
PHYSICAL REVIEW A 100, 012311 (2019)

Decoding the three-dimensional toric codes and welded codes on cubic lattices

Abhishek Kulkarni and Pradeep Kiran Sarvepalli
Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600 036, India

(Received 6 January 2019; published 8 July 2019)

Recent years have seen a growing interest in quantum codes in three dimensions (3D). One of the earliest
proposed 3D quantum codes is the 3D toric code. It has been shown that 3D color codes can be mapped to 3D
toric codes. The 3D toric code on a cubic lattice is also a building block for the welded code which has the
highest energy barrier to date. Although well known, the performance of the 3D toric code has not been studied
extensively. In this paper we propose efficient decoding algorithms for the 3D toric code on a cubic lattice with
and without boundaries and report their performance for various quantum channels. We observe a threshold of
�12% for the bit flip errors, ≈3% for the phase flip errors, and 24.8% for the erasure channel. We also study the
performance of the welded 3D toric code on the quantum erasure channel. We did not observe a threshold for
the welded code over the erasure channel for the parameters we simulated.

DOI: 10.1103/PhysRevA.100.012311

I. INTRODUCTION

Three-dimensional (3D) toric codes are an important class
of topological codes. Kubica et al. showed that 3D color codes
can be mapped to copies of 3D toric codes [1]. Aloshious et al.
showed 3D color codes can be projected onto 3D toric codes
[2]. These results highlight the importance of 3D toric codes.
For instance, 3D color codes can be decoded via 3D toric
codes. The computational power of 3D color codes becomes
portable to 3D toric codes through code switching. The 3D
toric code on the square lattice (with boundaries) is a building
block for the welded code proposed by Michnicki [3]. The
welded code is particularly interesting because it has the
highest known energy barrier to date. Furthermore, Siva et al.
showed that the memory time of the welded code is doubly
exponential in inverse temperature [4].

In some realistic quantum channels, there is an asymmetry
in the bit flip and dephasing errors [5]. Considerable benefits
can be obtained by taking such asymmetry into account [6].
These results suggest that the asymmetric error correcting
capability of the 3D toric code for bit flip and phase flip errors
could be exploited in quantum channels where the bit flip and
phase flip errors occur with different probabilities.

In this paper we are interested in studying the performance
of 3D toric codes over various quantum channels. Although
3D toric codes are among the earliest known quantum codes,
their performance has not been studied extensively.

Our work on the 3D toric code was also motivated in
the context of the welded code, which is a 3D quantum
code built from many copies of the 3D toric code on a
cubic lattice [3]. While the welded code was proposed as a
candidate for quantum memory, it is not self-correcting. This
motivates another problem we study in this paper: efficiently
decoding the welded code. As the welded code is composed
of 3D toric codes, it is natural to try to decode the welded
code by decoding the component 3D toric codes. This is
another reason why we seek to decode the 3D toric code
efficiently.

Our contributions are as follows:
(i) First, we propose efficient decoders for the 3D toric

code over the bit flip channel and the phase flip channel. With
our decoding algorithms we obtain a threshold of about 12%
for the bit flip channel, and ≈3% for the phase flip channel.
These results build on the work of Dennis et al. [7] and Wang
et al. [8]. After the completion of this work we came to
know of a result by Duivenvoorden et al. [9] who proposed
a renormalization decoder which gives a threshold of 17.2%
for the bit flip channel.

(ii) Second, we propose a decoding algorithm for the 3D
toric code over the quantum erasure channel (QEC). This
extends the work of Delfosse et al. [10] on 2D toric codes to
3D. We obtained a threshold of 24.8% for the quantum erasure
channel. This is very close to the bond percolation threshold of
the cubic lattice [11] suggesting that the proposed algorithm’s
performance is almost optimal.

(iii) Third, we propose an efficient decoder for the welded
toric codes over QEC. For the welded code we did not observe
a threshold over the quantum erasure channel for the lengths
and the range of channel error rate we simulated.

The 3D toric code is a Calderbank-Shor-Steane (CSS)
code [12] in which X and Z errors can be corrected inde-
pendently. However, as mentioned earlier, it has asymmetric
error correcting capabilities for the bit flip and phase flip
errors, hence, decoding them independently entails the use of
different decoders.

From [7] it is implicit that a combination of the matching
decoder used for 2D toric codes and a generalization of the
Toom’s rule can lead to a decoder for the 3D toric code on
the cubic lattice for independent Pauli errors. To elaborate,
errors on the 3D toric code share some aspects with the 2D
toric codes on the one hand and the 4D toric codes on the
other.

The phase errors are stringlike and we use a decoder based
on matching. In the case of a 3D toric code with boundaries,
the matching algorithm must be modified to account for them.
We adapt the algorithm proposed in [8] for 2D toric codes.

2469-9926/2019/100(1)/012311(18) 012311-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.100.012311&domain=pdf&date_stamp=2019-07-08
https://doi.org/10.1103/PhysRevA.100.012311

KULKARNI AND SARVEPALLI PHYSICAL REVIEW A 100, 012311 (2019)

This decoder is applicable to all 3D toric codes for phase flip
errors.

The bit flip errors are like surfaces. We use a local decoder
based on Toom’s rule for classical 2D memories. Cellular
automata decoders based on this rule have been proposed for
the 4D toric code [7,13] and studied in Ref. [14]. Our decoder
is an adaptation of Toom’s rule to 3D in the presence of
boundaries. While our decoder is inspired by Toom’s rule, as
are the 4D decoders, it is deterministic unlike Ref. [7] and uses
multiple rules unlike Ref. [13]. It is also capable of correcting
errors which are not corrected by a straightforward adaption
of Toom’s rule.

We also look at the quantum erasure channel which models
the situation where qubits are lost or leaked. There are also
multiple other physical scenarios where errors can be modeled
by an erasure channel [15]. Classically, the erasure channel is
studied extensively, not only because it is analytically more
tractable, but also because of the insights it provides.

In recent years, many researchers have turned their atten-
tion to the quantum erasure channel [16–19]. Delfosse et al.
proposed a maximum likelihood decoder for surface codes
over the erasure channel [10]. We provide a linear algebraic
perspective on this decoder which could be of independent
interest. We build upon this decoder and propose a decoding
algorithm for 3D toric codes over the QEC. The erasure
decoding problem can also be reduced to decoding the bit flip
and phase flip errors separately. For the correction of phase
flip errors we use the approach proposed in [10]. However,
our implementation of the decoder takes a slightly different
perspective. In the case of bit flip errors occurring under QEC,
we propose a different algorithm.

Finally, we consider the welded code. Previous works have
focused on the memory time of the welded codes. In his
thesis [20] Michnicki proposed a decoder (for phase errors)
to analyze the memory time of the welded codes, but no
numerical studies were undertaken. Under this decoding the
code may not have threshold. Brell also noted that the welded
code does not have a phase transition [21].

We propose a decoding algorithm for the welded code
using the 3D toric code decoder as a component. The 3D toric
code decoder cannot be used as is because the 3D toric codes
constituting the welded code are not independent but share
some qubits. Our algorithm appropriately decouples them and
decodes the welded code. We did not observe a threshold for
the welded codes (in the range we simulated).

The rest of the paper is organized as follows. We review
the necessary background in Sec. II. In Sec. III we present
the decoders for the 3D toric code for the bit flip and phase
flip errors. In Sec. IV we propose a decoder for the 3D toric
code over the quantum erasure channel. In Sec. V we study
the performance of the welded codes over QEC. Finally, we
conclude in Sec. VI with a brief discussion on the scope for
future work.

II. BACKGROUND

In this section we give a self-contained review of 3D toric
codes [22] and welded codes [3]. We assume the readers are
familiar with stabilizer codes [12,23].

FIG. 1. (a) 3D toric code with periodic boundary. (b) Solid code,
i.e., 3D toric code with boundaries; also shown is X , the logical X
operator. (c) Consider the shaded (partial) cube. Stabilizer generator
of one face is dependent. It is shown in blue (dark shade); also shown
is Z , the logical Z operator, in bold. (d) Dependency among vertical
face operators in a stack of cubes shown in blue (dark shade). (e)
Solid code in the dual lattice; also shown is X (f) Z in dual lattice.

A. 3D toric codes

Consider a (cubic) lattice � in 3D. Qubits are placed on
edges of � and for each vertex v we define an X type operator
called the vertex operator

SX
v =

∏
e∈δv

Xe, (1)

where δv is a collection of edges incident on v. For each face
f we define a Z type operator called the plaquette operator

SZ
f =

∏
e∈∂ f

Ze, (2)

where ∂ f is a collection of edges in the boundary of f . The 3D
toric code defined on � is the stabilizer code whose stabilizer
is generated by SX

v and BZ
f where v and f run over all vertices

and faces of �, respectively.
Consider a cubic lattice in 3D, as in Fig. 1(a). Under

periodic boundary conditions all the vertex operators are of
weight six and all face operators are of weight four. The 3D

012311-2

DECODING THE THREE-DIMENSIONAL TORIC CODES … PHYSICAL REVIEW A 100, 012311 (2019)

toric code with periodic boundary conditions encodes three
logical qubits [22].

We can introduce boundaries by allowing for half-edges
as shown in Fig. 1(b). Unlike the 3D toric code on a cubic
lattice with periodic boundary conditions, here all the vertex
operators are not of the same weight. Some vertex operators
are of either weight four or five instead of six, as can be seen
in Fig. 1(c). Again, in contrast to the periodic cubic lattice, all
face operators are of not same weight. Some face operators
are of weight three instead of four, as can be seen in Fig. 1(c).
The collection of half-edges on the top form a rough boundary.
Similarly, the half-edges on the bottom form another rough
boundary. This code has been termed solid code in [3] and
encodes one logical qubit. For completeness we include this
computation.

The total number of qubits n(�) in a solid code on a cubic
lattice of side �, as shown in Fig. 1(a), is

n(�) = 3�3 + 5�2 + 3� + 1. (3)

All the vertex operators are independent. They are �(� +
1)2 in number. On the other hand, there are many dependen-
cies among the face operators. All the operators on faces with
half-edges are independent. They are 4�(� + 1) in number.
Next, observe that the operator associated with a horizontal
face is dependent, see Fig. 1(c) for an illustration. This leaves
only the vertical face operators. There are 2�(� + 1)2 such
operators.

Consider all the vertical faces in one stack of cubes as
shown in Fig. 1(d). The product of all the respective face
operators is identity which gives us one more dependency.

There are �2 number of stacks of cubes in solid, hence �2

number of such dependencies. Thus there are 2�(� + 1)2 −
�2 = 2�3 + 3�2 + 2� independent face operators. Totally,
there are s(�) = 3�3 + 5�2 + 3� independent stabilizer gener-
ators, thus the solid code encodes n(�) − s(�) logical qubits.

As mentioned earlier, the solid code is asymmetric in its
error correcting capabilities. The Z distance of the code is
� + 1, see Fig. 1(b), while the X distance is (� + 1)2, see
Fig. 1(c). Thus the solid code on a cubic lattice of size � is
a [[n(�), 1, � + 1]] quantum code.

In correction of X errors we use the dual lattice of solid
code. The dual lattice is obtained by one to one mapping of
vertices to lattice cubes, edges to faces, faces to edges, and
lattice cubes to vertices. Two vertices are adjacent in the dual
lattice, denoted �∗, if their preimages share a face in the
original lattice. In the dual lattice qubits are associated with
faces, X stabilizers with cubes, and Z stabilizers with edges.
Dual lattice of the 3D toric code in Fig. 1(c) is shown in
Fig. 1(f). The logical X operator can be visualized as a surface
in the dual lattice.

B. Welded codes

Motivated by the problem of quantum memory, Michnicki
proposed a new type of code construction for CSS codes
called welding. Using this method he welded 3D toric codes to
obtain the welded 3D toric code which has the largest known
energy barrier. (This code was termed welded solid code in
[3]. Throughout this paper we shall refer to this code as the
welded toric code or simply the welded code.)

We briefly review this construction and the 3D welded toric
codes. We explain welding through a simple example. Let S1

and S2 be stabilizers of two codes. (These are 2D toric codes
with boundaries.) Let X i and Zi be the associated encoded
operators for the ith code:

S1 =

⎡
⎢⎢⎣

X I X X I
I X X I X
Z Z Z I I
I I Z Z Z

⎤
⎥⎥⎦,

S2 =

⎡
⎢⎢⎣

X I X X I
I X X I X
Z Z Z I I
I I Z Z Z

⎤
⎥⎥⎦,

[
X 1

Z1

]
=

[
I I I X X
Z I I Z I

]
,

[
X 2

Z2

]
=

[
I I I X X
Z I I Z I

]
.

The first step of welding is to identify w qubits from each
code and consider them to be the same. Suppose that the
fourth and fifth qubit of S1 is identified as the first and second
qubit of S2, respectively. After identification combine S1 and
S2 as shown below:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X I X X I
I X X I X
Z Z Z I I
I I Z Z Z

X I X X I
I X X I X
Z Z Z I I
I I Z Z Z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now we can see that all generators of S1 and S2 do not form
a commutative set and all of them cannot be included to form
another stabilizer.

Welding is a method to combine the generators so that
we obtain a commutative group. Two types of welding are
possible.

(i) Z weld: Extend the stabilizer groups Si by including
Zi. This leads to new stabilizer codes with zero encoded
qubits. Then retain all the X type stabilizer generators after
extending them to act on all the qubits. Denote this set by
SX

w . Add all the Z type generators which commute with the
X type generators. Then we include all the Z type stabilizers
of Si which commute with SX

w , after suitably extending them.
Noncommuting Z type operators are modified to obtain a
generator which commutes with all of SX

w . Finally, the operator
obtained by modifying the logical Z operators is promoted to
a logical operator.

(ii) X weld: The converse of Z weld, where Z type gener-
ators are retained and X type generators merged.
In the context of toric codes, X weld and Z weld are also
referred to as smooth and rough welds, respectively.

We illustrate the Z weld with our running example. Adding
the logical operators to Si and identifying the qubits gives the

012311-3

KULKARNI AND SARVEPALLI PHYSICAL REVIEW A 100, 012311 (2019)

following set of operators:

S′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X I X X I
I X X I X
Z Z Z I I
I I Z Z Z

X I X X I
I X X I X
Z Z Z I I
I I Z Z Z

Z I I Z I
Z I I Z I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

Then keep all the X type stabilizers and the Z type sta-
bilizers which commute with the X type stabilizers of
S1 and S2. The (extended) Z type generators of S1 and
S2 which commute with the X type generators in S′ are
ZZZIIIII, IIIIIZZZ, IIZZZZII . (Operators on the welded
qudits are in bold.) The noncommuting stabilizer operators
IIZZZIII and IIIZZZII get welded to form IIZZZZII .

The logical Z operators of the welded code are obtained by
modifying the component logical Z operators. More precisely,
the Z logical operators of the component codes ZIIZIIII
and IIIZIIZI are combined to form ZIIZIIZI , the Z logical
operator of the welded code. Hence, the new code has the
stabilizer Sw given as

Sw =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X I X X I I I I
I X X I X I I I
I I I X I X X I
I I I I X X I X
I I Z Z Z I I I
I I I Z Z Z I I
I I Z Z Z Z I I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

Either X 1 or X 2 (appropriately extended) can be viewed as
the logical X operator of the welded code:

Lw =
[

I I I X X I I I
Z I I Z I I Z I

]
. (6)

As mentioned earlier, in Z weld, X type stabilizers do
not change in weight. The Z type stabilizer generators which
anticommute with the X type generators get welded and their
weight increases, as does the weight of the logical Z operators.

Welding as we described is mostly specific to toric codes,
details about welding in general and additional technical
conditions can be found in [3,24].

Welding can be performed with multiple stabilizer codes.
By repeatedly performing welding, the weight of the logical
operators is increased for the welded code. By properly choos-
ing the number of times to weld the 3D toric codes, Ref. [3]
obtained codes with higher energy barrier. A higher energy
barrier ensures an increase in memory time.

We show two examples of welding of 3D solid code.
In the first example, shown in Fig. 2, bold lines represent
welded qubits and the curved line connecting them represent
the weld, which means connected bold edges collectively
represent the same qubit. Rough weld is done here, which
means Z stabilizers at rough boundary get welded. It is also

FIG. 2. Welding of three solid codes. Thick edges correspond
to welded qubits. Connected thick edges represent the same welded
qubit. Also shown are the logical operators: Z (which is Z type) and
X (which is X type). Welded code parameters are [[3n(�) − 4(� +
1)2, 1, O(3�)]], where n(�) is given in Eq. (3).

shown in Fig. 2 that the logical Z operators of the component
3D toric code get welded, whereas X remains unchanged up
to the stabilizer of the welded code.

In Fig. 2 three solid codes are welded together. Welding is
done in two places, top and bottom rough boundary. The num-
ber of boundary qubits in the bottom and top rough boundary
each is (� + 1)2. In the bottom rough boundary we have
3(� + 1)2 qubits before welding. After welding we have only
(� + 1)2. Similarly for the top rough boundary. Therefore, the
total number of qubits after welding is 3n(�) − 4(� + 1)2.

In the next example we show how solid codes stacked are
above each other and welded. In Fig. 3 all the dotted and
curved lines represent the weld. Also, the bottom and top
rough boundary are welded together.

Figure 3 shows solid codes welded along two directions. To
get higher energy barrier welding solid codes stacked along
two directions as in Fig. 3 is not enough. We need to weld
solid codes along all three directions, x, y, and z.

Let R be the number of solid codes stacked in each direc-
tion and then welded together by Z weld. And each solid code
is � qubits wide and � = O(R2). The total number of solid
codes welded are R3 and the number of qubits in each solid
code is n(�). Next we will calculate the number of qubits in
welded code as done in the example, Fig. 2. Welded code with

FIG. 3. Welded code showing welding of four solid codes.
Welded code parameters are [[4n(�) − 5(� + 1)2, 1, O(4�)]], and
n(�) is given in Eq. (3).

012311-4

DECODING THE THREE-DIMENSIONAL TORIC CODES … PHYSICAL REVIEW A 100, 012311 (2019)

R solid codes in each direction will have R + 1 number of
places of weld. In the bottommost and topmost welds, R2 solid
codes are welded together and the remaining R − 1 welds 2R2

solid codes are welded together. The total number of qubits in
welded code is

nw(�) = R3n(�) − (� + 1)2(2R2 − 2)

− (R − 1)(2R2 − 1)(� + 1)2

= R3n(�) − (� + 1)2(2R3 − R − 1). (7)

In solid code the weight of X and Z stabilizers do not
change with code length. In the case of welded code, the
weight of welded Z stabilizers changes; compared to solid
code it increases by R2. This means the weight of welded Z
stabilizers increases with length. But weight of unwelded Z
and all X stabilizer does not change with length.

In solid code (minimum) weights of X and Z logical
operators are �2 and �, respectively. As a rough weld does
not change the X logical operator its weight remains the same
in welded code. The weight of Z logical operator changes
to O(R3�) = O(�5/2). The distance of the welded code is
min{�2, �5/2} = �2. In [24] it was shown that welding of
stabilizer codes with zero encoded qubits will lead to welded
code with zero encoded qubits. Before welding we converted
stabilizer codes to code with zero encoded qubits by including
Z in the stabilizer set. This leads to a welded code with zero
encoded qubits. Lastly, the welded Z operator is promoted
back to the logical operator, giving one encoded qubit. Hence
welded code parameters will be [[R3�3, 1, �2]], where R =
O(

√
�). In passing, we note that it was shown in [3] that

the 3D welded code has an energy barrier O(�). If n is the
length of the code, then the welded code has parameters
[[n, 1, O(n4/9)]] and its energy barrier is O(n2/9).

III. DECODING 3D TORIC CODE FOR PHASE
AND BIT FLIP ERRORS

As the 3D toric code is a CSS code, we can decode the
bit flip and phase flip errors separately. We focus on the 3D
toric code with boundaries. Towards the end of the section we
discuss how the decoder needs to be modified for the toric
code with periodic boundary conditions. We end this section
with simulation results of the toric code with boundaries.

A. Correction of phase errors

In this section we show how to correct the phase errors. The
structure of phase errors in the 3D toric codes is similar to that
of Z or X errors on the 2D toric codes. So decoding schemes
used for 2D toric codes can be adapted for the 3D toric codes.
The easier case is when the toric code has periodic boundary
conditions. In this case every phase error violates an even
number of vertex type checks and the errors can be identified
with a collection of paths that terminate on these vertices
whose checks are violated. We can then use the minimum
weight perfect matching algorithm to find the most likely error
as in the case of the 2D toric codes.

With the introduction of boundaries as in the present case,
we have an additional challenge. When there is a single phase
error on any qubit other than the qubits on rough boundaries,

0
0

0

1

(a) (b)

1

1 1

2

3

FIG. 4. (a) Phase errors. They are shown in color (bold) edges
and corresponding nonzero syndromes by filled circles. (b) Creating
an auxiliary graph K (bold) for the error pattern in (a). Vertices of K
are the nonzero syndrome nodes of (a) and boundary nodes for each
nonzero syndrome. Edge between a pair of vertices of K is weighted
according to the shortest path connecting them. The minimum weight
perfect matching algorithm is run on this graph.

exactly two checks are violated and two nonzero syndromes
created. When there is an error on a rough boundary qubit,
then only one nonzero syndrome is formed, see Fig. 4(a). An
odd number of nonzero syndromes can be observed in the
presence of boundaries.

Note that the perfect matching algorithm requires an even
number of nonzero syndromes, so it cannot be used directly.
Even if there are an even number of syndromes if the perfect
matching algorithm were used without any modifications, it
cannot correct the errors on the boundary qubits. We adapt
the algorithm proposed in [8] for 2D codes. We discuss this
algorithm next.

Errors on the 3D toric code can be identified with paths
in the lattice. We allow the paths to contain half-edges, i.e.,
qubits on the boundary. Three cases arise. They are illustrated
in Fig. 4(a).

(i) A path that terminates on two nonboundary qubits.
Such a path flips exactly two checks. These checks are also
the end points of the path.

(ii) A path that terminates on one boundary qubit and a
nonboundary qubit. Such a path flips exactly one check. The
violated check is an end point of the path.

(iii) A path that terminates in two boundary qubits. In this
case the path does not flip any check. This corresponds to an
error with zero syndrome.

To apply the matching algorithm we construct an auxiliary
graph K whose vertex set is the set of vertices with nonzero
syndrome. Between any pair of nonzero syndrome nodes we
add an edge whose weight is the shortest distance between
the two nodes, i.e., the number of edges in the shortest
path between the nodes. We add a boundary node for every
vertex in K with nonzero syndrome. The edge connecting the
vertex to the corresponding boundary node has the weight of
the shortest path connecting the node to the boundary. See
Fig. 4(b) for illustration. This allows the minimum weight
perfect matching algorithm to find a path that involves the
boundary qubits. We also add edges of zero weight between
the boundary qubits. This will account for the case when the
error does not involve the boundary qubits. The perfect match-
ing algorithm will find a matching among the boundary nodes.

012311-5

KULKARNI AND SARVEPALLI PHYSICAL REVIEW A 100, 012311 (2019)

Algorithm 1. Decoding phase errors on solid code [8].

Input: Syndrome for a phase error on the solid code.
Output: Error estimate.
1: Let sv be the syndrome on vertex v

2: Construct a graph K whose vertex set is the set of vertices with
sv �= 0.

3: for v with sv �= 0 do
4: for u �= v and su �= 0 do
5: Find Puv the shortest path from u to v.
6: Let duv be the number of edges in Puv

7: Add an edge (u, v) in K with weight duv

8: end for
9: Add a new vertex v′ to K.

10: Find the shortest path to the boundary from v.
11: Let dvv′ be the number of edges in the shortest path.
12: Add an edge connecting v and v′ in K with weight dvv′

13: end for
14: Form a complete graph on all the boundary nodes with each

edge weight zero.
15: Find the minimum weight perfect matching on K.
16: Return the error corresponding to the matching as the error

estimate. Ignore edges among boundary nodes.

These edges can be ignored when forming the associated
error estimate. The graph K will always contain a minimum
weight perfect matching. The complete procedure is given in
Algorithm 1. Note that the matching algorithm is a polynomial
time algorithm.

B. Correction of bit flip errors

In this section we propose a local decoder for the bit flip
errors. It is helpful to view the 3D toric code in dual lattice, see
Fig. 1(f). Now the qubits are on faces and the Z type checks
are on the edges. Errors correspond to faces and the syndrome
is nonzero on the edges which form the boundary of the error.
In standard 3D toric code with periodic boundary conditions,
nonzero syndromes will show up as cycles only. However, in
the presence of boundaries the nonzero syndromes can show
up as a collection of cycles and paths. This is illustrated in
Fig. 5.

x

y

z
(a) (b)

FIG. 5. Bit flip errors (in the dual lattice). Qubits in error are
shown shaded. Nonzero syndromes are shown in solid color lines. (a)
An error whose syndrome is a closed string. It involves only interior
qubits. (b) Errors whose syndromes are open strings. They involve
boundary qubits.

FIG. 6. Illustration of Toom’s rule. The gray cells indicate where
the bits are one (zero) while the remaining unshaded cells take the
complementary value of zero (one). The configurations on the right
are obtained by applying Toom’s rule to one of the cells in the left
configuration. Toom’s rule is applied to the cell marked by circles
with outgoing edges.

(i) Errors only on the interior qubits, i.e., those not on
rough boundary. In this case nonzero syndromes form a closed
boundary, see Fig. 5(a).

(ii) If there is an error on the boundary qubits, then the
syndrome is nonzero on an open string. Two such strings are
shown in Fig. 5(b).

The decoder for 3D code is motivated by Toom’s rule
for classical 2D memories. The classical memory consists
of a (periodic) square lattice with bits on every face. As
per Toom’s rule, a cell is flipped if the neighboring cells on
the north and east have a different value. Thus, the decoder
takes the majority value of the bits in these three cells. The
rule is applied to each cell from right to left and top to
bottom. We show application of Toom’s rule by an example in
Fig. 6.

This rule has been adapted for qubits in the context of the
4D toric code in [7,13]. In the quantum version we look at
the syndrome on the north and east boundaries and flip the
qubit if they are both nonzero. Reference [7] also made the
rule probabilistic.

We illustrate the quantum version of Toom’s rule to an error
pattern on xz plane in solid code by an example in Fig. 7. For
the error pattern in Fig. 7(a) we get nonzero syndromes on the
boundary of the error as shown in Fig. 7(b). We apply the rule
sequentially to all the cells in the lattice. At each cell we apply

012311-6

DECODING THE THREE-DIMENSIONAL TORIC CODES … PHYSICAL REVIEW A 100, 012311 (2019)

(a) (b) (c)

FIG. 7. Illustration of quantum version of Toom’s rule. (a) Initial
error pattern. (b) Nonzero syndromes (in bold). (c) Nonzero syn-
dromes pattern after applying the rule to one cell.

the north-east rule. In Fig. 7(c) we show change in the nonzero
syndrome pattern after application of the rule on one cell.

Reference [14] showed that there are certain error patterns
in 4D toric code which cannot be corrected using the algo-
rithm in [7]. These patterns are persistent in spite of repeated
application of Toom’s rule. A few such patterns are illustrated
in Fig. 8.

Error patterns shown in Fig. 8 are invariant under Toom’s
rule. In order to correct these error patterns we introduce
multiple rules instead of just one. If Toom’s rule was modified
to consider north and west boundaries, then we can see that the
error pattern in Fig. 8(a) can be corrected. However, the error
pattern in Fig. 8(b) cannot be corrected by this modification.
We need to consider yet another rule which looks at the south
and east boundaries.

The failure of a single rule is overcome by considering
an alternate pair of boundaries of the cell. We are therefore
naturally led to the idea of multiple local update rules. We
propose to apply these rules sequentially. More precisely, this
means we first iterate with a particular local rule and see if the
error pattern is corrected. If it is corrected, then we stop the
decoder, otherwise we change the rule and run the decoder
again. We repeat this process until all the rules are exhausted.
Since a face in the 3D toric code can have at most four edges
in its boundary, we can choose six pairs of edges to base
Toom’s rule.

Label the edges as n, e, s, w for the edges on the north,
east, south, and west. Then for a pair of edges αβ ∈
{ne, es, sw, wn, ns, ew}, we apply Z error to the qubit if
α and β edges have a nonzero syndrome. For the boundary
qubits without four edges, we ignore the rules involving the
missing edges. We repeat this process for a fixed rule (i.e.,
fixed αβ) for all the qubits according to some fixed sequence
σ . For instance, we can go over all the planes parallel to xy
plane followed by planes parallel to yz and zx planes, and in

(a) (b) (c)

FIG. 8. Some error patterns where the quantum version of
Toom’s rule fails. (The rule looks at the north and east boundaries.)

(a) (b)

(c) (d)

FIG. 9. Illustration of the bit flip error decoder. Axes are oriented
as in Fig. 5. (a) Initial error pattern with nonzero syndromes. (b) After
updating qubits parallel to yz plane. (c) After updating qubits parallel
to xy plane. (d) After updating qubits parallel to yz plane.

each plane left to right and top to bottom. Figure 9 illustrates
how multiple rules can be applied to correct an error.

Unfortunately, there are error patterns which cannot be
corrected even with multiple rules. One such error pattern is
shown in Fig. 5(b). Such errors need to be addressed sepa-
rately. These errors are characterized by nonzero syndrome
which is not updated with the application of the rules. This
happens when of the two edges being considered by the rule
at most one edge has a nonzero syndrome. If a qubit has just
one nonzero syndrome in its boundary then Toom’s rule does
not update the error estimate. The nonzero syndrome in its
boundary must be cleared by the application of Toom’s rule
on its neighboring qubits. We can see that the error pattern in
Fig. 5(b) will not be corrected for this reason.

An error that cannot be corrected by all these local rules
has a nonzero syndrome that is collection of strings. Each of
these strings is parallel to either x or z axes or topologically
equivalent to them. One such error is shown in Fig. 5(b).

Each such string partitions the xz plane containing the
string into two sets. Flip all the qubits in the smaller set. (This
is not optimal, improvements are possible.) The complete
listing is given in Algorithm 2.

We empirically observed that for the decoder to clear all
nonzero syndromes, value of Imax = �

2 and that of Jmax = �.
Decoder for the suggested values of Imax and Jmax we observed
that decoder clears all the syndromes. And increasing the
Imax and Jmax will not further improve the performance. This
is shown in Fig. 12 for � = 16 linear length solid code.
Heuristically this argument leads to complexity of the decoder
to be O[�2n(�)] which is O(�5). Since n(�) is O(�3), the
complexity of the decoding algorithm is O(n5/3). The time

012311-7

KULKARNI AND SARVEPALLI PHYSICAL REVIEW A 100, 012311 (2019)

Algorithm 2. Decoding X errors on solid code.

Input: Syndrome s, for an X error on the solid code, maximum
number of iterations Imax and Jmax.

Output: Error estimate E .
1: Let E = I
2: while s �= 0 or i < Imax do
3: for αβ ∈ {ne, es, sw, wn, ns, ew} do
4: while s �= 0 or s < Jmax do
5: for each qubit q in a fixed sequence σ do
6: Flip the qubit if there is nonzero syndrome
7: on the edges specified by αβ.
8: Update error estimate E = EXq

9: Update syndrome on the edges of q.
10: end for
11: end while
12: end for
13: end while
14: if s �= 0 then
15: for each string κ parallel to x or z axis do
16:
 = {qubits in the xz plane containing κ}
17:
κ = {qubits in
 to the left of κ}
18: Flip the qubits in smaller of the sets
κ,
 \
κ

19: Update the error estimate and syndrome.
20: end for
21: end if

complexity of the algorithm can be reduced by parallelizing
in lines 5–10.

C. Simulation results

In this section we report the performance of the decoders
for 3D toric code with boundary. Ohno et al. estimate the
threshold for phase errors to be 3.3% [25]. Takeda et al.
conjecture the thresholds of the 3D toric code for the phase
and bit flip errors to be 3.46% and 23.27%, respectively [26].

The matching decoder on the phase flip channel gives a
threshold �2.9%, see Fig. 10. Algorithm 2 gives a threshold
�12% on the bit flip channel, see Fig. 11. The effect of Imax

and Jmax are shown in Fig. 12. Recall from Algorithm 2 that
Jmax is the number of times a given rule is applied while Imax

is the number of times one round of application of all the rules

0.02 0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036 0.038 0.04
Phase error rate

10-5

10-4

10-3

10-2

10-1

100

Lo
gi

ca
l e

rr
or

 r
at

e

n = 1296 (= 7)
n = 11296 (= 15)
n = 22440 (= 19)
n = 39216 (= 24)

FIG. 10. Performance of Algorithm 1 for phase errors on the 3D
toric code with boundaries.

0.1 0.105 0.11 0.115 0.12 0.125 0.13
Bit flip error rate

10-4

10-3

10-2

10-1

100

Lo
gi

ca
l e

rr
or

 r
at

e

n = 1296 (= 7)
n = 11296 (= 15)
n = 22440 (= 19)
n = 39216 (= 24)

FIG. 11. Performance of Algorithm 2 for bit flip errors on the 3D
toric code with boundaries.

each Jmax times. As we increase the number of times we iterate
the rules, the performance increases until Jmax = �. It appears
that Imax, the number of times we need to cycle through all the
rules, is �/2.

After the completion of this work we came to know of
the result by Duivenvoorden et al. [9] who proposed a renor-
malization decoder which gives a threshold of 17.2% for the
bit flip channel. It is a soft decision decoder in contrast to
our proposal which is a hard decision decoder. Our algorithm
could potentially have a somewhat simpler implementation
because it is not required to perform any such arithmetical
computations. Asymptotically, we expect the decoder in [9]
to be faster than ours but for small and medium lattices, our
algorithm could be provide some advantages in run time. Our
algorithm does not require any modification for lattices of ar-
bitrary sizes. The decoder as described in Duivenvoorden et al.
was for hypercubic lattices of size 2N + 1. Some additional
modifications maybe required before it could be extended to
lattices of arbitrary size.

IV. DECODING 3D TORIC CODE OVER THE QUANTUM
ERASURE CHANNEL

In this section we propose a decoder for the 3D toric code
over the quantum erasure channel. First we reformulate the

0.11 0.112 0.114 0.116 0.118 0.12 0.122 0.124 0.126 0.128 0.13
Bit flip error rate

10-2

10-1

100

Lo
gi

ca
l e

rr
or

 r
at

e

Imax= 5,Jmax=8
Imax = 8,Jmax=8
Imax = 8,Jmax = 10
Imax = 8,Jmax = 16
Imax = 16,Jmax = 16

FIG. 12. Effect of Imax and Jmax for solid code of size � = 16
for various values of Imax and Jmax. We observed that the decoder
shows little or no improvement in performance beyond Imax = �/2
and Jmax = �.

012311-8

DECODING THE THREE-DIMENSIONAL TORIC CODES … PHYSICAL REVIEW A 100, 012311 (2019)

erasure decoding algorithm [10] in linear algebraic terms and
Tanner graphs. This will be useful for decoding erasures on
other classes of quantum codes. We then consider the case
the 3D toric code on the cubic lattice with periodic boundary
conditions. Then we discuss the modifications when there are
boundaries.

A. An iterative decoding algorithm for erasures on CSS codes

Recall that in the erasure channel a qubit is erased with
probability p and left as is with probability 1 − p. Letting ρ

be the state of the qubit, this channel can be modeled as

E (ρ) = (1 − p)ρ + p|κ〉〈κ|, (8)

where |κ〉 is a state orthogonal to the computational state
space.

We replace each erased qubit by a qubit in the state I/2
and measure the stabilizer generators. This has the effect of
projecting a Pauli error on each erased qubit uniformly at
random. We call these Pauli errors erasure induced errors.

Let E be the set of erased qubits, and E be the induced
Pauli error on the erased qubits. Denote by SE the stabilizers
with support entirely in E . The (erasure) decoding problem is
to estimate an error consistent with the syndrome s and whose
support is entirely in E . More precisely, we need to estimate
the coset ESE which is most likely given the syndrome s.
Delfosse et al. showed the following result in [10].

Proposition 1 (Delfosse: et al. [10]). Given an erasure
pattern E , and a measured syndrome σ , any coset of a Pauli
error E (i) with support in E and (ii) consistent with the
measured syndrome is a most likely coset.

We can also represent E as an element in F2n
2 . We decom-

pose the error as E = (a|b) where e is the X component and
f is the Z component of E . Let S ∈ F(n−k)×2n

2 be the stabilizer
matrix of the code; the code is assumed to be CSS:

S =
[

H 0
0 T

]
. (9)

The syndrome of E = (a|b) ∈ F2n
2 is given by

H (b|a)t =
[

Hbt

Tat

]
=

[
σ

τ

]
. (10)

The syndrome for phase errors is given by σ = Hbt and the
syndrome for bit flip errors by τ = Tat . Denote the restriction
of H to the qubits in E by HE . Since the unerased qubits suffer
no errors we have aĒ = bĒ = 0. This implies that HĒbt

Ē = 0
and TĒat

Ē = 0. Therefore, the decoding problem reduces to
solving the following system of equations:

HEbt
E = σ, (11)

TEat
E = τ. (12)

These systems of linear equations can be efficiently solved.
We are more often interested in a decoder of linear time
complexity. For this purpose it helps to look at these linear
systems of equations closely. Since these systems of equations
arose in the context of an actual error, they are consistent and
have at least one solution. The following cases can arise.

(i) E does not support any stabilizer or logical operator. In
this case the error estimate is unique.

(ii) E supports a stabilizer but does not support any logical
operator. In this case any error estimate consistent with the
syndrome is equivalent to the actual error up to a stabilizer.

(iii) E supports a logical operator. A stabilizer generator
may or may not be supported. In this case there is one or more
logical operators in the support of E .

By Proposition 1, all errors on the erased qubits are equally
likely, hence there is at least a 50% chance of a decoding
error in the last case. One might as well ignore this case.
We can do no better than randomly choosing any one of the
possible errors consistent with the syndrome. In the first and
second case any estimate that is consistent with the observed
syndrome is a correct estimate. In the first case the solution is
unique while in the second case, the system of linear equations
has multiple solutions.

So we shall focus on decoding correctly in the first two
cases. Delfosse et al. [10] solved this problem for the 2D
surface codes. Their algorithm is optimal and has linear time
complexity.

For the 3D toric codes, this algorithm can be used for
correcting the phase errors, i.e., for solving the system of
equations corresponding to HEbt

E = σ , but not for the X er-
rors, i.e., the system of equations corresponding to TEat

E = τ .
Clearly these equations can be efficiently solved using

Gaussian elimination. However, we seek a more efficient
algorithm. To this extent we shall exploit the structure of
the equations a little more. It will hopefully give a slightly
different perspective on the results of [10].

First, notice that in a system Ax = y if any of the equations
contain only one variable, those equations can be solved
very easily. The variables in those equations can then be
substituted in the remaining equations to obtain a reduced
system of equations. We can repeat this process until there
are no more equations with exactly one variable. At this point
every equation contains two or more variables. If the system
has a nonzero kernel, then we are able to set some subset of
variables to arbitrary values and solve for the rest.

Assume that every variable occurs in two or more equa-
tions. Suppose that Az = 0, then x + z is also a solution to
Ax = y. Thus for all i in the support of z, there is a solution
with xi = 0 or xi = 1. Therefore, we can choose xi as a free
variable and set it zero in the system of equations. This
gives a smaller system of equations and if any single variable
equations are created we solve for those variables, otherwise
we find another variable in the support of the kernel and set it
to zero and repeat this process.

The bottom line of this approach is that first we find a
syndrome which is incident only on one erased qubit. In this
case the measured syndrome is completely explained by the
erased qubit incident on it. In linear algebraic terms, we need
to solve for an equation with exactly one variable. Once this
variable is found, it is to be updated in other equations where
it appears. This process is called peeling and similar to the
peeling decoding of classical low density parity check codes
over the binary erasure channel.

If we find that all check nodes are incident on two or more
erased qubits, then we set the error on one of the erased
qubits to identity. Such qubits must be in the support of a

012311-9

KULKARNI AND SARVEPALLI PHYSICAL REVIEW A 100, 012311 (2019)

Algorithm 3. Peeling decoder for erasures.

Input: Set of erasures E , Tanner graph TE defined on HE , and
syndrome (E).

Output: Error estimate for qubits in E ′ ⊆ E , unresolved erasure
set F = E \ E ′ and (updated) syndrome (F).

1: E ′ = ∅ and T = TE .
2: while there is check c of degree one do
3: E ′ = E ′ ∪ {q} �q is the qubit connected to c
4: eq = sc �eq is the error on qubit q
5: Delete c from T .
6: Update syndrome for all check nodes v incident on q, i.e.,

set sv = sv + xq.
7: Delete q and the edges incident on q in T
8: end while
9: Return eq for all q ∈ E ′, TF = T and syndrome (F).

stabilizer (or logical operator) for estimates consistent with
the syndrome. We call this process freezing. We say a qubit is
frozen if the error estimate on it is (arbitrarily) set to identity.
In linear algebraic terms stabilizers and logical operators in
with support in the erased qubits are elements of the kernel of
the system of equations under consideration.

We denote the parity check matrix restricted to the set of
qubits in E as HE . The checks incident on qubits in E are
denoted by δ(E). We also denote the syndromes on these
checks by syndrome (E). The complete peeling procedure is
listed in Algorithm 3.

Remark 1 (Limitations of peeling). In some cases it is pos-
sible that after peeling, the syndrome remains nonzero for
some checks and no check is connected to exactly one erased
qubit. In this case we can solve the (remaining) system of
equations which is likely to be much smaller than the original
system of equations.

In the case of toric code, it is possible to work on the
original lattice on which the code is defined instead of the
associated Tanner graph. The Tanner graph picture is useful
when considering other classes of codes. In Algorithm 4 we
show how to decode a CSS code for phase flip errors.

Remark 2 (Variations). In Algorithm 4, freezing is per-
formed prior to peeling. However, it is not necessary to freeze
in this fashion. One could perform in an alternating fashion,
freezing only when it is not possible to peel. One variation is
shown in Algorithm 5.

Remark 3 (Decoding X errors induced by erasures). For
correcting X errors, Algorithm 4 or 5 can be used but with the
input, TE instead of HE , and X syndromes τ instead of σ . The
algorithm returns estimate x such that TExt = τ .

B. Decoding erasures on the 3D toric code

The process of freezing and peeling has a simple graphical
interpretation in the case of the toric codes. Furthermore, the
process of freezing can be performed first. In the case of phase
errors, HE is exactly the vertex-edge incidence matrix of the
erased edges and the checks incident on erasures. Further-
more, the elements of the kernel HE are precisely the cycles of
the lattice formed by erasures. One qubit per cycle is frozen. In
[10], this process amounts to finding a spanning forest of the

Algorithm 4. Decoder for phase flip errors induced by erasures
on CSS codes.

Input: Stabilizer matrix HE , erasure set E , and syndromes σ .
Output: Estimate z consistent with measured syndrome σ , i.e.,

HEzt = σ ,
1: F = E
2: Construct Tanner graph TF based on HF
3: Find all independent stabilizers and logical operators in the

support of F
4: For each operator oi, freeze a distinct qubit qi, i.e., zqi = 0 and

update F = F \ {qi}
5: if nonzero syndromes exist then
6: Peel TF using Algorithm 3 � Peeling updates the

erasure set F and syndrome (F)
7: if syndrome (F) �= 0 after peeling then
8: Solve for the system of equations HF zt

F = syndrome (F)
9: end if

10: end if

erased lattice on which the toric code is defined. The erased
lattice is the sublattice consisting of erased qubits and the
checks affected by the erased qubits. Finding the spanning
forest amounts to deciding which variables are frozen. The
leaf nodes of the forest correspond to the syndromes where
peeling is to be performed. Finding a spanning forest of the
erased lattice is equivalent to finding the spanning forest of
the Tanner graph and then removing all degree one qubit
nodes. This amounts to freezing these qubits.

The algorithm proposed in [10] can be used to correct
(erasure induced) phase errors for the 3D toric code. We
illustrate this with the following example. Figure 13 shows
an erasure pattern and the associated Tanner graph. Figure 14
shows the freezing by constructing a forest of the Tanner
graph. The next step in decoding is peeling. Peeling of Tanner
graph after freezing is shown in Fig. 15.

Algorithm 5. Decoder for phase flip errors induced by erasures
on CSS codes.

Input: Stabilizer matrix HE , erasure set E , and syndromes σ .
Output: Estimate z consistent with measured syndrome σ , i.e.,

HEzt = σ ,
1: Initialize F = E
2: Construct Tanner graph TF based on HE
3: while nonzero syndromes exist do
4: Peel TF using Algorithm 3
5: Find stab(F) a stabilizer or logical operator within the

support of current erased qubits F
6: if stab(F) �= I then
7: In Tanner graph, TF , randomly freeze one qubit q from

the support of stab(F) obtained in line 4, i.e., set zq = 0
8: F = F \ {q}
9: else � No stabilizer exists within the support of F

10: Solve for the system of equations on HF zt = syndrome
(F)

11: Set F = ∅
12: end if
13: end while

012311-10

DECODING THE THREE-DIMENSIONAL TORIC CODES … PHYSICAL REVIEW A 100, 012311 (2019)

s6

e1

e2

e3

e4

e6

e5

s1 s2

s7

s6
s3 s4

s5

FIG. 13. Erased qubits are shown as red (thick) edges. The
associated Tanner graph of the erased lattice is shown on the right
where the qubits are shown by circles and syndromes by squares.
Nonzero syndromes are shown by red (filled) squares.

Finding the qubits to be frozen using the spanning forest
approach does not work for correcting the bit flip errors in
the 3D toric codes. The difficulty is deciding which variables
to freeze. While the 2D case allows us to simply find a cycle
in the support of erased qubits and freeze any one of them,
that approach fails because cycles no longer correspond to
(X type) stabilizers in the 3D case. For instance, consider the
erasure pattern shown in Fig. 16. All six faces of a unit cube
are erased. In the Tanner graph associated with this pattern,
there is a cycle which does not correspond to a stabilizer. This
cycle is shown in Fig. 16. (Please note the entire Tanner graph
is not shown.)

We propose an algorithm for efficiently finding the qubits
to be frozen. In the case of X errors, the elements of the kernel
[of TE , see Eq. (12)] are best visualized in the dual lattice.
They are surfaces without boundaries in the dual lattice of
the toric code. Stabilizers correspond to surfaces of trivial
homology, i.e., they are boundaries of closed volumes in the
lattice. Logical operators correspond to surfaces of nontrivial

e1

e2

e3

e4

e6

e5

s1 s2

s7

s6
s3 s4

s5

s1 e1s1 s2

e1

e2

s1 s2

s3

e1

e2 e4

s1 s2

s3 s4

e1

e2 e4

s1 s2

s3 s4
s5

e1

e2 e4

e5

s1 s2

s3 s4
s5

s6

e1

e2 e4

e6

e5

s1 s2

s3 s4
s5

s6

s7

s1 = 1e1

s2 = 1e2

s3 = 0e3

s4 = 0e4

s5 = 1e5

s6 = 0e6

s7 = 1

FIG. 14. We show step by step construction of a spanning forest
for the sublattice consisting of erased qubits E in Fig. 13. Errors on
qubits not in the spanning forest are set to zero. Equivalently, we can
construct a spanning forest on the Tanner graph TE , and set the errors
on qubits with degree one to be zero.

s5 = 1 e5 =?
s6 = 0 e6 =?
s7 = 1

1 ?
1 1
0

0 1
0 1
0

FIG. 15. Illustrating the (partial) peeling of Tanner graph TE after
freezing as per Fig. 14.

homology. To find these stabilizers, we can take the following
approach.

In the dual lattice �∗, delete all the qubits (faces) corre-
sponding to erasures. This creates a collection of connected
components in �∗ (and also in �). Suppose we let a particle
explore the lattice so that it can move from one cell to another
only if they share an unerased qubit. Let
c be the collection
of cells visited by particle starting from cell c. If
c is a
closed volume, then the boundary of the volume is precisely
the stabilizer in that support of the erased qubits. After finding
a stabilizer, we start exploring the lattice from a cell that is not
in
c and proceed to find other stabilizers until all the cells are
visited. We call this procedure the trapping algorithm.

The trapping algorithm can be be also performed on the
primal lattice, but the topological nature of errors is clearer in
the dual lattice. In the primal lattice it is equivalent to finding
a spanning forest in the unerased lattice, i.e., the 3D lattice
obtained by deleting the erased qubits.

To understand the behavior of the decoder we need to
consider the following types of erasure patterns.

(a) If there is a stabilizer in the support of the erasure
pattern, as in Fig. 17, then the algorithm will recover the
boundary of the volume corresponding to the stabilizer. We
can obtain all the independent stabilizers. Then the decoder
can freeze a distinct qubit in the boundary of each stabilizer
and try to peel. Sometimes it may not be possible to peel after
freezing.

(b) If the erasure pattern contains the support of a logical
X operator as in Fig. 18, then the algorithm cannot recover its
support. This is because the logical X operators do not form
a closed volume. For instance, in Fig. 18 if we start the start
the algorithm from any unit cube, we will be able to visit all
the remaining unit cubes. Therefore, an X logical operator in
support of erased qubits remain undetected.

When the algorithm returns an empty boundary, we can
freeze one of the erased qubits and try to peel. We repeat this
process until we clear the syndrome. If we freeze correctly,
then the decoder succeeds, if not, we have a logical error. Both
the outcomes are equally likely, if there is exactly one logical

FIG. 16. Erased qubits are shown in shaded faces and they form
an X stabilizer. However, a cycle in the associated Tanner graph
(shown partially) of this erasure pattern does not correspond to
an X type stabilizer. Squares represent the check node and circles
represent qubit nodes of the Tanner graph.

012311-11

KULKARNI AND SARVEPALLI PHYSICAL REVIEW A 100, 012311 (2019)

FIG. 17. An X stabilizer corresponding to closed volume and
boundary is the support of the stabilizer. We illustrate the algorithm
to find stabilizer support. Faces in light gray are the erased qubits. A
particle can move from one cell to another by unerased faces. Visited
erased qubits are in dark gray. If the particle is trapped inside, then
the boundary of that volume is the support of the stabilizer. Illustrated
is the evolution of this process for a simple volume.

operator in support of erased qubits. So there is at most 50%
chance to correct the error. In cases where there are more than
one logical operator in support of erased qubit, the number of
cosets increase, thereby decreasing the probability of correct-
ing the error, as all cosets are equally likely. Considering the
high probability of decoding incorrectly, the decoder might as
well choose to declare a decoding failure and abort. This does
not affect the performance substantially.

(c) Another pattern where the algorithm returns an empty
set is shown in Fig. 19. All faces except ones marked in white
are erased. We call this pattern a pseudo-Klein bottle pattern.
This pattern does not contain the support of a stabilizer or
logical operator. Again, because every edge (i.e., syndrome)
participates in at least two qubits, peeling cannot be carried
out. We have to correct X errors in this erasure pattern exactly,
correction up to a stabilizer is not possible.

When the pseudo-Klein bottle erasure pattern occurs, there
is a unique error but the peeling procedure does not work, as
every check is incident on at least two erased qubits. There are
at least three ways to proceed with the decoding as explained
below.

(i) We could simply solve the system of linear equations
corresponding to the residual erasure pattern at this juncture.

(ii) We could randomly freeze a qubit and start peeling.
If the qubit was frozen correctly, then we decode correctly. If
we had frozen it incorrectly, the syndrome will not be cleared.
At this point we could either backtrack or repeat the peeling.

FIG. 18. The trapping algorithm when an X logical operator is
in support of erased qubits. It returns an empty boundary. Any one
of the erased qubits can be frozen in this case. There is at least 50%
probability of incorrect decoding.

+ =

FIG. 19. Pseudo-Klein bottle erasure pattern. All qubits on the
boundary of the cuboid and the tubelike structure are erased except
the ones in (white) color. An erasure pattern like this returns an empty
boundary from the trapping algorithm. There is a unique error which
explains the observed syndrome. Freezing a qubit incorrectly leads
to syndrome not being cleared by peeling.

Alternatively, we could try to clear the syndrome by absorbing
this error into a nonerased qubit.

(iii) We could simply ignore such cases and declare a
decoding failure. Our simulations shows that this does not
limit the performance, since the decoder’s performance is
limited by the performance of the Z type decoder.

In our implementation, whenever an erasure pattern con-
tains one or more pseudo-Klein bottles and logical operators,
we consider it as a decoder failure. It is a maximum likelihood
(ML) decoder in cases where a decoder returns an estimate
consistent with the syndrome.

C. Erasure decoding of 3D toric code with boundaries

We now show how to decode 3D toric code in the presence
of boundaries, see Fig. 1(b). The decoders for phase error
and bit flip error correction presented for 3D toric codes
in a previous section have to be modified to incorporate
boundaries.

First we describe how to incorporate boundaries for phase
error correction. In the presence of boundaries, some stabi-
lizers no longer correspond to cycles in the lattice. One such
stabilizer is shown in Fig. 20. If we form the Tanner graph
associated with this erasure pattern, peeling cannot proceed.

The spanning tree for the erasure pattern (in red) is itself.
This pattern cannot be peeled, because there is no check node
of degree one. There is a stabilizer in the support of the erasure
pattern but it is not a cycle and the algorithm discussed in the
previous section will fail in this case. A similar problem exists
when the erased qubits correspond to a logical operator. The

FIG. 20. Stabilizer generator (thick gray edges) and a logical
operator (thick black edges) with boundary qubits. Erasures on these
patterns cannot be peeled because there is no check node of degree
one incident on them.

012311-12

DECODING THE THREE-DIMENSIONAL TORIC CODES … PHYSICAL REVIEW A 100, 012311 (2019)

(a) (b)

FIG. 21. (a) Solid code with dummy vertices (solid squares) and
dummy qubits (dashed edges). (b) Dummy vertices in the primal
lattice of (a) become dummy volumes and dummy edges become
dummy faces shown in green (light gray) in the dual lattice.

peeling decoder gets stuck because there are no check nodes
of degree one.

To resolve this problem in 2D toric codes Delfosse et al.
[10] add dummy vertices (checks) and edges (qubits) and to
ensure that peeling does not begin from a dummy check node
require that a tree is grown rooted at a dummy check node and
does not contain any more dummy check nodes. This solution
carries over to the 3D toric code for the phase errors.

Similarly, in 3D toric code with boundaries we introduce
dummy vertices and dummy edges, see Fig. 21(a) for an il-
lustration. Dummy vertices carry no X stabilizers and dummy
edges carry no qubits on them.

Syndromes never occur at dummy vertices. Spanning for-
est of the Tanner graph is constructed rooted at dummy check
nodes and with an additional condition that any connected
component cannot have more than one dummy vertex, which
means it cannot have more than one rough boundary qubit.
This is because a string with two dummy nodes will either
form a Z stabilizer or a Z logical operator as illustrated in
Fig. 22.

Next we describe how to incorporate boundaries for bit
flip error correction. The idea behind the trapping algorithm

FIG. 22. A string ending on two dummy nodes is either a Z
stabilizer (thick gray edges) or a Z logical operator (thick black
edges).

(a) (b)

FIG. 23. Some representative erasure patterns which cause trap-
ping algorithm to fail. These are resolved by adding dummy qubits
and checks. (a) An erasure pattern where the nonstabilizer erasure
pattern will be returned as a boundary by a trapping algorithm. (b) An
erasure pattern where partial boundary of the stabilizer plus a qubit
not a part of the stabilizer is returned as a boundary by a trapping
algorithm.

is to let a particle explore the lattice via unerased qubits
and return the boundary of volume to which the particle is
confined. Since there are boundaries, even if there are no
erasures, the particle is confined between the boundaries. So
running the trapping algorithm on the (dual) lattice can cause
the algorithm to fail. Even if we choose to ignore the unerased
qubits confining the particle, there are also other problems
due to boundaries which cause the trapping algorithm to fail.
Figure 23 illustrates some representative cases.

Fortunately, there is a simple solution. We only need to
add dummy qubits (which are never erased) and dummy
checks. The modified lattice and its dual with the dummy
qubits and checks are shown in Figs. 21(a) and 21(b), re-
spectively. Dummy vertices now form dummy volumes in
dual and dummy edges form dummy faces. Then the trapping
algorithm, as discussed for the periodic lattice, can be used
without any problems.

Aperiodicity in the solid code gives an added advantage,
compared to the toric code on the periodic lattice. We can
determine if the erasure pattern supports an X logical operator
using a trapping algorithm. (This is unlike the periodic bound-
ary case.) We illustrate this with an example in Fig. 24. Also
shown is an X logical operator in support of erased qubits.

FIG. 24. Erased qubits are shown in gray color. Dummy qubits
are shown in green (light gray). Since solid code has boundary a
particle gets trapped to either above or below the plane of erased
qubits.

012311-13

KULKARNI AND SARVEPALLI PHYSICAL REVIEW A 100, 012311 (2019)

0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29
Erasure rate

10-5

10-4

10-3

10-2

10-1

100

Lo
gi

ca
l e

rr
or

 r
at

e

n = 1536 (= 8)
n = 5184 (= 12)
n = 12288 (= 16)
n = 24000 (= 20)

FIG. 25. Performance of the 3D toric code with periodic bound-
ary over the quantum erasure channel.

The gray planes separate the actual code from the dummy
volumes. The gray plane is the erasure pattern. In this case,
we can see that if we start the trapping algorithm from any
unit cube which is above the gray plane, we get trapped in
volumes above the gray plane. And vice versa if we start
from above the plane. In the case of the periodic lattice, the
trapping algorithm returns an empty boundary. However, with
boundaries the trapping algorithm returns the support of the
logical X operator.

D. Simulation results

In this section we present performance of 3D toric code
with and without boundaries. Figure 25 shows the perfor-
mance of the 3D toric code with periodic boundary conditions.
This is essentially the same as the performance of the 3D toric
code with respect to the erasure induced Z errors. The overall
erasure threshold is therefore about 24.8%. We note that this
is quite close to the bond percolation threshold for the cubic
lattice [11]. Similar observations have been made for the 2D
toric codes [7] and codes over hyperbolic tilings [17].

The proposed decoder corrects the erasure induced X
and Z errors separately. We can get some more insight by
considering the performance for these errors separately. The
performance of the decoder for correcting the erasure induced

0.68 0.69 0.7 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78
Erasure rate

10-4

10-3

10-2

10-1

100

Lo
gi

ca
l e

rr
or

 r
at

e

n = 1536 (= 8)
n = 3000 (= 10)
n = 5184 (= 12)

FIG. 26. Performance of Algorithm 4 for erasure induced X
errors in 3D toric code with periodic boundary.

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
Error rate

10-4

10-3

10-2

10-1

100

Lo
gi

ca
l e

rr
or

 r
at

e

n = 136 (= 4)
n = 516 (= 6)
n = 1296 (= 8)

FIG. 27. Performance of solid code for erasure induced Z errors.

X errors is shown in Fig. 26 while the performance of the
decoder for erasure induced Z errors is the same as that shown
in Fig. 25. Therefore, we can conclude that the performance
of the 3D toric code over the erasure channel is limited by its
ability to correct phase errors. Please note that the threshold
observed in Fig. 26 is not the threshold of the erasure channel
since this plot shows only the performance for the erasure
induced X errors. Since this decoder sees only erasure induced
X errors, it is in effect for a classical channel for which there
is no restriction due to the no-cloning theorem. However, for a
quantum code it is not possible for both the X and Z decoders
to have the thresholds above 50% simultaneously.

Figure 27 shows the performance of solid code for for era-
sure induced phase flip errors. Figure 28 shows performance
of solid code for erasure induced bit flip errors.

As can be seen from Figs. 27 and 28, the overall perfor-
mance of the 3D toric code over the erasure channel is limited
by its ability to correct the phase errors.

V. DECODING WELDED CODES OVER THE
ERASURE CHANNEL

In this section we propose a decoder for the welded code
over the quantum erasure channel. Since the welded code
is built from the 3D toric code, one might expect that the
decoding of welded codes could be reduced to that of 3D
toric codes. This is not exactly the case because the various

0.6 0.65 0.7 0.75 0.8 0.85
Error rate

10-4

10-3

10-2

10-1

100

Lo
gi

ca
l e

rr
or

 r
at

e

n = 516 (= 6)

n = 1296 (= 8)

n = 2620 (= 10)

FIG. 28. Performance of solid code for erasure induced X errors.

012311-14

DECODING THE THREE-DIMENSIONAL TORIC CODES … PHYSICAL REVIEW A 100, 012311 (2019)

FIG. 29. Error on a single welded qubit (shown as thick lines)
causes multiple nonzero syndromes (shown as filled circles) unlike
qubits in the 3D toric code which cause at most two nonzero
syndromes.

component 3D toric codes are not entirely independent. The
welded code is asymmetric and as in the case of the 3D toric
code, we need two different decoders for bit flip and phase flip
errors.

We restrict our attention to the quantum erasure channel.
In correction of both phase and bit flip errors we focus on
unwelded erased qubits first and take decisions on them. Next
we focus on the residual erased welded qubits and erased un-
welded qubits on which a decision was not made. In Sec. V A
we discuss the decoder for correction of erasure induced phase
errors. And in Sec. V B we describe the decoding algorithm
for correction of erasure induced bit flip errors.

A. Decoder for Z errors under erasure channel

In this section we will decode phase errors (induced by the
erasures) on welded code based on the phase error decoder
for 3D toric code. Before that, let us see how phase errors
in welded code differ phase errors in the solid code. In the
3D toric code each qubit participates in exactly two X type
checks. Therefore, a single phase error flips exactly two qubits
and one check if there are boundaries. In the welded code, a
single phase error on a welded qubit can flip O(R2) X type
checks. Figure 29 illustrates the effect of a phase error on a
welded qubit.

From a graphical point of view, welded qubits are no longer
living on edges but hyperedges. A hyperedge is an edge that
is incident on more than two vertices. A phase error on a
nonwelded qubit behaves similar to a phase error on the toric
code. It causes exactly two nonzero syndromes.

Now let us look at the Z stabilizers. Some of them are the
stabilizers of the constituent toric codes. These do not involve
welded qubits. They continue to be cycles in the lattice on
which the welded code is defined. The structure of stabiliz-
ers which involve welded qubits is slightly different. These
welded Z stabilizers are no longer cycles but hypercycles. (A
hypercycle σ is a collection of edges such that every vertex
has an even degree with respect to the edges in σ .)

At this point we can use Algorithm 4. The important
difference with respect to the 3D toric code comes in the
step which requires the identification of qubits which can be
frozen. From the previous discussion it follows that we need
to identify hypercycles in the welded lattice. Every hypercycle
will give us one qubit to be frozen. At the end we will be left
with a lattice without hypercycles. In other words, our goal is
to find the spanning forest of the welded lattice. Unfortunately,
finding a forest in the welded lattice seems to be a hard
problem.

We propose the following approach. Suppose that there
are no erasures on the welded qubits. Then the decoding
problem reduces to decoding a collection of independent 3D
toric codes. In this case we could simply decode the various
component toric codes and combine the individual estimates.
We can use Algorithm 4.

However, if there are erasures on the welded qubits, then
we cannot proceed in this fashion. We try to induce this
situation by unerasing the welded qubits.

We decode as many erasures as possible using peeling.
Once peeling cannot proceed further, we have to identify the
qubits which can be frozen. Recall that these come from the
support of the stabilizers in the erased qubits. Due to the fact
stabilizers no longer correspond to cycles in the lattice of the
welded code, we cannot simply find the spanning forest of the
lattice of erased qubits. So, we first remove the welded qubits
from the equation. Then we can identify the qubits which are
part of stabilizers which are cycles. From each independent
cycle we obtain a qubit which can be frozen. We freeze them
and reintroduce the welded qubits that were unerased and try
to peel the associated Tanner graph.

If the syndromes are cleared, then we have been able to
solve the decoding problem. On the other hand, if the syn-
dromes cannot be cleared by peeling, we have to use alternate
methods to estimate the error on the residual erased qubits.
Now at this point if any syndromes are left, it is because of
stabilizers in support of erased qubits which are completely or
partially on welded qubits. To correct such patterns we solve
system of linear equations using Gaussian elimination. We
summarize this procedure in Algorithm 6.

Algorithm 6. Decoding Z errors on erased qubits of welded
code.

Input: Erasure set E, X syndromes σ , and check matrix H
Output: Error estimate consistent f with measured syndrome, i.e.,

HE f t = σ

1: A = E �A keeps track of currently unresolved qubit erasures.
2: Construct Tanner graph, TA defined by HA
3: Peel TA using Algorithm 3. � This updates the set A.
4: if nonzero syndromes exist then
5: Let Ew ⊆ A be the set of erased welded qubits which have

not been resolved yet.
6: Let B = A \ Ew � Remove the erased welded qubits.
7: Find a spanning forest F in the erased lattice consisting of

qubits in B
8: Freeze qubits in B \ F � These are nonwelded qubits not in

the forest
9: Update A = F ∪ Ew � Reintroduce erased welded qubits.

10: Peel TA, syndrome (A) using Algorithm 3 � Peeling
updates

the erasure set A and syndrome (A)
11: if syndrome (A) �= 0 after peeling then
12: Solve the system of equations HAet = syndrome (A)

(using Gaussian elimination)
13: end if
14: end if

012311-15

KULKARNI AND SARVEPALLI PHYSICAL REVIEW A 100, 012311 (2019)

FIG. 30. Welded code performance for erasure channel, for vari-
ous values of � and R.

Note that in this process we do not peel until the welded
qubits are reintroduced. The removal of the welded qubits is
just to find the stabilizers in the support of the interior qubits,
i.e., the nonwelded qubits.

B. Decoder for X errors on erased qubits

Let us now turn our attention to the X errors. We observed
that the qubits live on the welded edges which can be viewed
as hyperedges. The lattice for the welded code is a hypergraph.

In the case of 3D toric code, we noted that the dual lattice is
much more convenient to work with in the context of decoding
X errors. However, defining the dual lattice of the welded
lattice is somewhat complicated and technical. Instead, let
us view the welded code as being constructed from the 3D
toric codes which are represented in the dual lattice. Welding
then leads to identification of the faces. Welding causes the
identification of faces of different copies of the 3D toric code.
In effect this creates hyperfaces which can be incident on more
than two volumes.

Since the welded codes under consideration are obtained
by the rough weld, X stabilizers remain the same. However,
because of the fact that faces can now be in the boundary of
more than two volumes, we lose the topological interpretation
of X stabilizers being the boundary of a closed volume. This
is particularly true for an X type stabilizer which has welded
qubits in its support.

This implies that the trapping algorithm used for the 3D
toric codes to find the stabilizers in the support of erased
qubits cannot be used. So we take an approach that is similar
to the decoding of Z errors.

First, we apply the peeling algorithm to clear as many
erasures as possible. Once the peeling algorithm gets stuck,
we first identify an X stabilizer which has no support on the
welded qubits. This can be achieved by means of the trapping
algorithm. We freeze one distinct qubit of the stabilizer and
then apply peeling again. We repeat this process until we no
longer find any more stabilizers in the set of erased qubits
that are not welded. If the syndrome has not been cleared,
we solve the system of linear equations using Gaussian elim-
ination. The complete algorithm is given in Algorithm 7. In
our implementation the complete algorithm uses Algorithm 5
where we alternate between freezing and peeling.

Algorithm 7. Decoder for X errors on erased qubits of welded
code.

Input: Erased qubits E , Z syndromes τ , and check matrix T
Output: Error estimate e such that TEet = τ

1: Initialize A = E
2: Construct Tanner graph TA defined by restricted check

matrix TA
3: Peel TA using Algorithm 3. � This updates the set A and

the estimate e.
4: while syndrome (A) �= 0 do
5: Let Ew ⊆ A be the set of erased welded qubits which

have not been resolved.
6: Let B = A \ Ew � Unerase the erased welded qubits.
7: Call trapping algorithm for each solid code separately

and find a stabilizer with support in B.
8: In TA randomly freeze one qubit in the support of the

stabilizer obtained in previous step.
9: Peel TA � Updates the error estimate e

10: end while
11: if nonzero syndromes remain then � Solve for unresolved

errors in e
12: Solve system of linear equations by Gaussian elimination.
13: end if
14: Return the estimate e.

The worst case decoding complexity of the proposed
algorithms for welded code are of polynomial complexity,
although the average case complexity could be lower. This is
because in lines 11–13 of Algorithms 6 and 7 for correcting
the Z and X errors, we solve a linear system of equations. This
happens whenever the peeling decoder fails.

C. Simulation results

Here we present the performance of welded code for
erasure decoder presented previously. The simulation results
are shown in Fig. 30. We do not observe a threshold for
lengths (up to ≈50 000) in the range we simulated. Observe
that in Fig. 30 as we increase the length of the code the error
rates increase and the curves do not crossover. It is possible
that the welded code has a threshold but it is not in the
range we simulated. For error rates greater than the threshold
of the 3D toric code (i.e., above 25%), all the component
decoders could fail. This suggests that if the welded code has
a threshold, then it cannot be above 25%. Getting the data
for error rates in the range 25% and lower takes significant
time because the code lengths are large and the error rates are
very low.

We also studied the performance of the welded codes
using a decoder that is based on Gaussian elimination. Here
we simply solve the system of equations that arise in the
context of quantum erasure channel. We simulated both the
decoders under the same settings, i.e., same erasure patterns
were given to both the decoders. Our results, see Fig. 31,
show that there is not much difference between the proposed
decoder and the decoder using Gaussian elimination. While
the worst case complexity of both decoders is the same, we
conjecture that the average case complexity could be better for

012311-16

DECODING THE THREE-DIMENSIONAL TORIC CODES … PHYSICAL REVIEW A 100, 012311 (2019)

FIG. 31. Welded code performance comparison for the proposed
decoder (dashed lines) and one based on Gaussian elimination. The
same input is given to both the decoders. In the legend, G denotes
the decoder that solves system of linear equations using Gaussian
elimination.

the proposed decoder. This is because we expect the peeling
decoder to remove many erasures before solving a system of
linear equations.

VI. CONCLUSION

In this paper we proposed decoders for the 3D toric code on
the cubic lattice with and without boundaries. We also studied
the performance of these decoders numerically. The proposed
decoder for the 3D toric codes over the bit flip channel can
be improved and generalized to 3D toric codes on arbitrary
lattices. We also reported the performance of the 3D toric code
on the quantum erasure channel. Considering the observed
threshold is very close to the bond percolation threshold of
the cubic lattice, we expect the proposed erasure decoder to
be almost optimal.

We also proposed an efficient decoder for the welded codes
over the erasure channel. The results on welded codes prompt
a closer look at the relation between the energy gap of the
code and the code threshold. The toric codes have a constant
energy barrier but a high threshold. The cubic code which has
logarithmic energy gap has a lower threshold of about 2%.
The welded codes have the highest known energy gap but
it appears to have no threshold. Understanding the relation
between threshold and energy barrier would be an interesting
problem for future research. Another interesting direction
would be to come up with new constructions of codes that
have a high threshold and also a nonconstant energy gap.

ACKNOWLEDGMENT

This research was supported by the Science and Engineer-
ing Research Board, Department of Science and Technology
under Grant No. EMR/2017/005454.

[1] A. Kubica, B. Yoshida, and F. Pastawski, Unfolding the color
code, New J. Phys. 17, 083026 (2015).

[2] A. B. Aloshious and P. K. Sarvepalli, Projecting 3D color codes
onto 3D toric codes, Phys. Rev. A 98, 012302 (2018).

[3] K. P. Michnicki, 3D Topological Quantum Memory with a
Power-Law Energy Barrier, Phys. Rev. Lett. 113, 130501
(2014).

[4] K. Siva and B. Yoshida, Topological order and memory time in
marginally self-correcting quantum memory, Phys. Rev. A 95,
032324 (2017).

[5] L. Ioffe and M. Mézard, Asymmetric quantum error-correcting
codes, Phys. Rev. A 75, 032345 (2007).

[6] P. Brooks and J. Preskill, Fault-tolerant quantum computation
with asymmetric Bacon-Shor codes, Phys. Rev. A 87, 032310
(2013).

[7] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, Topological
quantum memory, J. Math. Phys. 43, 4452 (2002).

[8] D. S. Wang, A. G. Fowler, A. M. Stephens, and L. C. L.
Hollenberg, Threshold error rates for the toric and surface
codes, Quantum Inf. Comput. 10, 456 (2010).

[9] K. Duivenvoorden, N. P. Breuckmann, and B. M. Terhal, Renor-
malization group decoder for a four-dimensional toric code,
IEEE Trans. Inform. Theory 65, 2545 (2019).

[10] N. Delfosse and G. Zémor, Linear-time maximum likelihood
decoding of surface codes over the quantum erasure channel,
arXiv:1703.01517.

[11] S. Wilke, Bond percolation threshold in the simple cubic lattice,
Phys. Lett. A 96, 344 (1983).

[12] A. R. Calderbank, E. M. Rains, P. M. Shor, and
N. J. A. Sloane, Quantum error correction via codes
over GF(4), IEEE Trans. Inform. Theory 44, 1369
(1998).

[13] F. Pastawski, L. Clemente, and J. I. Cirac, Quantum memories
based on engineered dissipation, Phys. Rev. A 83, 012304
(2011).

[14] N. Breuckmann, K. Duivenvoorden, D. Michels, and B. Terhal,
Local decoders for the 2D and 4D toric code, Quantum Inf.
Comput. 17, 181 (2017).

[15] M. Grassl, Th. Beth, and T. Pellizzari, Codes for
the quantum erasure channel, Phys. Rev. A 56, 33
(1997).

[16] N. Delfosse, P. Iyer, and D. Poulin, A linear-time benchmarking
tool for generalized surface codes, arXiv:1611.04256.

[17] N. Delfosse and G. Zémor, Upper bounds on the rate of
low density stabilizer codes for the quantum erasure channel,
Quantum Inf. Comput. 13, 793 (2013).

[18] S. Kudekar, S. Kumar, M. Mondelli, H. D. Pfister, E. Şaşoğlu,
and R. Urbanke, Reed-Muller codes achieve capacity on erasure
channels, in Proceedings of the Forty-eighth Annual ACM
Symposium on Theory of Computing, STOC ’16, pp. 658–669
(ACM, New York, USA, 2016).

[19] S. Lloyd, P. Shor, and K. Thompson, Polylog-LDPC capac-
ity achieving codes for the noisy quantum erasure channel,
arXiv:1703.00382.

[20] K. Michnicki, Towards self-correcting quantum memories,
Ph.D. thesis, University of Washington, 2015.

012311-17

https://doi.org/10.1088/1367-2630/17/8/083026
https://doi.org/10.1088/1367-2630/17/8/083026
https://doi.org/10.1088/1367-2630/17/8/083026
https://doi.org/10.1088/1367-2630/17/8/083026
https://doi.org/10.1103/PhysRevA.98.012302
https://doi.org/10.1103/PhysRevA.98.012302
https://doi.org/10.1103/PhysRevA.98.012302
https://doi.org/10.1103/PhysRevA.98.012302
https://doi.org/10.1103/PhysRevLett.113.130501
https://doi.org/10.1103/PhysRevLett.113.130501
https://doi.org/10.1103/PhysRevLett.113.130501
https://doi.org/10.1103/PhysRevLett.113.130501
https://doi.org/10.1103/PhysRevA.95.032324
https://doi.org/10.1103/PhysRevA.95.032324
https://doi.org/10.1103/PhysRevA.95.032324
https://doi.org/10.1103/PhysRevA.95.032324
https://doi.org/10.1103/PhysRevA.75.032345
https://doi.org/10.1103/PhysRevA.75.032345
https://doi.org/10.1103/PhysRevA.75.032345
https://doi.org/10.1103/PhysRevA.75.032345
https://doi.org/10.1103/PhysRevA.87.032310
https://doi.org/10.1103/PhysRevA.87.032310
https://doi.org/10.1103/PhysRevA.87.032310
https://doi.org/10.1103/PhysRevA.87.032310
https://doi.org/10.1063/1.1499754
https://doi.org/10.1063/1.1499754
https://doi.org/10.1063/1.1499754
https://doi.org/10.1063/1.1499754
http://dl.acm.org/citation.cfm?id=2011362.2011368
https://doi.org/10.1109/TIT.2018.2879937
https://doi.org/10.1109/TIT.2018.2879937
https://doi.org/10.1109/TIT.2018.2879937
https://doi.org/10.1109/TIT.2018.2879937
http://arxiv.org/abs/arXiv:1703.01517
https://doi.org/10.1016/0375-9601(83)90005-1
https://doi.org/10.1016/0375-9601(83)90005-1
https://doi.org/10.1016/0375-9601(83)90005-1
https://doi.org/10.1016/0375-9601(83)90005-1
https://doi.org/10.1109/18.681315
https://doi.org/10.1109/18.681315
https://doi.org/10.1109/18.681315
https://doi.org/10.1109/18.681315
https://doi.org/10.1103/PhysRevA.83.012304
https://doi.org/10.1103/PhysRevA.83.012304
https://doi.org/10.1103/PhysRevA.83.012304
https://doi.org/10.1103/PhysRevA.83.012304
http://dl.acm.org/citation.cfm?id=3179532.3179533
https://doi.org/10.1103/PhysRevA.56.33
https://doi.org/10.1103/PhysRevA.56.33
https://doi.org/10.1103/PhysRevA.56.33
https://doi.org/10.1103/PhysRevA.56.33
http://arxiv.org/abs/arXiv:1611.04256
http://dl.acm.org/citation.cfm?id=2535680.2535684
http://arxiv.org/abs/arXiv:1703.00382

KULKARNI AND SARVEPALLI PHYSICAL REVIEW A 100, 012311 (2019)

[21] C. G. Brell, A proposal for self-correcting stabilizer quantum
memories in 3 dimensions (or slightly less), New J. Phys. 18,
013050 (2016).

[22] C. Castelnovo and C. Chamon, Topological order in a three-
dimensional toric code at finite temperature, Phys. Rev. B 78,
155120 (2008).

[23] D. Gottesman, Stabilizer codes and quantum error correction,
Caltech Ph.D. thesis, arXiv:quant-ph/9705052.

[24] K. P. Michnicki, 3D topological quantum memory with a
power-law energy barrier, arXiv:1208.3496.

[25] T. Ohno, G. Arakawa, I. Ikuo Ichinose, and T. Matsui, Phase
structure of the random-plaquette Z2 gauge model: Accuracy
threshold for a toric quantum memory, Nucl. Phys. B 697, 462
(2004).

[26] K. Takeda and H. Nishimori, Duality of the random model and
the quantum toric code, J. Phys. Soc. Jpn. 74, 115 (2005).

012311-18

https://doi.org/10.1088/1367-2630/18/1/013050
https://doi.org/10.1088/1367-2630/18/1/013050
https://doi.org/10.1088/1367-2630/18/1/013050
https://doi.org/10.1088/1367-2630/18/1/013050
https://doi.org/10.1103/PhysRevB.78.155120
https://doi.org/10.1103/PhysRevB.78.155120
https://doi.org/10.1103/PhysRevB.78.155120
https://doi.org/10.1103/PhysRevB.78.155120
http://arxiv.org/abs/arXiv:quant-ph/9705052
http://arxiv.org/abs/arXiv:1208.3496
https://doi.org/10.1016/j.nuclphysb.2004.07.003
https://doi.org/10.1016/j.nuclphysb.2004.07.003
https://doi.org/10.1016/j.nuclphysb.2004.07.003
https://doi.org/10.1016/j.nuclphysb.2004.07.003
https://doi.org/10.1143/JPSJS.74S.115
https://doi.org/10.1143/JPSJS.74S.115
https://doi.org/10.1143/JPSJS.74S.115
https://doi.org/10.1143/JPSJS.74S.115

