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Entangled states with a positive partial transpose (so-called PPT states) are central to many interesting
problems in quantum theory. On the one hand, they are considered to be weakly entangled, since no pure state
entanglement can be distilled from them. On the other hand, it has been shown recently that some of these
PPT states exhibit genuinely high-dimensional entanglement, i.e., they have a high Schmidt number. Here we
investigate the (d × d)-dimensional PPT states for d � 4 discussed recently by E. Sindici and M. Piani [Phys.
Rev. A 97, 032319 (2018)]. By generalizing their methods to the calculation of Schmidt numbers, we show that
a linear d/2 scaling of its Schmidt number in the local dimension d can be attained.
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I. INTRODUCTION

Entanglement is at the heart of quantum theory and is
also a key resource in quantum information applications [1,2].
Bipartite systems which are entangled across many degrees
of freedom are especially interesting in this respect. First,
they are usually more robust to noise than systems with less
degrees of freedom [3,4]. Second, they allow us to devise
protocols which are genuinely high dimensional. In particular,
low-dimensional systems are not enough for these protocols to
work [5].

Experimentally, high-dimensional entanglement also be-
came feasible in the recent years. Higher and higher di-
mensional systems can be prepared and controlled in optics
experiments [4,6]. Therefore it is an important question to
decide whether an experiment managed to create genuinely
high-dimensional entanglement or the experimental data can
alternatively be explained by assuming low-dimensional en-
tanglement. A measure which detects states with genuinely
entangled degrees of freedom is based on the Schmidt number
[7]. Schmidt number r of a bipartite system certifies that the
state is entangled in at least r degrees of freedom.

As an illustration, let us consider the d × d isotropic state
defined by

ρ̂ iso
d (F ) = F |�+

d 〉〈�+
d | + (1 − F )

Î − |�+
d 〉〈�+

d |
d2 − 1

, (1)

where

|�+
d 〉 = 1√

d

d∑
k=1

|k〉|k〉 (2)

is the d × d maximally entangled state and F is the entan-
glement fraction [8] of the state ρ̂ iso

d . Based on the results of
Ref. [7] the state (1) can be shown to have Schmidt number at
least r for the entanglement fraction parameter

F � r − 1

d
, (3)

where r can take r = (2, . . . , d ) in the above formula. Loosely
speaking, r is the minimum Schmidt rank of the pure states
needed to construct it (later we will also give a formal def-
inition of the Schmidt number). Hence tuning the parameter
F in a d × d isotropic state (1), we can change the Schmidt
number r of the state between 2 (i.e., the case of standard
entanglement) and d (the maximum possible Schmidt number
of a d × d state).

In this paper, our focus is on entangled states with a
positive partial transpose (PPT) [9]. These are states which
cannot be transformed into pure singlet states using local
operations and classical communication. This procedure is
called entanglement distillation [10]. Such entangled states
which cannot be distilled are called bound entangled [11],
and they are not useful in protocols which are based on
distillation. Nevertheless, PPT bound entangled states turn out
to be useful in a couple of other quantum information tasks
such as quantum key distribution [12,13], superactivation of
capacity of quantum channels [14], quantum metrology [15],
Einstein-Podolsky-Rosen steering [16], Bell-nonlocal correla-
tions [17–19], and channel discrimination [20].

Several interesting constructions of PPT states have been
given in the literature (see, e.g., Refs. [12,21–25]); however,
the question whether PPT states can be genuinely high-
dimensionally entangled have been investigated only recently
[26–28]. In particular, Huber et al. [28] found that for a
special class of (d × d )-dimensional PPT entangled states
the Schmidt number scales as d/4. This entails that one can
generate a PPT state with any number of genuinely entan-
gled dimension provided the dimension d is high enough.
In the present work we strengthen this result by presenting
a family of PPT states in dimensions d × d for which the
Schmidt number scales as d/2. The proof relies on the special
properties of the projections on the two-qudit symmetric and
antisymmetric subspaces.

The structure of the paper is as follows. In Sec. II we
give the necessary definitions including the definition of
the Schmidt number and we define the class of PPT states
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investigated by Sindici and Piani [29]. We recall the two
methods of Ref. [29] to prove that the PPT states in question
are entangled, that is, their Schmidt number is greater than
1. In Sec. III we generalize the above methods of Sindici
and Piani to lower bound the Schmidt number of PPT states.
In Sec. III A we show how to construct PPT bound en-
tangled states with Schmidt number r � d/2 for any even
d � 4 dimension. In Sec. III B a technical result is given
concerning the normal form of an antisymmetric pure state.
Then in Sec. III C we show that starting from an arbitrary
entangled antisymmetric state ρ̂A, a semidefinite program [30]
provides a lower bound on its Schmidt number. From this
lower bound we in turn find PPT states with certain Schmidt
numbers whose antisymmetric projections are proportional
to ρ̂A. In Sec. IV we conclude our study and raise open
questions.

II. PRELIMINARIES AND OVERVIEW OF THE TWO
METHODS OF SINDICI AND PIANI

Any bipartite pure state can be written in the form of
Schmidt decomposition:

|ϕ〉 =
r∑

i=1

√
πi|ai〉 ⊗ |bi〉, (4)

where πi > 0,
∑

i πi = 1, |ai〉 and |bi〉 are orthonormal vec-
tors in the component spaces, and r, the Schmidt rank of
|ϕ〉, is not larger than the dimensionality of either of the
component spaces. A general state is represented by a positive
semidefinite operator of trace one in the composite space, and
it can be expressed as a convex combination of pure states
(represented now by projections onto their state vectors) as

ρ̂ =
∑

k

qk|ϕk〉〈ϕk|. (5)

A mixed state can usually be written in many ways in forms
like above. A state has Schmidt number r if all possible such
expressions contain at least one pure state whose Schmidt rank
is at least r, and there is at least one expression in which
neither of the Schmidt ranks exceeds r. From the definition
it follows that for pure states the Schmidt number is the same
as the Schmidt rank. A general state is separable if its Schmidt
number is 1, otherwise it is entangled.

In a recent work Sindici and Piani [29] have given simple
methods to construct entangled states with a positive partial
transpose (PPT). The construction relied on properties of the
antisymmetric and symmetric subspaces of the joint Hilbert
space of two systems of the same dimensionality. The pro-
jectors P̂S and P̂A defining the symmetric and antisymmetric
subspace, respectively, can be written as

P̂S = Î + V̂

2
, (6)

P̂A = Î − V̂

2
, (7)

where Î and V̂ are the identity and the swap operators,
respectively. The swap operator can be written as

V̂ =
d∑

i=1

d∑
j=1

| j, i〉〈i, j|, (8)

where d is the dimensionality of the Hilbert spaces of
the component systems. We use the shorthand notation of
|i, j〉 ≡ |i〉 ⊗ | j〉. The effect of V̂ on a product state is V̂ |ϕ1〉 ⊗
|ϕ2〉 = |ϕ2〉 ⊗ |ϕ1〉. The swap operator depends on the choice
of local bases, states in the component spaces are regarded the
same if their vector components are the same in the bases cho-
sen. Therefore, the symmetric and antisymmetric subspaces
also depend on this choice. For example, any pure antisym-
metric state becomes symmetric in the bases corresponding
to its Schmidt decomposition. However, the symmetricity
or antisymmetricity of states are preserved if both parties
perform the same local transformation [31]. In Ref. [29] the
authors consider only identical systems, where the choice of
the bases is not completely arbitrary, but their methods are
more general. As P̂S + P̂A = Î , the full space is the direct
sum of the symmetric and antisymmetric subspaces. It is easy
to check that the symmetric and antisymmetric subspaces
have dimensions dS = d (d + 1)/2 and dA = d (d − 1)/2,
respectively.

The first method given in Ref. [29] is based on semidefinite
programming (SDP) [30]. One starts with an antisymmetric
state ρ̂A. Then the task is to find the PPT state σ̂ (a positive
semidefinite matrix of trace one, whose partial transpose is
also positive semidefinite) whose projection to the antisym-
metric subspace is proportional to the starting state [that is,
P̂Aσ̂ P̂A = Tr(P̂Aσ̂ )ρ̂A] and whose overlap Tr(P̂Aσ̂ ) with the
starting state is maximal. The procedure is successful if this
maximal overlap denoted by pPPT(ρ̂A) is smaller than 1/2, as
it is proven in the paper [29] that in this case the state σ̂ is
entangled. If the result is 1/2, which is the upper bound for
this quantity, one cannot tell if σ̂ is separable or entangled. In
this case one can start from another ρ̂A. It has also been proven
[29] that if σ̂ is an optimal solution of the problem above,
so is P̂Aσ̂ P̂A + P̂S σ̂ P̂S = pPPT(ρ̂A)ρ̂A + [1 − pPPT(ρ̂A)]ρ̂opt

S ,
which is a convex mixture of the starting antisymmetric state
and a symmetric state (P̂S σ̂ P̂S properly normalized). There-
fore, an alternative way to get pPPT(ρ̂A) is to find the optimal
symmetric state whose convex mixture with ρ̂A is PPT, and
the weight of ρ̂A in this mixed state is maximal. Then if this
weight is less than 1/2, the mixture is entangled.

The second method given in Ref. [29] to construct a PPT
entangled state is based on the fact that the Schmidt number
of the projection of a separable state onto the antisymmetric
subspace is always 2. Therefore, any PPT state whose anti-
symmetric projection is proportional to a state whose Schmidt
number is larger than 2 is necessarily entangled. For example,
if we start from any antisymmetric state with a Schmidt
number larger than 2, and mix it with a symmetric state such
that the mixture is PPT, the result will be a PPT entangled
state. The symmetric state need not be the optimal one.

III. OUR RESULTS

A. Construction of PPT states with any Schmidt number

As we will show in this section, the second method of
Sindici and Piani reviewed in Sec. I can be used to construct
PPT bound entangled states with any Schmidt number. For
that we will prove that the Schmidt number of the projection
of a state onto the antisymmetric subspace P̂Aσ̂ P̂A cannot be
more than twice the Schmidt number of the state σ̂ . First let
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us consider a pure state |ϕ〉, whose Schmidt decomposition is
defined by Eq. (4). Then

P̂A|ϕ〉 =
∑r

i=1
√

πi(|ai〉 ⊗ |bi〉 − |bi〉 ⊗ |ai〉)

2
, (9)

where r is the Schmidt rank of the state (4). Vectors |ai〉
and |bi〉 together cannot span more than 2r-dimensional sub-
spaces of the component spaces, and the projected vector
fully resides within the tensor product of those subspaces.
Therefore, its Schmidt rank cannot be more than 2r. Now let
us consider a mixed state. If it has Schmidt number r it can
be expressed as a convex mixture of pure states with Schmidt
ranks at most r. If one applies the projection onto this form
of the mixed state one gets an expansion in terms of vectors
such that neither of them has Schmidt rank more than 2r.
Consequently, the Schmidt number of the projection cannot be
more than 2r. Therefore, if one starts from an antisymmetric
state whose Schmidt number is at least r (where r is even) and
constructs any PPT state whose antisymmetric projection is
proportional to this state, then the Schmidt number of this PPT
state has to be at least r/2. Again, we can do that by mixing
the antisymmetric state with a sufficient amount of suitable
symmetric state.

When choosing the antisymmetric state for the construc-
tion, it may be a problem that the Schmidt number of a
mixed state is usually very hard to determine. However, as
suggested in Ref. [29], one may start from a pure state. In
the case of d-dimensional component spaces, if d is even,
a generic antisymmetric pure state, which one can get by
antisymmetrizing a random pure state, has Schmidt rank d . By
starting the construction from such a state with d = 2r, one
gets a PPT state with a Schmidt number at least r. In Ref. [29]
the authors considered the following states:

|ψA〉 =
d−1,odd∑

μ=1

cμ(|μ,μ + 1〉 − |μ + 1, μ〉), (10)

where

d−1,odd∑
μ=1

c2
μ = 1

2
, cμ � 0. (11)

If all cμ > 0, the Schmidt rank of the state is d (the Schmidt
coefficients are cμ, and each of them occurs twice). A special
case is when all coefficients are equal:

|ψ0A〉 = 1√
d

d−1,odd∑
μ=1

(|μ,μ + 1〉 − |μ + 1, μ〉). (12)

We will prove in Appendix that p|ψ0A〉〈ψ0A| + (1 − p)P̂S/dS
with p = 1/(d + 2) is a PPT bound entangled state with
Schmidt number at least d/2, where d is even.

B. Normal form of antisymmetric pure states

Now we will prove that any antisymmetric pure state
may be transformed into the simple form given in Eq. (10)
(for odd d the summation goes from 1 to d − 2) with local
transformations preserving the symmetric and antisymmetric
subspaces. Let |ϕA〉 be such an antisymmetric state in a

(d × d )-dimensional space:

|ϕA〉 =
d∑

i=1

d∑
j=1

ai j |i, j〉, (13)

where A = (ai j ) is a d × d skew symmetric matrix, that
is, ai j = −a ji. Then there exists a unitary matrix U [32]
such that

U T AU =

⎛
⎜⎜⎜⎜⎝

0 c1 0 0 . . .

−c1 0 0 0 . . .

0 0 0 c3 . . .

0 0 −c3 0 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠, (14)

where cμ � 0 (μ odd) are real numbers, and the last row and
column contain zeros if d is odd (a skew symmetric matrix
of odd d cannot have full rank). The matrix on the right-hand
side is called the normal form of A. The state characterized
by such a matrix is just the one of Eq. (10), therefore we will
also refer to it as the normal form. It is easy to see that this
matrix transformation corresponds to both parties perform-
ing the same local basis transformation |i′〉 = Û ∗|i〉, where
Û ∗ = ∑

kl U ∗
kl |k〉〈l|. Such simultaneous local transformations

preserve the antisymmetricity and the symmetricity of a state
(Û ∗ ⊗ Û ∗ commutes with both PA and PS ). Starting from ρ̂A,
the constructions considered above will give the same results
in the transformed local basis as in the original one. Therefore,
we may calculate pPPT for any pure antisymmetric state after
transforming it into its normal form. From the normal form it
is also clear that all antisymmetric pure states have an even
Schmidt rank in any number of dimensions, and from this
it follows that all antisymmetric mixed states have an even
Schmidt number. We will also use later the fact that if the
Schmidt rank r of a (d × d )-dimensional pure state in its
normal form is less than d , then the subspace necessary to
accommodate the state is spanned by r basis vectors in each
component space.

C. Schmidt number from the value of pPPT(ρ̂A)

The important result of the first method of Ref. [29] is
based on the observation that pPPT(ρ̂A) < 1/2 proves that the
PPT state resulting from the construction is entangled. We
will show that from the value of pPPT(ρ̂A) we may be able
to tell that the Schmidt number of ρ̂A is larger than a certain
value, consequently any PPT state constructed from it with
the methods given above has a Schmidt number of at least
half that value. It has been proven [29] that there exists a
lower bound for pPPT(ρ̂A) depending on the dimension of
the component spaces d , which decreases monotonously as a
function of d . The bound derived is 2/[d (d + 1) + 2], which
is not tight, as we will show later by deriving a much better
one. Let us denote the d-dependent monotonously decreasing
lower bound by L(d ). What we will show is that L(d ) is
actually L(r), where r is the Schmidt number of ρ̂A, that is in
any space dimensions pPPT(ρ̂A) cannot be smaller than L(r).
First let us consider a pure state in a (d × d)-dimensional
space with Schmidt rank r < d . We are allowed to trans-
form it into its normal form. Let us reduce the space to the
(r × r)-dimensional subspace that accommodates the state by
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dropping the basis vectors orthogonal to this subspace. De-
termined in this space pPPT cannot be smaller than L(r).
If the dropped basis vectors are added back, pPPT cannot
decrease, because it is the maximum of the overlaps between
the state and all PPT states σ whose antisymmetric projection
is proportional to the state, and the extended space means an
even larger variety of appropriate σ states.

Now let us consider mixed states. First we will show
that pPPT belonging to a convex mixture of two antisym-
metric states cannot be smaller than pPPT belonging to any
of the two states. Let p1 ≡ pPPT(ρ̂1A), p2 ≡ pPPT(ρ̂2A), and
p1 < p2. Then there exist symmetric states ρ̂1S and ρ̂2S
such that p1ρ̂1A + (1 − p1)ρ̂1S and p2ρ̂2A + (1 − p2)ρ̂2S are
PPT. Let us mix the second state with any symmetric PPT
state such that the weight of ρ̂2A in the mixture is reduced
to p1. We get p1ρ̂2A + (1 − p1)ρ̂ ′

2S , which is also a PPT
state. Then p1[λρ̂1A + (1 − λ)ρ̂2A] + (1 − p1)[λρ̂1S + (1 −
λ)ρ̂2S ], where 0 � λ � 1 is also PPT, which proves that
pPPT belonging to the convex mixture is not smaller than
p1. Then it follows that pPPT belonging to a convex mixture
of any number of states is not smaller than the smallest of
pPPT belonging to the components: mixing cannot make pPPT

smaller. A mixed state of Schmidt number r can be written
as a convex mixture of pure states with a maximum Schmidt
number of r. As pPPT of any of the components cannot be
smaller than the lower bound belonging to r, pPPT belonging
to the mixture cannot be smaller either, which proves the
statement for mixed states as well. The result means that
if pPPT(ρ̂A) < L(d ), its Schmidt number is larger than d
(actually, due to the nonexistence of antisymmetric states with
odd Schmidt numbers, it has to be at least d + 2).

In the Appendix we will show that L(d ) = 1/(d + 2) for
even d � 4 and L(2) = 1/2 are lower bounds for pPPT(ρ̂A).
If the bound we got for d = 2 were smaller than 1/2 (like
the one in Ref. [29]), it could not be tight: such a value
for pPPT would imply a bound entangled state, but such a
state does not exist. For odd d the bound has to be the
same as for d − 1. There are no antisymmetric states with
an odd Schmidt number, so the maximum Schmidt number
of ρ̂A is d − 1. However, as we have shown earlier, pPPT(ρ̂A)
cannot be smaller than the lower bound corresponding to its
Schmidt number. Therefore, L(3) = 1/2, and for odd d � 5
it is L(d ) = 1/(d + 1). For d = 3 the 1/2 value means that
the method is inappropriate for constructing bound entangled
states in a (3 × 3)-dimensional space.

To prove the lower bound for even d we have given above,
it is enough to consider pure states, because mixing cannot
make pPPT smaller, as we have shown earlier. We may also
confine ourselves to their normal form given by Eq. (10).

The first step of the proof given in the Appendix is to
take the state |ψ0A〉 with equal amplitudes given by Eq. (12),
and calculate how much admixture of P̂S/dS is necessary
to make it a PPT state. This is the same symmetric state
considered in Theorem 1 of Ref. [29] calculating the lower
bound for any state. Their bound is not tight because for
the antisymmetric state for which this choice is optimal less
admixture is enough (that is pPPT is larger), while for all other
states the choice is not optimal. From numerical calculations
in smaller dimensions we believe that for |ψ0A〉 this choice
is actually optimal, therefore the lower bound 1/(d + 2) we

get is the true value of pPPT(|ψ0A〉〈ψ0A|). Then we show that
for states of normal form with non-equal amplitudes pPPT is
larger, therefore, 1/(d + 2) is a lower bound for them, too.
Our conjecture is that this bound is tight.

As L(2) = 1/2, any smaller value for pPPT(ρ̂A) proves that
the Schmidt number of ρ̂A is at least 4, which also means that
any PPT state whose antisymmetric projection is proportional
to ρ̂A is entangled (that is its Schmidt number is at least 2).
This is true for any such PPT state, not only for the one that
comes out of the construction providing the value of pPPT(ρ̂A).
For d � 4, pPPT(ρ̂A) < L(d ) with L(d ) = 1/(d + 2) means
that the Schmidt number of ρ̂A is at least d + 2, and all PPT
states whose antisymmetric projections are proportional to ρ̂A
have Schmidt numbers of at least (d/2) + 1.

IV. CONCLUSIONS

In this paper, we proved that a class of d × d states with
a positive partial transposition gives rise to Schmidt number
d/2. This family is the one investigated by Sindici and Piani
[29] with respect to their entanglement properties. Here we
generalized their methods to explore the dimensionality of the
entanglement of such states. In particular, the Schmidt number
d/2 of these states improves the Schmidt number of the states
investigated by Huber et al. [28] which latter scales as d/4.
We note that a similar result was recently proven by Cariello
[33].

There are a couple of open questions left. We first ask
whether such highly entangled states are useful for commu-
nication tasks beyond known protocols. Second, is it possible
to construct PPT states, which have Schmidt numbers higher
than d/2? In particular, is it possible to approach the value of
(d − 1)? In a recent paper [34], it was shown that no (3 × 3)-
dimensional PPT state has Schmidt number 3. In this respect,
one may raise the question: what is the dimensionality of the
smallest PPT state which has a Schmidt number of at least 3?
Our present result provides such a PPT state for dimension
d = 6. But is there possibly a smaller dimensional example?
Finally, we believe that our investigations are relevant from an
experimental point of view as well given the recent advances
in the experimental implementation of bound entangled states
[35–37].
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APPENDIX: LOWER BOUND FOR pPPT(ρ̂A)

As we have shown in the main text, to calculate the d-
dependent lower bound L(d ) for pPPT(ρ̂A) it is enough to con-
sider pure states in their normal form in (d × d )-dimensional
spaces, where d is even.

First we determine a lower bound of pPPT for the special
state |ψ0A〉 given by Eq. (12). The problem we are going to
solve is to find the largest value of p such that the partial
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transpose of

σ̂0 = p|ψ0A〉〈ψ0A| + (1 − p)
P̂S
dS

(A1)

is positive semidefinite. In particular, we show that this value
is 1/(d + 2). If P̂S/dS is the optimal symmetric operator, then

this way we get pPPT(|ψ0A〉〈ψ0A|) itself; if not, we get a lower
bound. For smaller d values we have numerical evidence that
this is the optimal choice, and our conjecture is that this is true
for any dimension. The partial transposes (denoted by upper
index 	) of the operators appearing in the right-hand side of
Eq. (A1) are

|ψ0A〉〈ψ0A|	 = 1

d

d−1,odd∑
μ=1

d−1,odd∑
ν=1

(|μ, ν + 1〉〈ν, μ + 1| + |μ + 1, ν〉〈ν + 1, μ|

− |μ, ν〉〈ν + 1, μ + 1| − |ν + 1, μ + 1〉〈μ, ν|), (A2)

and

P̂	
S

dS
=

∑d
i=1

∑d
j=1 |i, j〉〈i, j| + ∑d

i=1

∑d
j=1 |i, i〉〈 j, j|

d (d + 1)
.

(A3)

Eq. (A2) can be derived from Eq. (12), Eq. (A3) from Eqs. (6)
and (8), and dS = d (d + 1)/2.

Now we will solve the eigenvalue problem and determine
the largest p value such that none of the eigenvalues are
negative. The calculation can be simplified by realizing that
the matrix representing operator σ̂ 	

0 has a block-diagonal
structure. This structure is not apparent, as the rows and
columns belonging to each block do not follow each other.
Nevertheless, if there exists a subset of indices such that
the rows and columns corresponding to those indices have
nonzero elements only where they intersect, then these rows
and columns belong to a block of the matrix. Such blocks can
be treated separately when solving the eigenvalue problem.

The first double sum of the symmetric part of the operator,
which is given by Eq. (A3), is diagonal (proportional to the
identity operator), while the second one is a d × d block with
equal matrix elements.

The pair of positive terms of Eq. (A2), (1/d )|μ, ν +
1〉〈ν, μ + 1| and (1/d )|ν, μ + 1〉〈μ, ν + 1|, and similarly the
(1/d )|μ + 1, ν〉〈ν + 1, μ| and (1/d )|ν + 1, μ〉〈μ + 1, ν| cor-
respond to off-diagonal elements of 2 × 2 blocks if ν 	= μ

(they exist if d � 4). Each of these blocks of σ̂ 	
0 , including the

diagonal elements coming from the symmetric matrix given
by Eq. (A3), look like( 1−p

d (d+1)
p
d

p
d

1−p
d (d+1)

)
. (A4)

The solutions of the eigenvalue equation of this block are
(1 + pd )/[d (d + 1)], which is always positive, and [1 − (d +
2)p]/[d (d + 1)], which is non-negative if p � 1/(d + 2).
There are d (d − 2)/4 such blocks. Each of the positive terms
of Eq. (A2) with ν = μ are diagonal elements. Together with
the contribution coming from Eq. (A3) each of them gives
the always positive eigenvalue of (1 + pd )/[d (d + 1)] again.
There are d such diagonal elements.

The pair of negative terms of Eq. (A2), −(1/d )|μ, ν〉〈ν +
1, μ + 1| and −(1/d )|ν + 1, μ + 1〉〈μ, ν|, also correspond to
off-diagonal elements of 2 × 2 blocks. If ν = μ (d/2 pairs)
they fall within the d × d block of the matrix corresponding to

Eq. (A3) whose eigenvalue problem we will solve in the next
step. The ν 	= μ cases [d (d − 2)/4 pairs] lead to the same
2 × 2 matrix as given in Eq. (A4) but with negative signs for
the off-diagonal elements, giving the same two eigenvalues as
we have already got.

Now we will calculate the eigenvalues of the d × d block.
We will demonstrate the calculations on the example of d = 8.
The determinant to be calculated is the following:

D8 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a c b b b b b b
c a b b b b b b
b b a c b b b b
b b c a b b b b
b b b b a c b b
b b b b c a b b
b b b b b b a c
b b b b b b c a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (A5)

where

a = 2
1 − p

d (d + 1)
− λ,

b = 1 − p

d (d + 1)
,

c = b − p

d
= 1 − p(d + 2)

d (d + 1)
. (A6)

The first terms of a and b come from Eq. (A3), while the −p/d
term of c comes from Eq. (A2), and λ is the eigenvalue. Let
us subtract the νth row from the (ν − 1)th one, then the νth
column from the (ν − 1)th one for all odd ν, and introduce the
notation f ≡ a − c to arrive at

D8 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a − f b 0 b 0 b 0
− f 2 f 0 0 0 0 0 0
b 0 a − f b 0 b 0
0 0 − f 2 f 0 0 0 0
b 0 b 0 a − f b 0
0 0 0 0 − f 2 f 0 0
b 0 b 0 b 0 a − f
0 0 0 0 0 0 − f 2 f

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(A7)

Let us subtract the 5th row from the 7th one, then the 3th
row from the 5th one, and finally the first row from the third
one. Then let us do the same with the corresponding columns.
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Introducing the notation e ≡ a − b we get

D8 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a − f −e 0 0 0 0 0
− f 2 f f 0 0 0 0 0
−e f 2e − f −e 0 0 0
0 0 − f 2 f f 0 0 0
0 0 −e f 2e − f −e 0
0 0 0 0 − f 2 f f 0
0 0 0 0 −e f 2e − f
0 0 0 0 0 0 − f 2 f

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(A8)

Finally, let us add one half times the 8th column to the 7th
one, subtract one half times the 6th row from the 7th one, and
then subtract one half times the 6th column from the 7th one
to arrive at

D8 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a − f −e 0 0 0 0 0
− f 2 f f 0 0 0 0 0
−e f 2e − f −e 0 0 0
0 0 − f 2 f f 0 0 0
0 0 −e f 2e − f −e + f

2 0
0 0 0 0 − f 2 f 0 0
0 0 0 0 −e + f

2 0 2e − f − f
0 0 0 0 0 0 0 2 f

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(A9)

It is easy to check that the manipulations we have done have
not changed the values of the subdeterminants D6, D4, and
D2. Then it is not difficult to see that D8 can be written as

D8 = 2 f

[
(2e − f )D6 −

(
e − f

2

)2

2 f D4

]
. (A10)

We could have arrived at an analogous recurrence relation
for any even d � 6. Using e ≡ a − b and f ≡ a − c the
general recurrence relation is

Dd+4 = (a − c)(a − 2b + c)[2Dd+2

− (a − c)(a − 2b + c)Dd ]. (A11)

The solution of the relation with the correct initial values is

Dd = (a − c)
d
2 (a − 2b + c)

d
2 −1[a + (d − 2)b + c]. (A12)

This can be proven by induction: D2 and D4 can explicitly
be calculated and compared, and it is easy to check that the
expression satisfies the recurrence relation. Using Eq. (A6)
the factors appearing in Eq. (A12) are the following:

a − c = 1 + pd

d (d + 1)
− λ, (A13)

a − 2b + c = 1 − p(d + 2)

d (d + 1)
− λ, (A14)

a + (d − 2)b + c = 1 + d − p(d + 4)

d (d + 1)
− λ. (A15)

A root of (1 + pd )/[d (d + 1)] with multiplicity d/2 of the
eigenvalue equation Dd = 0 comes from a − c = 0. This root
is the always positive solution we have already got. If d �
4 we get root [1 − (d + 2)p]/[d (d + 1)] with multiplicity
(d/2 − 1) from requiring a − 2b + c = 0. We have already
got this root as well from the 2 × 2 blocks. The remaining root

[1 + d − p(d + 4)]/[d (d + 1)] comes from a + (d − 2)b +
c = 0.

To summarize the results above, for d � 4 there are three
different eigenvalues of operator σ̂ 	

0 . The always positive
(1 + pd )/[d (d + 1)] has a multiplicity of d (d + 1)/2, com-
ing from the d × d block, the 2 × 2 blocks and the single
diagonal elements. Eigenvalue [1 − (d + 2)p]/[d (d + 1)] has
multiplicity (d + 1)(d − 2)/2 coming from the d × d block
and the 2 × 2 blocks. This is non-negative if p � 1/(d + 2).
The last root [1 + d − p(d + 4)]/[d (d + 1)] is a single one,
and it is non-negative if p � (d + 1)/(d + 4), a less strict
condition than the previous one. Therefore, for d � 4 the
largest value of p such that σ̂ 	

0 is positive semidefinite is
p = 1/(d + 2). For d = 2 the eigenvalue giving this condition
does not exist, therefore we get the appropriate condition
p = 0.5 from the last eigenvalue.

The last step is to prove that pPPT(|ψA〉〈ψA|) �
pPPT(|ψ0A〉〈ψ0A|). Let us define operator τ̂ as

τ̂ ≡
d∑

i=1

d∑
j=1

tit j |i, j〉〈i, j|, (A16)

where

tμ = tμ+1 ≡ √
cμd1/4 μ odd, (A17)

and cμ are the coefficients appearing in Eq. (10), the definition
of |ψA〉. From Eqs. (10)–(12) it is easy to see that

|ψA〉 = τ̂ |ψ0A〉, (A18)

d∑
i=1

t4
i = d. (A19)

The matrix of operator τ̂ is diagonal with non-negative entries.
If operator R̂ is positive semidefinite, so is τ̂ R̂τ̂ , because if the
expectation value of the latter with a state |ξ 〉 were negative,
so would be the expectation value of the former with τ̂ |ξ 〉.
Furthermore, it commutes with the partial transposition, as it
multiplies both |i, j〉〈k, l| and |i, l〉〈k, j| with the same factor
of tit jtktl . It also preserves the symmetricity or antisymmetric-
ity of a state. Let us take τ̂ σ̂0τ̂ [see Eq. (A1)], that is,

p|ψA〉〈ψA| + (1 − p)
τ̂ P̂S τ̂

dS
(A20)

with p = 1/(d + 2), which is the lower bound for
pPPT(|ψ0A〉〈ψ0A|). Due to the properties of operator τ̂

stated above, the partial transpose of the operator is positive
semidefinite with this value of p. The second term is a
symmetric positive semidefinite operator. However, the
operator in Eq. (A20) is not a density operator, because
Tr(τ̂ P̂S τ̂ /dS ) in the second term is not 1. Projector P̂S
is an equal combination of the swap and the identity
operators [see Eq. (6)]. For the transformed swap operator,
Tr(τ̂

∑
i j |i, j〉〈 j, i|τ̂ ) = ∑

i t4
i = d , which is the same as for

the swap operator itself. However, for the transformed identity
operator, the trace is

∑
i j t2

i t2
j = (

∑
i t2

i )2 � d
∑

i t4
i = d2,

that is, if ti are not all equal, it is smaller than the trace
of the identity operator. Therefore, to make the operator
in Eq. (A20) a density operator that is a proper mixture
of the antisymmetric operator and a symmetric one to
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provide a lower bound for pPPT, the second term has to be
renormalized by multiplying it by a factor larger than 1. This
renormalization will not only preserve the PPT property of

the operator with the same p, but it will even allow p to be
increased somewhat and still have a PPT operator. Therefore,
pPPT(|ψA〉〈ψA|) � pPPT(|ψ0A〉〈ψ0A|), indeed.

[1] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,
Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009).

[2] O. Gühne and G. Tóth, Entanglement detection, Phys. Rep. 474,
1 (2009).

[3] S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A.
Zeilinger, Experimental quantum cryptography with qutrits,
New J. Phys. 8, 75 (2006).

[4] A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E.
Andersson, Experimental high-dimensional two-photon entan-
glement and violations of generalized Bell inequalities, Nat.
Phys. 7, 677 (2011).

[5] B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C.
Ralph, K. J. Resch, G. J. Pryde, J. L. O’Brien, A. Gilchrist,
and A. G. White, Simplifying quantum logic using higher-
dimensional Hilbert spaces, Nat. Phys. 5, 134 (2009).

[6] F. Steinlechner, S. Ecker, M. Fink, B. Liu, J. Bavaresco,
M. Huber, T. Scheidl, and R. Ursin, Distribution of high-
dimensional entanglement via an intra-city free-space link, Nat.
Commun. 8, 15971 (2017).

[7] A. Sanpera, D. Bruss, and M. Lewenstein, Schmidt-number
witnesses and bound entanglement, Phys. Rev. A 63, 050301(R)
(2001).

[8] M. Horodecki and P. Horodecki, Reduction criterion of separa-
bility and limits for a class of distillation protocols, Phys. Rev.
A 59, 4206 (1999).

[9] A. Peres, Separability Criterion for Density Matrices, Phys.
Rev. Lett. 77, 1413 (1996).

[10] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A.
Smolin, and W. K. Wootters, Purification of Noisy Entangle-
ment and Faithful Teleportation Via Noisy Channels, Phys. Rev.
Lett. 76, 722 (1996).

[11] M. Horodecki, P. Horodecki, and R. Horodecki, Mixed-State
Entanglement and Distillation: Is there a Bound Entanglement
in Nature? Phys. Rev. Lett. 80, 5239 (1998).

[12] K. Horodecki, M. Horodecki, P. Horodecki, and J. Oppenheim,
Secure Key from Bound Entanglement, Phys. Rev. Lett. 94,
160502 (2005).

[13] M. Ozols, G. Smith, and J. A. Smolin, Bound Entangled States
with a Private Key and their Classical Counterpart, Phys. Rev.
Lett. 112, 110502 (2014).

[14] G. Smith and J. Yard, Quantum communication with zero-
capacity channels, Science 321, 1812 (2008).

[15] G. Tóth and T. Vértesi, Quantum States with a Positive Partial
Transpose are Useful for Metrology, Phys. Rev. Lett. 120,
020506 (2018).

[16] T. Moroder, O. Gittsovich, M. Huber, and O. Gühne, Steering
Bound Entangled States: A Counterexample to the Stronger
Peres Conjecture, Phys. Rev. Lett. 113, 050404 (2014).

[17] T. Vértesi and N. Brunner, Disproving the Peres conjec-
ture: Bell nonlocality from bipartite bound entanglement, Nat.
Commun. 5, 5297 (2014).

[18] S. Yu and C. H. Oh, Family of nonlocal bound entangled states,
Phys. Rev. A 95, 032111 (2017).

[19] K. F. Pál and T. Vértesi, Family of Bell inequalities violated by
higher-dimensional bound entangled states, Phys. Rev. A 96,
022123 (2017).

[20] M. Piani and J. Watrous, All Entangled States are Useful
for Channel Discrimination, Phys. Rev. Lett. 102, 250501
(2009).

[21] C. H. Bennett, D. P. DiVincenzo, T. Mor, P. W. Shor, J. A.
Smolin, and B. M. Terhal, Remote State Preparation, Phys. Rev.
Lett. 82, 5385 (1999).

[22] H.-P. Breuer, Optimal Entanglement Criterion for Mixed Quan-
tum States, Phys. Rev. Lett. 97, 080501 (2006).

[23] M. Piani and C. Mora, Class of positive-partial-transpose bound
entangled states associated with almost any set of pure entan-
gled states, Phys. Rev. A 75, 012305 (2007).

[24] K. Horodecki, M. Horodecki, P. Horodecki, and J. Oppenheim,
General paradigm for distilling classical key from quantum
states, IEEE Trans. Inf. Theory 55, 1898 (2009).

[25] G. Sentís, C. Eltschka, and J. Siewert, Quantitative bound
entanglement in two-qutrit states, Phys. Rev. A 94, 020302(R)
(2016).

[26] S. J. Szarek, E. Werner, and K. Życzkowski, How often is
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