HV polarized
and has vanishing OAM, so it can be denoted as aH,0, bV,0.
The GS fluctuation properties (as given by the CM) are
known to be preserved under linear optical transformations.
Therefore, the action of the QWP1 and qP yields the following
transformation:

(aH,0, bV,0)
QWP1+qP−−−−→ (iaR,1,−bL,−1). (3)

At this stage, the resulting bipartite state has acquired an
additional d.o.f. for distinguishing the two subsystems a and
b, namely OAM, in addition to polarization (or spin). Here
polarization and OAM play the role of mode labels and so they
are referred to as distinguishability d.o.f. We are interested in
studying the mutual correlation properties in phase space, i.e.,
studying the fluctuation in the field quadratures, of these two
modes.

III. DATA ANALYSIS AND STATE CHARACTERIZATION

In order to characterize the quantum properties of this
multidistinguishable CV entangled pair, we wish to apply
the single homodyne scheme discussed in Ref. [28]. This, in
turn, requires homodyne modes a, b as well as the following
auxiliary linear-combination modes:

c = a + b√
2

, d = a − b√
2

, e = ia + b√
2

, f = ia − b√
2

.

(4)

In Ref. [6], these auxiliary modes could be easily obtained
from the (a, b) pair by combination of waveplates and polar-
izing beam splitters (also exploiting the frequency degeneracy
of the two modes). However, we now have the additional
OAM d.o.f. and the two modes a and b have opposite values of
OAM, which makes the task of creating their linear combina-
tions much harder. To overcome this problem, we exploit the
qP polarization-control properties for generating the modes
c, d, e, and f at the output of the qP (see Fig. 1). First, by
turning the QWP1 so that its H or V axes coincide with H/V ,

we have aH
QWP1−−→ aH and bV

QWP1−−→ ibV . At the qP output we
then obtain

aH,0 = aL,0 + aR,0√
2

qP−→ i
aL,−1 + aR,1√

2
,

ibV,0 = bL,0 − bR,0√
2

qP−→ i
bR,1 − bL,−1√

2
. (5)

Then, grouping for the same polarization and OAM state
and neglecting global phase factors, we obtain cR,1 = aR,1+bR,1√

2

and dL,−1 = aL,−1−bL,−1√
2

. c and d modes are assigned to two
opposite OAM modes and circular polarizations. Similarly,
by removing the QWP1 altogether, so that the H/V linear-
polarized entangled modes enter directly the qP, we obtain

aH,0 = aL,0 + aR,0√
2

qP−→ i
aL,−1 + aR,1√

2
,

bV,0 = −i
bL,0 − bR,0√

2

qP−→ bR,1 − bL,−1√
2

. (6)

Hence, at the qP output, we now have eR,1 = iaR,1+bR,1√
2

and

fL,1 = iaL,1−bL,1√
2

. i.e., modes e and f , again in the circular
polarization basis and with opposite OAM.

The characterization scheme requires that we homodyne
these six modes. A homodyne detector relies on the inter-
ference of the optical signal under scrutiny with a strong
(coherent) local oscillator (LO). Thus we have designed a LO
branch that generates a coherent optical field in the (H,±1)
mode, i.e., horizontally polarized and with OAM = ±1. The
homodyne interference is therefore designed to take place
directly in the OAM state. The H polarization of the LO is
selected because it is the working polarization of the homo-
dyne beam splitter (BS). Before the homodyne interference,
a second QWP (QWP2 in Fig. 1) is hence used to revert the
polarization state of any mode pair to be characterized from
the L/R to the H/V basis, while leaving the OAM unchanged.

QWP2 is oriented so that (R, 1, L,−1)
QWP2−−→ (V, 1, H,−1). A

final half-wave plate (HWP) and a polarizing beam splitter
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(PBS) in front of the homodyne BS allows one to select
which of the modes effectively reaches the detection stage (see
Fig. 1). A similar setup, composed of two QWPs (QWP3 and
QWP4 in Fig. 1) and a second qP, tailors the LO to the desired
[H,±1] state. The homodyne visibility routinely obtained is
0.97 ± 0.01.

The overall detection efficiency includes photodiodes’
quantum efficiency, homodyne visibility, and losses at the
photodiodes’ uncoated windows. The total collection effi-
ciency has to take into account also the cavity output coupling
and the qP transmission. All these factors lead to an overall
collection efficiency of 0.52 ± 0.03. We note that the reduc-
tion in the collection efficiency due to the OAM endowing
scheme (waveplates and qP) can be calculated by comparing
the above value of 0.52 with the value of 0.63 reported in
Ref. [27]. The additional losses introduced by the elements
involved in the entanglement manipulation scheme (wave-
plates and qP) are, then, 0.175. These losses could probably
be reduced to <0.05 by simple technical improvements, such
as adding antireflection coatings to the qP. Despite the losses,
the measured CM corresponds to an entanglement level that is
sufficient to realize a CV quantum teleportation protocol [29].

Experimentally we have acquired quadrature traces for
the six modes (a, b, c, d, e, f ). Data have been analyzed to
retrieve the state CM.

There is a physical constraint on the validity of this single
homodyne method. The system must be stationary. The source
has to produce the same state, within the experimental errors,
for the whole acquisition time windows. This is not just a tech-
nical request. The idea of measuring auxiliary modes requires
that the expectation values and variances for the quadrature
operators of the original pair of modes are constant during the
acquisition time needed for scanning all the involved modes.

To have a continuous monitoring of the stationary require-
ment, the data acquisition system panel calculates, for each
homodyne trace, the average photon number of each of the
six measured modes. This quantity is proportional to the
variance of data acquired over a 2π scan of the generalized
quadrature, independent of the type of Gaussian state being
measured. This simple relation allows one to roughly monitor
the stability of the state during the whole acquisition process.
The six modes required for reconstructing the CM are saved
only if they show the same average photon numbers, within a
few percent tolerance.

A. Gaussianity test

The CM is in a one-to-one correspondence with the density
matrix of the state if and only if the state is Gaussian,
where Gaussianity is defined by the Gaussian condition on
its Wigner function [18]. A Gaussian Wigner function implies
that homodyne data recorded at a fixed angle, physically
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FIG. 2. Histogram of the values obtained for the kurtosis relative
to all the 700 quadrature marginal distributions used in the data
analysis. Each data set, corresponding to a single detected mode, is
partitioned into 100 phase bins each containing a marginal distribu-
tion of 10 000 points. The mean of the kurtosis distribution is 3.01
with a standard deviation of 0.05, thus confirming that the quadrature
marginal distributions are Gaussian and so are the corresponding
field states.

corresponding to the marginal distribution related to a sin-
gle generalized quadrature operator, are Gaussian distributed
[18,30]. At the same time, the OPO Hamiltonian, bilinear
in the field-mode operators, preserves the Gaussianity of the
underlying stochastic processes [31,32] even if it has been
proven that, close to the oscillation threshold, some non-
Gaussian effects, connected to usually negligible nonlinear
terms that come into play, may appear [33,34]. The data pre-
sented in this paper actually correspond to an OPO working at
0.7 × Pth, a regime that is surely Gaussian.

To experimentally verify this assumption, each single-
mode data set undergoes a Gaussianity test. The kurtosis, i.e.,
the fourth-order moment, is calculated for all the marginal
distributions obtained dividing each 2π scan into 100 phase
intervals. In Fig. 2 we report the histogram of kurtosis calcu-
lated for all 700 marginal distributions corresponding to the
whole data set recorded for the six modes used for retrieving
the CM reported below, plus the shot-noise acquisition. As
it can be seen, the average value is 3.01 with a standard
deviation of 0.05, where 3 is the kurtosis expected for a Gaus-
sian distributed variable. We note that in Ref. [33] systematic
deviations from Gaussianity with kurtosis as high as ∼3.5
have been found.

B. Experimental covariance matrix

A typical obtained experimental covariance matrix is

⎛
⎜⎜⎝

0.61 ± 0.02 0.00(4) ± 0.02 0.29 ± 0.02 −0.01 ± 0.02
0.00(4) ± 0.02 0.61 ± 0.02 0.00(5) ± 0.02 −0.23 ± 0.02

0.29 ± 0.02 0.00(5) ± 0.02 0.60 ± 0.02 0.00(2) ± 0.02
−0.01 ± 0.02 −0.23 ± 0.02 0.00(2) ± 0.02 0.60 ± 0.02

⎞
⎟⎟⎠, (7)
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FIG. 3. Graphic representation of the covariance matrix given
in Eq. (7). The nonzero elements outside the main diagonal are a
signature of quantum correlation between pairs of quadratures of
modes carrying different OAM.

in which all elements consistent with zero are reported with
the highest significant digit given in parentheses. The matrix is
written in the basis (XaH,1 ,YaH,1 , XbV,−1 ,YbV,−1 ) and the normal-
ization is such that the shot-noise variance is 0.5. This matrix
is consistent with a quantum state that has suffered 47% of
losses [27], in very good agreement with the 0.52 ± 0.03
estimated collection efficiency of the detection setup. This
conclusion is based on the a priori assumption that the CM
matrix must be symmetrical for the a ↔ b exchange and that
the small measured asymmetries arise only from experimental
fluctuations. The same matrix is graphically reported in Fig. 3.

In order to prove that this matrix witnesses genuine quan-
tum correlations and represents an entangled CV bipartite
Gaussian state, we used the Peres-Horodecki-Simon (PHS)
[35–37] and the Duan [38] unseparability criteria. Using Eqs.
(14)

n2 + m2 + 2|c1c2| − 4
(
nm − c2

1

)(
nm − c2

2

)
� 1

4 (8)

and (20) √
(2n − 1)(2m − 1) − (c1 − c2) � 0 (9)

in Ref. [27] we found the measured state to be entangled with
a high statistical significance (�8σ ) for both criteria. The
above criteria for entanglement are necessary and sufficient
only if the state is Gaussian as in this case. In our case,
the left-hand sides in Eqs. (8) and (9) are 0.51 ± 0.03 and
−0.31 ± 0.04, respectively.

IV. PHYSICAL STATE AT THE CRYSTAL

As already mentioned, the state generated by the OPO is
characterized by a single squeezing parameter, and this should
constrain the relative CM to take the particular symmetrical
form given in Eq. (2) with n = m and c1 = −c2. Conversely,
a nonsymmetric process may generate a CM that depends
on a pair of single-mode squeezing parameters, instead of

one, allowing for a more general CM matrix with n 
= m
and c1 
= −c2. Experimental imperfections and measurement
fluctuations however always introduce small deviations from
the above conditions, by introducing some degree of asym-
metry. By reconstructing multiple CMs, we verified that
these deviations are not systematic [6,27,39,40]. We test the
degree of symmetry of our as-measured CMs by checking
that the following conditions are verified: nmeas − mmeas <

2(�mmeas + �nmeas) and |c1,meas| − |c2,meas| < 2(�c1,meas +
�c2,meas), where in these equations �x denotes the stan-
dard deviation of the variable x. Only those matrices for
which these conditions are satisfied are used for the sub-
sequent analysis, while the others are discarded. Once a
measured CM matrix is accepted, before using it for further
analysis, we erase the unsymmetrical fluctuations by setting
in Eq. (2) c1 = −c2 = (|c1,meas| + |c2,meas|)/2 and m = n =
(mmeas + nmeas)/2. The resulting matrix is called σsymm.

At this stage we have two possible approaches for opera-
tively retrieving the total loss that has affected the bipartite
system so as to arrive at the state as it is generated inside
the crystal. While it is clear that the state that would be, in
the case, available for realizing quantum information tasks
that would exploit the OAM features is the one at the q-plate
output, the analysis of the ancestor state is a useful mean to
certify that the generation, the manipulation, and the detection
methods are all consistent with their physical description.

We here discuss and compare the above-mentioned ap-
proaches to obtain, by the measured CM, a measure of the
total loss imparted by the system.

A first approach is to use the symmetric CM matrix itself
to look for the loss level that allows one to obtain (by inverse
transformation, see Eq. (8) in Ref. [41] for details) a pure state
at the crystal output and then compare it with the expected loss
level.

A second approach, which in our opinion has the advantage
of allowing for a double check of self-consistency, is offered
by the measuring scheme itself. The auxiliary modes c, d, e,
and f are individually single-mode squeezed states that suf-
fered losses [22]. Tracing them back onto squeezed pure states
yields a direct estimation of the loss level they suffered. Then,
by averaging these values, we obtain a reliable estimate for the
transmission factor T , following the same approach employed
in Ref. [27]. Eventually, the CM of the ancestor bipartite pure
two-mode squeezed entangled state can be calculated by the
following expression [18]:

σ0 = 1

T

(
σsymm − 1 − T

2
I
)

, (10)

where I is the 4 × 4 identity matrix.
Let us apply this second method to the experimental CM

given in Eq. (7). We see that this is a matrix in the form of
Eq. (2), within the experimental errors. The measured values
for m = 0.61 ± 0.02 and n = 0.60 ± 0.02, and c1 = 0.29 ±
0.02 and c2 = −0.23 ± 0.02, are equal within two standard
deviations, so they fulfill the above introduced symmetry
condition. We then erase the residual asymmetries, due to ex-
perimental imperfections, by setting the two pairs of elements
equal to their average values (averages are calculated by using
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one more significant digit), obtaining

σS =

⎛
⎜⎝

0.61 ± 0.02 0 0.26 ± 0.02 0
0 0.61 ± 0.02 0 −0.26 ± 0.02

0.26 ± 0.02 0 0.61 ± 0.02 0
0 −0.26 ± 0.02 0 0.61 ± 0.02

⎞
⎟⎠. (11)

The average losses calculated from single modes are 47%
(Tσ = 0.53) so that the CM of the ancestor state matrix is

σ0 =

⎛
⎜⎝

0.70 0 0.48 0
0 0.70 0 −0.48

0.48 0 0.70 0
0 −0.48 0 0.70

⎞
⎟⎠. (12)

The above matrix is physical and represents a twin-beam state
whose purity is 0.99 ± 0.03.

The error on the purity of the ancestor state is obtained by
performing a Monte Carlo procedure in which each matrix
element is randomly extracted 105 times from a Gaussian dis-
tribution centered on its experimental value and with standard
deviation given by its experimental uncertainty. Each time the
obtained covariance matrix is symmetrized and the ancestor
matrix calculated for T = 53%, according to the procedure
described above. For each so calculated matrix we then extract
the purity

μ = 1

4
√

Det(σ )
. (13)

The set of 105 values of the purities, whose histogram is given
in Fig. 4, has been then statistically analyzed for calculating
its mean and standard deviation. We note that extracting
from a Gaussian distribution the matrix elements can lead to
unphysical results, i.e., μ > 1, but, the distribution variance
being sufficiently small with respect to the range of validity
of μ itself, the use of a Gaussian distribution is still valid
[42]. The average over 105 samples gives the mentioned result
μ = 0.99 ± 0.03.

These results confirm that the outlined procedure, although
it may look complex and articulated, is consistent with both
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FIG. 4. Histogram of the purity μ [see Eq. (13)] for the re-
constructed pure states obtained from the Monte Carlo statistical
analysis. The average of the distribution is 0.99 with a standard
deviation of 0.03. The distribution median is at 0.966.

the physics underlying the experiment and the particular
experimental conditions. We also recall that the indepen-
dently evaluated level of losses, taking into account detection
efficiencies, cavity coupling efficiency, optical loss at the
uncoated q-plate, and residual optical losses of the differ-
ent optical components required for OAM manipulation and
detection scheme, corresponds to T = 0.52 ± 0.03, which is
fully compatible with Tσ = 0.53 obtained from the above data
analysis.

From the measured CM, it is also possible to retrieve the
joint photon number probability p(n; m) (reported in Fig. 5)
of the pure state generated in the crystal [18,39]. It represents
the probability of having exactly m photons in mode b and n
photons in mode a. For a pure two-modes squeezed state, only
diagonal terms are nonzero. This is a clear signature that the
system is in a twin-beam state: every time a photon populates
mode a a twin one is certainly in mode b.

V. CONCLUSIONS

In conclusion, we have demonstrated the generation
and complete experimental characterization of a bipartite
continuous-variable entangled state endowed with nonzero
OAM. In particular, we have completed an experimental
derivation of the full covariance matrix of the two helical
modes, via measurement of the quadrature field correlations of
various linear combinations of the generated modes. Although
the experiment reported here concerns bipartite systems, the

0123
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n 0 1 2 3 4
m
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FIG. 5. Joint photon number probability distribution p(n; m) of
the pure twin-beam state generated inside the crystal. This state
propagates all the way down to the homodyne detector and, after
collection and detection losses, is represented by the CM given by
Eq. (7).
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use of OAM has the potential for generating multipartite quan-
tum states exploiting a hybrid discrete-continuous-variable
encoding, all within a single optical beam. This, in turn, could
for example enable the multiplexing of multiple correlated
quantum channels within a single optical channel. Indeed,
a q-plate acts as a beam splitter in the infinite-dimensional
OAM space, thus opening the door to entangling many pairs of
copropagating orthogonal modes in a cascaded configuration.
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